





representation theoretical methods give elementary and
selfcontained proofs of results obtained in [2] and [6]. In
the last two sections our methods have a more ideal theoreti-
cal and algebraico-geometric emphasis, and some of these re-
sults can be used to reinterpret the work of the previous fiw
sections.

We proceed to give a brief description of each
section.

1. Observable subgroups - Here we recall some

definitions and results from [1]. The systematic study of the
semigroup of all rational characters of K that are extendable

to G allows us to simplify some of the proofs of that paper.

2. Geometrically reductive subgroups and ob-

servability - Here we prove that if K is a geometrically

reductive subgroup of G, then K is observable in G.

3. Exactness and observability - We prove that

if K is an exact subgroup of G then K is observable in G.For
the concept of exact subgroup see [2]. This is the first
stage of the proof that K exact in G implies G/K affine. The
concept of exact subgroup will be reinterpreted in 7 with

regard to the concept of linearly reductive group.

4. Existence of Affine Quotients - We prove

that if K is geometrically reductive (or exact in G) then

G/K is affine. From 2 and 3 we know that G/K is quasiaffine.



Using this, we cover G/K with affine patches (G/K)f where £
is a K-invariant polynomial function. All that remains is to
put all these patches together in a way that guarantees that

G/K is affine. This is achieved in Lemma 4.2.

5. Affine Quotients and injectivity - We prove

some results that imply a converse of the results of 4, i.e.,
if the orbit space G/K is affine then K is exact in G. This

was proved in [ 2], our results are more general and refer to
the case in wich X is an arbitrary variety and K is a group

acting on X in such a way that X/K exists and is affine.

6. More on geometrically reductive groups -

Here, using the concept of exact subgroup, we present a proof
of the following: If G is geometrically reductive and K is a
subgroup of G such that G/K is affine, then K is geometrical-
ly reductive. This is a particular case of transitivity re-
sults presented in 8. In the framework of section 8 the above

statement looses its otherwise rather mysterious character.

We will describe sections 7 and 8 together. The
definitions of these two sections have their origin in the
following considerations. Let X be an affine variety and K an
affine algebraic group acting on it. If K is geometrically
(linearly) reductive P(X)K is finitely generated and ( up to
a closed subset of X ) there is a "quotient" X/K. (See [9]and
[10]). The definitions of geometrically (linearly) reductive
group have to do with the action of K on any K-module algebra

R. This is somewhat unnatural, one should be able to prove



these results about orbits spaces using only properties of the
action of K on P(X). This leads to the introduction of the
concept of geometrically (linearly) reductive action of K on X;
then we prove the results about orbit spaces in this case.When
X is a group and K a closed subgroup acting by multiplication,
the concept of linearly reductive action coincides with the

concept of exact subgroup.

This paper was written while the author was a
graduate student at U.C. Berkeley working under the direction
of G. Hochschild. He suggested the possibility of obtaining
new proofs of the results of [2] using the concept of
observable subgroup. The author would like to thank Prof.Hochs
child for his valuable suggestions and for allowing him to

use his private notes on Invariant Theory.

1. Observable Subgroups

The concept of observable subgroup of an affine
algebraic group was introduced in [1]. In this section we
recall the main definitions and results.

Let G be an affine algebraic group defined over
an algebraically closed field F, and let K be a closed sub-
group of G. We denote by P(G) and P(K) the Hopf algebras of
polynomial functions on G and K respectively. The restriction
map m from P(G) to P(K) is a surjective Hopf algebra map. Now
suppose that the algebraic group G acts on a vector space M

by linear automorphisms. We say that M is a rational G-module

if the following two conditions are satisfied:



a) For every meM, the space Vﬁ generated by

"{x.m/xeG} is finite-dimensional.

b) For every feva, the functions f/m:G+F,given

by (f/m) (g) = £(gm), are in P(G).

The group G acts on P(G) from the left by (x,f) (y)=£f(yx) and
from the right by (f.x) (y)=f(xy) for feP(G) x,YeEG.
The G-module P(G) is a rational G-module when endowed with

either one of these actions.

Defn.l.l. Let G be an affine algebraic group
and XK a closed subgroup. We say that a rational character
Y:K+F is extendable to G if there is a non zero element f
of P(G) such that x.f=y(x) £ for every xeK.

It is easy to see that if there is such an f then there is
another such, £ say, satisfying the additional requirement
m(£)=y. In fact, we have f(x)20 for some element x of G,
and we may take §=f(x)—lf.x. It is also clear that the
character y is extendable to G if and only if there is an
injective K-module map from Fy to P(G), as Fy is simple as
a K-module we deduce that y is extendable to G if and only
if there is a finite-dimensional rational G-module M and an
injective K-module map from Fy to M. A standard argument that
goes back to Chevalley and that is based on certain exterior
algebra techniques gives us the following (cf.[1] or [ 7] Ch
XII): For every finite dimensional rational K-module N,there
is a finite-dimensional rational G-module M, a character p.

on K extendable to G, and an injective vector space homomorphism



t:N»M such that for every xeK and neN p(x) t(x.n) = x.t(n).
In particular if y is a rational character of K and we ta-

ke N=Fy we deduce the following:

Theorem 1.2. For every rational character Y

of K there is a rational character p of K that is extendable

to G and such that yp is extendable to G.

Defn.l.3. A subgroup K of G is said to be
observable in G if given any finite-dimensional rational K-
module N, there is a finite-dimensional rational G-module
M and an injective K-module map t:N+M.
From now on, we will drop the word rational unless there is
danger of confusion.
It follows that K is observable in G if and only if every
character of K is extendable to G. Evidently, this condi-
tion is necessary. In order to prove the sufficiency, con-
sider a finite-dimensional K-module N, and construct M, t
and p as above . If we call p* the reciprocal character to
p, there exists a non zero element u* of P(C) such that
x.u* = p*(x) u* for every x in K. Let us denote by . <Gu*>
the subspace of P(G) generated by the translates of u*, and
consider the map t:N>-M & <Gu*> given by t(n)=t(n)®u* Clearly
t is injective. Moreover
t(x.n)=t(x.n)Bu* = p*(x)x.t(n)Bu* = Xx.t(n)@p*(x)u* = x.€(n)
for every =xeK.

Defn.l.4. We shall denote the set of rational

characters of K that are extendable to G by EG(K). The



multiplicative group of all rational characters of K will be
denoted by X(K), and X(K) coincides with the subgroup gener-

ated by Eg5(K).

Proof. Let Yy, and y, be extendable characters
of K. Consider fl and f2 their extensions to G, and take Xy
and x, elements of G such that £,(x;)=0 and £, (x,)=0. Consider
the function g of P(G) defined as g=(£,.x,x;1)f,. Then
g(xz) = fl(xl) f2(x2) # 0 and if xeX x.g=x.(fl.xlx;l)x.f2 =
Y(x) Yy (x) g. |
Thus Y1 YZEEG(K). Finally Theo.l.2. says that every character

of K can be written as the quotient of two extendable ones.
Q.E.D.

Corollary 1.6. The following four conditions

are egquivalent:

a) The subgroup K is observable in G.

b) E.(K) = X(K).

c) For every element of EG(K) there is a >0
such that p*quG(K).

d) For every element p of EG(K), the reciprocal

p* also belongs to EG(K).

Proof. a)=b) has already been proved. The
implication b)=®c) is obvious. To prove that c)=>d) we take
peE, (K) and @>0 such that o*quG(K). Then p371 D*quG(K) ,

thus p*eEG(K). Finally condition d) says that E.(K) is a subo-

G
group of X(K). By Lemma 1.5., this implies b).

Q.E.D.



The following result will be extremely useful

to us in the sequel. The proof is in [1].

Theorem 1.7. Let G be an affine algebraic group

and K a closed subgroup. Then, K is observable in G if and

only if the homogeneous space G/K 1s quasi-affine.

2. Geometrically reductive subgroups and observability

Throughout, s9(v) will stand for the hanogeneous
component of degree q of the symmetric algebra built on V,and

F will denote the base field.

Defn.2.1. An affine algebraic group K is said
to be geometrically reductive if for every rational K-module
V and every non-zero K-module map A:VF, there is a g>0 and
an x in s3(")® such that s¥(1) (x) = 1, where s¥(A) is  the

map Sq(V)+F obtained from X in the canonical fashion.

Defn.2.2. An affine algebraic group K is said
to be linearly reductive if for every rational K-module Y
and every non-zero K-module map A:V»F, there is an x in v
such that A(x)=1.

Clearly condition 2.2 is verified if and only
if the map A splits as a K-module map, and analogously 2.1
is verified if and only if the map s (x) splits as a K-module
map.

It is known from [5] and [10] , that anaffine
algebraic group is reductive, in the sense that its unipotent
radical is trivial, if and only if it is geometrically reduc-
tive.

It 1s also known after Nagata that, if char F=0, then the



concepts defined in 2.1 and 2.2 coincide, and if char F=p>0,
there are very few linearly reductive groups.

The following two results are standard, see
(4] or [11], we will state and prove them here in order to
have available references. The author’ was unable to find a
proof of the implication a)=)b) of Theorem 2.4. in the liter

ature,

Theorem 2.3. The following four conditions

are equivalent:

a) If Ry and R, are K-module algebras, and
¢:R1+R2 is a surjective K-module algebra map, then ¢(R§)=R§.

b) If A:M>N is a surjective map of K-modules,
then the restricted map A/MK: MK+-NK is surjective.

c) The group K is linearly reductive

d) Every rational K-module is semisimple.

Proof. a)=b). Given A:MN consider S(M) and
S(N), the symmetric algebras built on M and N respectively
If we apply the conclusion of a) to the map S(A):S(M)>S(N)we
deduce the conclusion of b). The implication b)=)c)is evident.
We omit the proof of ¢)= a), which is identiéal with the proof
of the implication b)=)a) of the next theorem. As to the
equivalence of d) and b) we refer the reader to [ 4] because

we won't need the proof in the rest.

Q.E.D.

Theorem 2.4. The following two conditions are

equivalent:s
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a) If R, and R, are K~-module algebras, and

¢:R1+R2 is a surjective K-module algebra map, then for every
K . K . - g
r, €¢R, , there is a g0 and an rleRl such that ¢(rl) =r, .

b) The group K is geometrically reductive.

Proof., a)=>b). Let A, V and F be as in Defn .

2.1. and consider the map S(A): S(V)+S(F). The map S(2}) is
a surjective K-module algebra map. Thus as lES(F)K there is
atin S(V)K and a g>0 such that s{A) (t)=1.1l....1 (where the
dot indicates the product in S(V), and there are g factors
1). If we look at the part of degree q of t and call it tq,
we have that tquq(V)K and S(X)(tq)=1 ...... l. In the notation
of Defn.2.1. Sq(A)(tq)=uS(A)(tq)=l (where B indicates multi-
plication). Thus, we have that tq verifies the required pro-

perties,

b)=a). If r2=0 the result is trivial. If r2=0 consider ssRl

such that ¢(s)=r2. Define M as the K-module generated by
"{xs/xeK} and M' as the K-module generated by’ {xs-s/xeK}.Then
M=Fs+M' and the sum is direct, because ¢(M')=(0) and ¢ (s)=0.
Define the map A:M*F by writing m=A(m)s+m', with m'eM'. Then

it is clear that X is a surjective K-module map, and that

the following diagram commutes

M—25F
1 u
l l ’
Rl——g——iR2 , Where i is the inclusion map
and u_ (a) = ar,. Consider the q-th symmetric power of M,

o)
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where q is as in b). We have the commitative diagram

q
sq(m)— S~ (A Qg 2 -
q q
l S3 (i) 1 S (urz) urg
q
sTr)—S2t8)_ Ap) L ____ g

[
u . / $

Rl/
where u is the multiplication map. Take xeSq(M)K such that
uSq(A)(x)=l, and put rl=usq(i)(x). As p and s9(i) are

K-module maps, r, is K~invariant. Now, ¢(rl)=uSq(¢)Sq(i)(x)=

1
=ur% uSq(A)(x)=rg(l)=rg.

Q.E.D.

We want to prove that if K is ageometrically
reductive subgroup of G, then K is observable in G. First ,
we establish a Lemma that allows us to go from the ir-

reducible case to the general one.

Lemma 2.5. Let K be a geometrically reductive
group and K, a normal closed subgroup of finite index. Then

Ky is geometrically reductive.

Proof. Let V be a rational Kl—module and
consider the F-space FK (K,V) of all functions f:X+V sgatis-
1
fying f(xy)=x.f(y) ¥xeK, yeK. We make K act on Fe (K,V) by
1

(z.f) (y)=f(yz). Now, for all vy and z in K and all x in Kiv
we have, (z.f) (xy)=f(xyz)=x.f(yz)=x.(z.f)(y), so that if £
belongs to FKl(K,V) so does z.f. If V is a finite dimensional
thmodule, then FKl(K'V) is a finite-dimensional K-module.Tt

follows easily that FK (K,V) is a rational K-module.Consider
1l
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the map E,: FKl(K,V)+V given by Ev(f)=f(l). EV is a Kl-muhﬂe

map, because Ev(x.f)=(x.f)(l)=f(x)=f(xl)=x.f(l).

Now, let V be the trivial Kl—module F. Evidently FK (K,F)can
1

be identifield with the K-module F(K/KI,F) of all maps from
K/K, to F with the K-action given by (z.f)(xK1)=f(sz1), and
the map EF is given by EF(f)=f(1K1). Let y:V+F be a sur-
jective morphism of Kl-modules, and consider the map
Y*: FKI(K,V)+FK1(K,F) given by y*(f)=yf. The following dia-

gram is commutative,

Fp (K,V)—2" S (K,F) = F(K/K,,F)
1 Ky

Let us make a coset decomposition K=lefwnlij.:.uler, with
xl=1, and choose v,ev such that y(v°)=l. Define f :K>V by

fo(kxi)=k.v0 for every element k of Kl'

It is clear from the very definition that f,eF, (K,V).

K

1
Moreover, the function Y*(fo) on K/Kl is easily seen to be
simply the constant function with value 1, which we shall

denote by 1. Now, consider the K-module M generated by f in

Fy (K,V). The following diagram is commutative and the maps
1

thiat land in F are surjective,

-~

*
(P, A
|

Y

6f y* with the identification of F1 with F. Observe that y*

, where Y* denotes the compcsite
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is a K-map.

qd(=x
The diagram s3(M) ST g
lSq(EV) s9 (v)
59 (v) , 18 commutative for every

¢ 0. If we choose g such that s9(y*) splits as a K-module

map and call t the splitting map, the diagram shows that

the Kl-module map Sq(EV)t splits Sq(y), because

q q = qd ~x = 1

s*(y) S (EV)t St {(y*)t 1dF.
Q.E.D.

Theorem 2.6. Let G be an affine algebraic

group and K a closed subgroup. If K is geometrically reduc-

tive then K is observable in G.

Proof. Let Gl be the connected component of
the identity in G.Using [ 1], Theorem 6, we know that K is

observable in G if and only if K n‘Gl is observable in G

1°
By Lemma 2.5. it is enough to prove Theorem 2.6. for the
case in which G is connected. Let 7:P(G)+P(K) be the

restriction map and let p be a character in EG(K).There is
a non zero element u of P(G) such that w(u)=p and x.u=p(x)u
for every element x of K. Choose an element U from P (G) such
that m(u)=p*. Let. <Ku> denote the sub K-module of P(G) ge-
nerated by u, and consider the composite F-linear map
a: Fu @ <Ku> H—QHEvF p @ F p* 3 F, where j(p@p*)=1.

It is clear that a is a K-module map when F is endowed with

the trivial K-module structure. As K is geometrically reduc-
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tive and o is surjective there is a g>0 and an element t in
s (Fu 8.<Kﬁ>)K such that s9(mem) (t) = (p@p*)9. Let us write

t=§ (u@fil)(u&fiz)...(uafiq), where we use juxtaposition
to indicate the product in the symmetric algebra, and the

¥ = = 9
elements fij are in. <Ku>. Set v i fil"’fiq' and f ulv.
From the fact that t is K-fixed, it follows that f is

K-fixed. The following computation proves that v is a p*q -

semiinvariant:

x.f = (x.u)9(x.v) = pq(x)uq(x.v) = uqv, thus, xX.v = p*q(x)v.

We have v(l)=m(v) (1) = £m(f, ) (1)...m(£, ) (1). On the other
i il ig

hand we have that n(fij)=Ai.p*, from Sq(ﬂﬂﬂ)(t)=(AQA*)q, we

]

il"'xiq=l' which shows that v(1l)=1. Thus v is

a non-zero p*q—semiinvariant, showing that p*qEEG(K). Our

find that E A

result follows from Corollary 1.6.

3. Exactness and observability

Let G be an affine algebraic group over an
algebraically closed field F, and let K be a closed subgroup.
We can define induced representations in the category of
rational modules as follows. Let N be an arbitrary (rational)
K-module and let us endow P(G)@N with a left K-module struc-
ture in the usual (diagonal) way. The group G acts on the
right on P(G)8N by (f@n).x = (f.x)8n for xeG. We endow P (G)
@N with the left G-module structure associated to the right
G-module structure given above. As the diagonal K action and
the G action commute (P(G)@N)K is a left G-submodule of the

ti=module P(G)8N. We call the module (P(G)@N)K the G-module
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induced by the K~module N.

Defn.3.1. We say that the subgroup K of G is

exact if the induced representation functor is exact.
As the induced representation functor is always left exact
the meaningful part of the definition above is the following:
if a: M>N is a surjective K-module map, then the restricted
map (id ® a): (P(G)@M)K-*(P(G)QN)K 1s surjective., It is
immediate that K is exact in G if and only if, for every ra-
tional K-module M, one has Hl(K,P(G)@M)=0, where Hl indicates
the first rational cohomology group. It is also known that
the condition Hl(K,P(G)@M)=0 for every M is equivalent to
the assertion that P(G) is injective as a K-module. See [2]
for the definition of exact subgroup and [2] or [3] for the
results mentioned above.

If R is a K-module algebra we define the abelian
category of (R,K)-modules as follows: the objects of the
category are F-spaces M that are at the same time K- modules
and R-modules, such that the actions are related by
x(rm)=(xr) (xm) for XeK, reR, meM; the morphisms in this cat-
egory are defined in the obvious way. We shall denote by

M(R,K) the category of (R,K)-modules.

Lemma 3.2. Let G be an affine algebraic group
and K a closed subgroup. Let F denote the fixed point functor
from M(P(G),K) to the category of F-spaces. Then K is exact

in G if and only if F is exact.
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Proof. If M is a K-module then P(G)@M is a
(P(G) ,K)-module. Therefore, the condition that F be exact
implies that K is exact in G. Conversely, let M and N be
(P(G) ,K)-modules and let a:M*N be a surjective map in the

corresponding category. If u, denotes the map from P(G)@M to
M given by the action of P(G) on M and Uy indicates the

corresponding map for N, then Uy and uy are K-module maps ,

and the following diagram is commutative

Y
P(G) @ M M -+ M
idea o
| My
P(G) @ N = N . The rmaps
Syt M>P (G) @M sM(m)=1&m and sy are also K-module maps that

split “M and “N and also fit into a commutative diagram as

follows:
s
P(G) @ M - M M
id@oa la
°N
P(G) @ N « N . Taking K-fixed
parts we get the following pair of commutative diagrams:
(p(G)am X = > MK
id®a o
K + K \
(P(G)@N) ™ « N© , where the hori-

zontal maps are the restrictions of yu and s. From the diagram
follows immediately that if (id @ o) (P(G) & MX)=(p(c) & MK

then a(MK)=NK.
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The concept of exact subgroup of an affine
algebraic group was introduced in [2]. Later in this paper
we will reinterpret this concept and connect it with a
certain generalization of the notion of linearly reductive
group. In [2] it was proved that K is exact in G if and only
if the homogeneous space G/K 1s affine. Their proof that K
exact in G implies that G/K is affine goés along the following
lines. Using the fact that every reduétive group is geometri-
cally reductive (see [5]), they prove that G/K is affine if
and only if G/Ku is affine, wpere Ku is the unipotent radical
of K. Next they prove that if U is a unipotent subgroup of G,
then U is exact if and only if G/U is affine. (See [ 2] ,Theo-
rem 3.1, Theorem 4.3 and Lemma 4.1). In this section and the
next we present a proof that K exact in G implies G/K affine
that does not use the results of [5] and is representation
theoretical in spirit,

First, we need to know how to pass from the
case 1n which the group G is irreducible to the general one.

This is acomplished using Lemma 3.3.

Lemma 3.3. Let K be an exact subgroup of G
and K1 a normal connected subgroup of K of finite index.Then

Kl is exact in G.

Proof. The induction functor is transitive .
This means that if K and I, are closed subgroups of G such that

KcLecG; and if we denote by V|L the L-module induced by the
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K-module V we have V|L|G = VIG. Thus, in order to prove that
Ky is exact in G it is enough to prove that Kl is exact in
K. Consider the decomposition of K into a finite number of

cosets module Kl' as follows K=K1xr U le2 see U ler, with

xl=1. Iet Pé{feP(K)/f/Kl=0} and put Q=f“\ P.xll.
i=1

The set of zeros of Q can be computed as:
Z(Q)é{keK/(f.xll)(x)=0 ¥ feP i=2...r}=
=’-{xe:K/f(xi_lx)=0 ¥ feP i=2.,.,.r}=

é{xeK/xll xeK; for some i=2,...,r}= \_}

xi K1 = k~j Kl Xy -

izl izl
Thus Q is an ideal that is Kl invariant and P+Q=P (K). This
shows that the restriction map ﬂ:P(K)+P(Kl) splits as a

K,-module algebra map. Using a result due to Hochschild whose
proof (in a more general context) can be found in (3], we
deduce that P(K) is injective as a Kl-module, which implies
that Kl is exact in K. If we don't want to use that result ,
we proceed in the way indicated above to decompose P(K) as a
direct sum of algebras Al ® ... & A; such that Al is
isomorphic to P(Kl), every Ai is stable under translations by
Kl' eévery translation effected by an element of K permutes
the Ai's, and K acts transitively on the set of Ai's from
the right as well as from the left. Thus, if we write
l=fl+...+fn with fieAi, then the Hopf algebra Ffl+...+ancan
be identified with the algebra of polynomial functions on
K/K,. It is clear from the construction above that P(K) =
EP(Kl) ® P(K)Kl. Hence, as P(Kl) 8 V with the diagonal K,-

1
moflule structure is isomorphic to P(K,) @ V with the trivial
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Kl—structure on V and the usual on P(Kl), we deduce that
(P(Kl)QV)Kl = P(Kl)Kl @ V=V,
Thus, (P(R)EV¥1 = p(x)¥le(p (k) eV)*1 = p(k)*lav, shows that

K, is exact in K.

1
Q.E.D.
Note: In the situation above, P(Kl) is a direct Kl-module
summand of P (K).
Theorem 3.4. Let G be an affine algebraic

group and let K be a closed subgroup of G. Then K exact in

G implies that K is observable in G.

Proof. Let G, denote the connected component

1

of the identity in G, and set K'=KnGl. The fact that K is
exact in G implies that K'is exact in Gy- Indeed, from Lemma
3.3 we have that P(G) is injective as a K'-module. As we

noticed before, P(Gl) is a direct Gl—module summand of P(G).

A fortiori, P(Gl) is a direct K'-module summand of P(G) .
Therefore, P(Gl) is injective as a K'-module. By the same
considerations we made at the beginning of the proof of
Theorem 2.6., it is enough to prove our Theorem in the case
where G is connected. Consider a character p of K that is

extendable to G, and let u be an extension of P that restric
ted to K coincides with p. Take UEP(G) such that T(u) = p*
(1 dehotes the restriction map from G to K), and consider the
K-module <Ku> generated by u in P(G). Let o denote the map

m&n: Fu @ <Ku> + Fp & Fp*.
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Clearly, a is a surjective K-module map. Using the exactness
of K in G, we deduce that the map

(id @ a):(P(G)@Fu@<Kﬁ>)K-+(P(G)@Fp&p*)K is surjective. The
element 1@p®p* is K-invariant. Therefore, there is an eleament
t= If, @ u @ g; €(P(G) @ Fu @ <K@ )" such that If, 8p 8 m(g,)=
=1@p @& p*. Now, ﬂ(gi)=Aip*, with IA,£,=1. Now consider

i71
the element f=u2figi of P(G). As t is K-invariant, f is in

K _ - -
P(G)". Moreover, If,(1l)g; (1) = Zf, (1)m(g;) (1) = If; (1)}, = L.
Consequently, if we put v=Zfigi, we have

uv=f = x.f = x.u x.v = p(x)u (x.v), whence x.v=p*(x)v.

This shows that the character p* is extendable to G. Thus K

is observable in G by Corollary 1.6.

4. Existence of Affine Quotients

We prove that, in the cases studied above ,
where K is geometrically reductive or K is exact in G, the
orbit space G/K is not only quasi-affine but actually affine .

This is a consequence of the following algebraic lemma.

Lemma 4.1. Let K be an observable subgroup of
G. In addition, suppose that, for every proper ideal I of
P(G)K, the ideal IP(G) is a proper ideal of P(G). Then G/K

is affine.

Proof. As G/K is quasi-affine, there is a

non-Zero element f in P(G)K such that the corresponding prin-

€ipdl open set (G/K) ¢ is affine. Consider the ideal I of



- 21 -

P(G)K that is generated by the elements f.x with x in G. The
ideal IP(G) cannot have any zero in G, because if there is a
Yo in G such that (f.x) (yy) = 0 for every x in G, the function
f is zero on Gyy=G. Consequently IP(G)=P(G). By assumption ,

we must therefore have I=P(G)K. Thus we can find a finite set

of points Xyre--+X,. in G such that the ideal generated by
the f.x.,'s is all of P(G)K. Now (G/K)f = x 1 (G/K) ., SO
i - Xy i £
that (G/K)f X is affine for each i=1,...,r. From this it
i

follows that G/K is affine.
Q.E.D.

At the end of the proof of Lemma 4.1 we
made use of the following result: Let X be a quasi-affine va-
riety and fl""'fn elements of P(X) the algebra of everywhere
defined regular'functions, such that:

a) The functions fi generate the unit ideal
of P(X).

b) The open sets XE are affine for every i.
i
Then X is an affine variety. The proof proceeds as follows.

First we observe that the algebra of polynomial functions on

Xf is isomorfic with the localization, P(X)f of P(X) with
i i
respect to the multiplicative set of the powers of f;. Using

that P(X)f is finitely generated as an algebra over the
i

base field and condition a) we deduce that P(X) is finitely

generated as an algebra. Then the cannonical map from X to

the Spect (P(X)) is injective because X is quasi-affine, and

is ah isomorfism on every open set Xf .
i
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The next Lemma appeared in a slightly differ-
ent form in [9]. We need to have a proof avaible for future

reference and we include it here.

Lemma 4.2. Let K be a geometrically reductive
affine algebraic group, and let R be an arbitrary K-module

algebra. If I is an ideal of RK such that IR=R , then 1=rK.

Proof. Let 1=fir +...+f r with f eI, r,eR .
We shall prove by induction on n that the ideal generated by
the fi's in RX coincides with RX. If n=1 from the equality
1=f1r1 we deduce that for every xeKk, l=fl(x.r1). Thus
x.rl-rlsAnn(fl), and then rl+Ann(fl)e(R/Ann(fl))K. By Theorem
2.4. there is a teRK such that t—r?eAnn(fl). Then tfl=r(%fl ’
thus, if we raise the equality l=f1r1 to the g-th power we

=¢9 9 _ (g-1 - q-1 =gK
get 1 fl ry f1 t f1 fl(tfl ). Thus I=R". For a general
n, since Rfl is K-stable, we may apply the inductive hypoth-
esis to the cannonical image of I in (R/Rfl)K. This shows
_ K
that 1+flR = 82f2+"'+snfn+f1R where si+flR £ (R/flR) . By
Theorem 2.4., there are elements §i in RK such that
Ei-s? € £,R, for some k>0. There is an r in R such that

l—flr = 52f2+...+snfn. Raising l—flr to a convenient power

we deduce that there are elements 52,...,55 e RX and TeR such
that 1=f1? + §2f2 + ...+ Enfn' Thus if xeXK we have that
1= fl(x.f)+§2f2+...+§nfn. This shows that x.r - r belongs to
the annihilator, J say, of £, in R. Then the element Thie (R/0) K.
Applying Theorem 2.4 we deduce the existence of an element

serRX and a g>0 such that ri-seJ. Thus f‘lf? = g f?. Raising
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the equality l-szfz-...-snfn = flr to the g-th power we

—_— ! [] |K =K
deduce that l—rlfl+...+rnfn with rieR . Thus I=R".

Q.E.D.

From Lemma 4.2. Iemma 4.1. and the results of Section 2 we

deduce the following result.

Theorem 4.3. Let G be an affine algebraic

group and K a closed geometrically reductive subgroup of G.
Then the quotient space G/K is affine.
A relative criterion for a guotient space to

be affine is as follows.

Theorem 4.4. Let G be an affine algebraic group

and K a closed subgroup that is exact in G, then the quotient

space G/K is affine.

Proof. Let I be an ideal of P(G)K such that

P(G)I=I. Consider Ay elements of I such that
a f,+...+a_f =1 for some f,eP(G). Look at the map
¢: & P(G) > P(G) given by $(F;,...,F)=Fa;F, . The map ¢ is a

i=1
surjective (P (G),K)-module map. Thus, as K is exact in G, we
deduce, using Lemma 3.2., that ¢(.& P(@%) = p@¥. In
particular I=P(G)K.

Q.E.D.

°>. Affine Quotients and Injectivity

The main purpose of this section is to prove
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the converse of Theorem 4.4. We consider a somewhat more
general situation with a view to the generalizations of
Section 8. In the case where G is a group and K a closed
subgroup, the methods used here were developped in [2]1, §4,

to obtain similar results. Using the relationship between the
sheaf cohomology of the homogeneous space G/K and the rational
cohomology of certain K-modules, Habousch in [6], claims to
prove Corollary 5.5 below. However, his proof seems incomplete
to the author.

Let F be a fixed algebraically closed field.
All our varieties will be defined over F, and their "points"
will be undestood to be F-rational points. Let X be an
affine variety, and let K be an affine algebraic group acting
on X from the right in such a way that the action X x K*X is

a morphism of affine varieties.

Defn.5.1. We say that an orbit variety for
the action of K on X exists if there is a pair (Y,t1) where Y
is an algebraic variety and 1 a surjective open morphism from
X to Y such that:

a) 1(x) = 1(x') if and only if xK = x'K.

b) If U is an open subset of X the map
T*: OY(T(U))+OX(U) is injective and its image consists of
all elements f of OX(U) that are constant on sets of the from
xKnU for xeK. If the orbit variety exists, it is unique up

to isomorphisms and we denote it by X/K.

Theorem 5.2. Suppose there is an abstract

dgfoup L actings transitively on X from the left as a group
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of variety automorphisms in such a way that the actions of L
and K commute. If the orbit variety X/K exists and is affine,
then the algebra P(X) is faithfully flat as a KP(X)-module ’

where KP(x) denotes the K-fixed part of P(X).

Proof. Consider the inclusien FP(X) € P(X). It is an
easy consequence of Noether's normalization theorem that there is an £
in ¥p(X) such that P(X) is free as a Fp(x) grodule.For every element 1
of L, we have f.lEKP(X)., and P(X) . ;is free as a KP(X)f'l—nodule. As
the action of L on X is, transitive,it follows that the ideal generated
by the £.1's, with 1 ranging over L,coincides with 'P(X). Hence, there is
a finite set (fl,...,fn) of elements of KP(X) such that

P(X)f is free as a KP(X)f -module and moreover the ideal
i i

generated by the f,'s is all of Kp(x). By standard commutative
algebra, this implies that P(X) is faithfully flat as a

KP(X)—module.

Q.E.D.

We recallthe ‘definition of fiber products of
algebraic varieties. Given a pair of varieties X and Y and
maps f:XS g:Y»S into another variety S, the product of X
and Y over S, denoted by X Xg Y is a triple (Z,nl,nz) where
Z is an algebraic variety, T, and T, are morphisms of varie-
ties from Z to ¥, and X, respectively that verify fﬂl = gy,
and such that if (Zl,yl,yz) is another triple as above,there

is one and only one map t:Zl+Z that makes the diagram below

commutative,
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The map t will be denoted by‘Yl X Y 5- If X,Y and S are affine

]
varieties given by X=Spect (A}, Y=Spect(B) and S=Spect (C),then

also 2 is affine, being given by Spec (A@CB).
Let X be an affine variety and K a group acting
on X as in Defn.5.1. Consider the fiber product X Xy /g X coming

from the cannonical morphism t: X+X/K., Clearly X x X can be

X/K
identified with the subset of X x X given by the condition

'{(xl,xz)ex x X/le=x2K}. Then if we define the map a:X x X x X
by a (x,k)=(x,xk), it is clear that the image of a in X x X 1is

X x X. For the rest of this section we will consider -only

X/K

such actions of K on X for which the map a defined above is

an isomorphism onto its image. This implies that K acts on X
without fixed points and that for every orbit T the map

f: T x ™K given by f(xl,x2)=k if x1=x2k is a polynomial map.
Under these hypotheses a: X x K+ X XX/K X is an isomorphism

of affine varieties. It induces an isomorphism

a*: P (X) @K P(X) » P(X) ® P(K). Moreover if X denotes the

P (X)

P (K) ~comodule structure on P(X) and u is the multiplication of
the algebra P(X), then the map a* is given by a*=(p®id) (ide X )

Kp (%)

94 and X(gi)=Zgi @h, . then

or; explicitly, if t=if, @ 5 8hy s,

Kp (x)

g* () = Ifig;5 @ hyy
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P(X) trivially on the first
Xp (x)
factor and with the induced action on the second factor, and

If we let K act on P(X) 8

on P(X) ® P(K) trivially on the first factor and with the
induced action on the second; the map a* is a left K-module

map .

Theorem 5.3. Let X be an affine variety and

let K be an affine algebraic group acting on X in such a way
that the map a(x,k)=(x,xk) is an isomorphism onto its image.
Suppose, moreover, that the orbit variety X/K exists and is
affine, and that there is a group L acting on the left in a
transitive way as a group of automorphisms of X commutingwith

the K-action. Then P(X) is injective as a K-module.

Proof. It is well known (see [3] or [8])that
P(X) is injective as a K-module if and only if the functor
W - K(P(X) @ W) is exact where we regard P(X) @ W as a K-mo-

dule with the diagonal left K-action. Let Wl—l+ W, be a

surjective K-module map. We want to examine the map

K(P(X) e Wl) id®y X

(P(X) @ W2). An elementary computation
shows that K(P(X) @ Wi) = W, , where the isomorphism is
given by ka @ w, — ka(l)wk , and the K-module structure on
P(X) @ Wi is the diagonal structure.

Thus, from the surjectivity of Y, we deduce that the map

id & id 8 v

P(X) & “(P(K) & W) »P(x) 8 “(P(K) @ W,) is
surjsctive. If we endow P(X) with the trivial left K-module

actioen we deduce that the map



- 28 -

Kex) e p(x) @ W) 1d81d8y, Xpix) @ p(r) @ W) is
surjective. Using the fact that a* is a K-module map we

deduce that the map

e e, P awy) 1481d ey K.y, a  P(X) @w,)
%p (x) P (X)

is surjective provided we endow the tensor products above

with the diagonal left K-module structure by making K act

trivially on the first tensor factor and with the given

actions on the second and third factor. Thus the map

feon ewy) 24818 Y, by g Kpry) gy

P (X)

P(X) @

Kp (x)

is surjective. Now, as P(X) is faithfully flat as a 5p(X)-modu
le, we deduce that the map

Kp(x) a W) 248 Y, Kipx) g W,), is surjective.
Q.E.D.

Now suppose that X is an affine algebraic
group G and that K is a closed subgroup of G. All the hy-
potesis of Theorem 5.3. are satisfield, and we deduce the

following result.

Theorem 5.4. Let G be an affine algebraic

group and K a closed subgroup of G. If G/K is affine, then
P(G) is injective as a K-module, and the induced representation

functor is exact.

6. More on Geometrically Reductive Groups

Here we prove that, if G is a geometrically

reductive affine algebraic group and K a closed subgroup
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of G such that the quotient G/K is affine, then K is geomet-
rically reductive.

This result was first proved by Bialinicki-
Birula in the case of characteristic zero. Later, Richardson
in [12] and Habousch in [ 6] presented proofs for arbitrary
characteristic. Our proof relies on the concept of exactness
and is similar to the one in [6]. In section 7, we will
reinterpret this theorem as a particular case of a transi-

tivity theorem.

Theorem 6.1. Let G be an affine algebraic

agroup and K a closed subgroup of G such that the quotient G/K

is affine. Then, if G is geometrically reductive, so is K.

Proof. Let V be an arbitrary K-module, and
let y: V-F be a surjective K-map. Applying the induced repre-
sentation functor to y we get a map Y: (P(G) @ V)K+(P«D t!!]?)x=
= K i by = ¢

P(G)" given by Y(Lf; @ vy) = Iy (v £y

Consider the map EV:(P(G) 8 V)K + V given by

E (Zf; @ vi)=Zfi(l)vi. The K-fixed par# (p(G) @ V)¥ is taken
with respect to the left diagonal action and the G-action on

K e

(P(G) & V)™ is : g.(Zf;, @ v;) = Zf;.g 1 8@ v,. The following
calculation shows that Ey is a K-module map.

-1 1

Ik .fi | k vy = Zfi ® vy implies that

. —
1f, (kTh)k 1.vi = If, (1)v; , whence If, (k Lyy

i k.EV(Zfi&viL
1

Now we have Ev(k.Zfi 8 Vi) = EV(Zfi.k ] vi)

-1 B
Zfi(k )v.l =

= k-EV(Zfi & Vi).
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The diagram

(P(G) ® V)K‘—?——) 1>(G)K

is commutative where E is the map given by the evaluation at
1. As K is exact in G there is a te(P(G) x V)X such that
Y (t)=1, where 1 denotes the constant function of value 1 on
G. If we denote by <Gt> the sub G-module of (P(G) & V)X gen-
erated by t, the map Yy can be considered as a G-module map

from <Gt> to F, and with that interpretation the diagram

(<G> —Y 5 F
By «
v , is commutative.
As G is geometrically reductive, there is a g>0 and an
xeS% (<6t>)€ such that s9(3) (x)=1. Let y=s9(E) (x). Then

vesT ()X, ana sq(y) (y) = sTm1s¥ () (x) = s9(§) (x)=1.

Q.E.D.

Using Theorem 6.1., we can answer the
following question. What qroups are universally exact ? 1In
other words, what are the affine algebraic groups K such that,
whenever K is embedded in an arbitrary G as a closed subgroup,
the gquotient G/K is affine ? The answer is "The (geometrical-

ly) reductive groups". Indeed, we know from Section 4 that
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geometrically reductive groups are universally exact. Now
let K be a universally exact group. We can imbed K in a
GL(n,F) as a closed subgroup . Now K is exact in GL(n,F),and
since GL(n,F) is geometrically reductive, it follows that K
is geometrically reductive.

It is an open problem to characterize the
universally observable groups.

Xy

7. Invariant Theo

In this section, we establish results on
rings of invariants that we use in Section 8 for studying
orbits spaces. We use a degree of generality that allows us
to clarify and unify certain results.

Let K be an affine algebraic group defined
over an algebraically closed field F and let C be an arbitrary
abelian subcategory of the category of all rational K-modules.
An F-algebra object in C is an object in C that is at the same time a
commutative algebra with identity. We assume throughout that,
if R is an algebra object in C and rERK, then the set Rr is
an object of C and the maps R-Rr+*R defined respectively as
multiplication by r and set theoretical inclusion are C-maps.

As we saw in Theorems 2.3 and 2.4, the
following two (alternative) axioms are highly relevant to

the reductivity properties of K.

Axiom A. Let Rl and R, be F-algebra dbjects

of C and let ¢ be a surjective algebra map from R, to R,that
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is also a morphism of C. Then, for every rzeRg , there is a

a> 0 such that rg € ¢(R§).

Axiom B. Let Rl’ R2 and ¢ be as in Axiom A.

K
2

Then ¢(R§) = R

Note that, in the case where C is ~ . the
category of all rational K-modules, Axiom B holds if and
only if K is linearly reductive, and Axiom A holds if and
only if K is geometrically reductive (Theorems 2.3 and 2.4).
It is also clear that if K is geometrically reductive then
Axiom A holds for any category C as above, and similarly for
Axiom B. Conversely if K satisfies Axiom A for every category
C as above, then K is geometrically reductive (and similarly
for Axiom B and linear reductivity). It will became clear in
section 8 how to construct an affine algebraic group K that

is not geometrically reductive, but satisfies Axiom A on a

certain category C of rational K-modules.

We will prove that, if C is a category as above for which
Axiom A holds, and that satisfies some mild additional
hypothesis, then, rE is finitely generated for every fi-

nitely generated F-algebra object R of C.

We need some preparation for proving that result. Let R be
an F-algebra object in C. If reRK » then the map R»Rr has
kernel 1= {seR/sr=0} that is (by our assumptions) an object
of C. The map R-+R/I is a C-map. In this situation, the

following analogous of Lemma 4.2, is valid.
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Lemma 7.1. Let C be an abelian category as
above that satisfies Axiom A. Let R be an algebra object of

C. If T is an ideal of RK

such that IR=R then I=RK.
Note that we do not assume that I is an object of C.The proof

of this result is identical with that of Lemma 4.2.

Lemma 7.2. Let C be an abelian category of
K-modules satisfying Axiom A. Let R be an algebra object of
C, and let J be an ideal of R that is also an object of C
and such that the inclusion JcR is a morphism of C. If(R/J)K

is finitely generated as an F-algebra, then so is RK/JnRK.

Proof. Consider the commutative diagram

R R/J\
J j (R/H¥ = Fr £
K

£ 1

/ 17

t
(rRF)

where all the non horizontal maps are inclusions. As R and

R/J are algebra objects of C and m is a surjective algebra

homomorphism that is also a morphism of the category C,
Axiom A yields the existence of exponents dyre--r9¢ such that
T=F[£91,..., fJtIcn (RX). Now let us look at Tem(R) < FLfy,...,£].

Clearly Fffl,...,ft] is finitely generated as a T-module. A
fortiori F[fl,...,ftl is finitely generated as a W(RK)—mxiﬂe.
A well known Lemma due to Artin and Tate says that, in this
case, ﬂ(RK) is finitely generated as an F-algebra. Now the

kernel of the map m:RX — R/J is JnRK. Thus 7 (RF)=RK/7nRK.

Q.E.D.
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Lemma 7.3. Let C be an abelian category of
K-modules satisfying Axiom A. Let R be an algebra object of
C and, for every element r of R, let I(r) denote the
annhilator of r in R. Suppose that there exists an reRK such
that (R/Rr)K and (R/I(r))K are finitely generated F-algebras.

K

Then R is finitely generated as an F-algebra.

Proof. Using Lemma 7.2. for J=Rr and J=I(r)
respectively we deduce that RK/anRK and RK/I(r‘)nRK are fi-
nitely generated as F-algebras. Thus, we may write

RX = Aluj,...,u] + Ro o R R=FLvy,...,v ] + I(x)oR".

Put S = Hﬁul,...,ut,vl,...,vs]. In proving Lemma 7.2. we saw
that (R/I ()X is finitely generated as an RK/I(r)nRK—module.
Accordingly, we choose elements cl,...,cleR such that the
elements ci+I(r) of R/I(r) are K-fixed and generate(R/I(r))K
as an RK/I(r)nRK—module. Now, if xeK, then XC; - c; € I(r) ,
whence cireRK. We shall prove that F[ul,...,ut,vl,...,vs,clr,
...,clr] coincides with RK. Let roeRK. There is an element s
of S such that ro—se(Rr)nRK , i1.e., ro—s=ar€RK with aeR. Now
(xa—a)r=x(ar) - ar = 0. Thus, xa-a is in I(r), so that
a+I(r)s(R/I(r))K. By the definition of the ci's, there is an

element b in Scl+...+Sc such that a-beI(r). Now

1
ar=brss[c1r,...,clr]. Thus ro-ses[clr,...,clr], whence
rOEF[ul,...,ut,vl,...,vs,clr,...,clr].
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Theorem 7.4. Let C be an abelian category of

K-modules satisfying Axiom A. Let R be an algebra object of
C that is finitely generated as an F-algebra and graded in

such a way that the action of K preserves the grading. Then

RK is finitely generated as an F-algebra.

Proof. Let F denote the family of all those
homogeneous ideals of R which are also objects of C and have
the property that IR is a morphism of C and (R/I)K is not
finitely generated as an F-algebra. We wish to prove | that
F=¢, We do this by deriving a contradiction from the
assumption F=¢. As R is noetherian, we have a maximal element
I, in F. Then Rm = R/Im is again an algebra object of C that
is finitely generated as an F-algebra, is graded and such
that the action of K preserves the grading. The ring Rﬁ is
not finitely generated, but (Rm/J)K is finitely generated for
every non zero homogeneous ideal J that is in C and such that
Jqu s a map in C. Replacing R with Rm’ we achieve that RK
is not finitely generated but (R/J)K is finitely generated
for every ideal J as above. Let r be an homogeneous non zero
element of RK. If the annihilator I(r) of r in R is not zero,
then Lemma 7.3. gives a contradiction. Thus, we may assume
that r is not a zero divisor. Consider J=Rr. This is a non
zero homogeneous ideal that is also an object in C, and the
inclusion J<+R is a map in C. Thus, (R/J)K is finitely

generated. By Lemma 7.2., this implies that RK/JnRK, i.e. ,

RK/RKf is finitely generated. There are homogeneous elements



Vl""'vk in RK whose images in RK/RKr generate RK/RKr as
an F-algebra. We prove by induction on the degree that
RK=F[vl,...,vk,r]. Let seRF and put e=deg(s). By definition
of the vi's, we have s=p(vl,..,vk)+tr where p is a polynomial
and teRK. If e'=deg(r) we have s=p(vl,...,vk)e+te_e,r. By
induction we have that te_e,eF[vl,...,vk,r], then our

conclusion follows.
Q.E.D.

To prove the theorem in the case of an arbitrary algebra
object of C (not necessarly graded) we have to add multipli-

cative conditions to our category C.

Defn. 7.5. An abelian subcategory of the
category of rational K-modules is said to be multiplicative

if, for every algebra object R of C, the algebra R@FR is

again an element of C and the multiplication map u: R&R~>R

is morphism of the category C.

Theorem 7.6. Let C be a multiplicative abelian

category of K-modules satisfying Axiom A. Let R be an algebra

object of C that is finitely generated as an F-algebra. Then

K

R™ is finitely generated as an F-algebra.

Proof. Proceeding as in our proof of Theorem

7.4., we see that is enough to derive a contradiction from
the assumption that RK is not finitely generated, but that
(R/J)K is finitely generated for every non-zero ideal J of
R such that JeC and the map JeReC. In doing this, we may
alss asstite that R contains no zero divisor of R. In  that

ease, the field of fractions of RX, denoted by (RN, is a
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finitely generated field extension of F (see coments following
this proof). We can represent R as a quotient S/Q where S is
a graded algebra object of C that is finitely generated asan
F-algebra, and Q is an ideal of S that is also a C-subobject
of S. Then s¥ is finitely generated as an F-algebra. We also
know (from Thm.7.2., above) that SK/QnSK is finitely generated
as an F-algebra and that RE is integral over SK/QnSK.Cbmﬂder

the following diagram

/[ SK/Q nSK] — [ RKJ
E‘Q\\\\s
K ons® e—0 RE

S

The extension at the bottom is integral, whence the one at
the top is algebraic. It is also finitely generated ( the
extension [RK]/F is finitely generated). Thus, the extension
t REy / [SKAQnSK] is finite algebraic. By general commutative

algebra, the integral closure of SK/QnSK in [RYT is finitely

K K

generated as an SK/QnS -module. As SK/QnS is noetherian we

deduce that RK(that is contained in the integral closure

K

mentioned above) is finitely generated as an SK/QnS -module.

Thus, in the extension FcSK/QnSKcRK , the left part is a
finitely generated algebra extension and the right part is
a finitely generated SK/QnSK—module extension. Thus, RK is

a finitely generated F-algebra.
Q.E.D.

Lét R be a K-module algebra such that RK does not have an
y



zero divisor. Let [R] denote the total ring of fractions of
R, and let M be a maximal ideal of [R]l. As R is finitely
generated as an algebra [RI/M is a finitely generated field
extension of F. As the map RK+[R]/M is injective, we can
identify [RK] with a subfield of [R1/M, thus we deduce that
[RK] is a finitely generated field extension of F.

We will fix our attention on the following
context. Let R, be a fixed rational K-module algebra and let
Co be the abelian category of (RO,K)—modules. Recall that
an (RO,K)—module is an F-vector space M, that is at the same
time an Ro—module and a K-module and the actions are related
by the formula x.(fm)=x.f x.m for xeK , feR; , meM. We
define morphisms of (RO,K)-modules in the evident way.

The category C; satisfies the conditions on C that we
assumed before, if R is an algebra object in CO , then
R@FR is again an algebra object in Co and the multiplication

is a morphism of the category.

Defn.7.7. We say that K acts on R0 in a
linearly reductive or exact way if the category Cj, defined

above satisfies Axiom B.

Defn.7.8. We say that K acts on R, in a
geometrically reductive way if the category C0 defined above

satisfies Axiom A.

Theorem 7.9. In the context above, the following

conditions a) b) and c) are equivalent, and condition c')

implies all of them.
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a) K acts on RO in a linearly reductive way.
b) For every surjective map A:M+N of (RO,K) -

K

modules the map A/MK: ME > NE is surjective.

c) For every K-stable ideal J of R, and every
surjective map X: M+R0/J of (RO;K)—modules there is an meMK
such that A (m)=1+J.

c') For every K-stable ideal J of Ry , every

surjective map A:M-*RO/J splits as a K-module map.

Theorem 7.10. In the above context, the fol-

lowing conditions a) and b) are equivalent, and conditionb')
implies a) and b).

a) K acts on R0 in a geometrically reductive

way .

b) For every (RO,K)—module M, every K-stable
ideal J of R, and every surjective (RO,K)-module map
A:M*RO/J there is a g>0 and an m in Sq(M)K such that

s (n): Sq(M)+R0/J sends m to 1+J.

b') For every (RO,K)—module M, every K-stable
ideal J of R, and every surjective (RO,K)—module map
A:M+RO/J , there is a g>0 such that the map s9(\) splits as

a K-map.

The proofs of Theorem 2.3 and 2.4 yield proofs of Theorem 7.9
and 7.10. As we pointed out before, if the group K is
linearly reductive then K acts in a linearly reductive way
on every rational K-module algebra. Similarly for geomet-

Fiecally reductive groups.
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In particular, we deduce.

Corollarz 7;ll. If K acts on Ry in a geomet-
rically reductive way and Ry 1s finitely generated K-module
algebra, then Rg is a finitely genérated algebra.

The concept of linearly reductive action is
stronger than the concept of geometrically reductive action,
but there is a particular case in which both concepts coin-
cide. Let G be an affine algebraic group and K a closed
subgroup of G, then there is a natural action of K on P(G).
We will prove in Section 8 that K acts in a linearly reduc-
tive way on P(G) if and only if it acts on P(G) in a geomet-
rically reductive way. Using this equivalence we can interpret

Theorem 6.1l.as a transitivity theorem; a particular case of

the following result.

Theorem 7.12. Let G be an affine algebraic

group, K a closed subgroup of G, and RO an arbitrary G-mod-
ule algebra. If K acts on P(G) in a geometrically reductive
way and G acts on R0 in a geometrically reductive way then

K acts on R, in a geometrically reductive way.

Proof. Consider an arbitrary (RO,K)—module M,

let I be a K-stable ideal of R0 and A a surjective (RO,K) -
map from M to RO/I. Using the result mentioned before about
the equivalence of the concepts of linearly reductive actions
and geometrically reductive actions of K on P(G), from the

hypotheses and from Theorem 7.9. we deduce that the map

(id & M):(P(G) @ M)K - (P(G) @ RO/I)K is surjective.
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I
h

Consider the map w:RO 2 (P(G) ® M)K > R0 2 (P(G) & RO/I)Kgimal
by y = id & id 2 A. We endow R0 @ (P(G) @ M)K as well as
Ry @ (P(G) @ RO/I)K with the G-structure given by the diagonal
action and the Ry structure given by multiplication on the
first tensor factor. Then, ¥ is a (RO,G)—module map. Define
K .
EM=(P(G) @ M) + M as EM(Zfi Q mi) = Zfi(l)mi , then E_ is

M
a K-map, and the following diagram is commutative.

R, @ (P(G) @ m) K L » Ry @ (P(G) @ RO/I)K
id @ Ey id @ ERO_/'I
_RoéM ical ;RogRO/I"
M H
M A ) Ro;I

The vertical maps v are the maps given by the Ro—moduleadjon.
When we endow M and RO/I with the given (RO,K)—module struc-
tures and Ry @ M as well as R, @ R,/I with the diagonal K-
module structure and the Ro—module structure given by multi-
plication on the first tensor factor, all the vertical maps
are (RO,K)—module maps. Now, by looking at the surjective
morphism S(¥) of (Ry,K)-algebras from the symmetric algebra
built on R0 2 (P(G) & M)K to the symmetric algebra built on
Ry & (P(G) @ RO/I)K that is induced by ¥, we deduce that
there is an x in Sq(R0 @ (P(G) & M)K)G such that s9(¥) (x) =
—1e1e (141), with 1 @ 1 @ (1+I) in(R, @ (P(G) @ Ry/D)NC.
Then, if we call y = s (u(ia @ EM))(X), we have that vy is

in 83X ana sT(N) (y) = u(id @ By (L8l e (14) = 141
0
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The converse of Theorem 7.12. is not true. 2a
counter-example will be given after Corollary 8.8. Thus the
only case in which we can expect to deduce reductivity as-
sumptions for the action of K on R from reductivity assump -
tions for the action of G on R, is when the guotient G/K is
affine. If we look not at reductivity éssumptions but only
at the finiteness of rings of invariants, there is more that
can be said.

The following example shows that if K is a subgroup of G,

P(G)K can be finitely generated even if K is not exact in G.

1 b
0 1

is isomorphic to F2-(0,0) that is not affine, but has finitely

Take G=SL, (F) and K= [ } / beF | . Then the quotient G/K
generated ring of polynomial functions. This is a particular
case of a situation that has been extensively studied ( see
for example G. Hochschild and G. Mostow "Unipotent Groups in
Invariant Theory" Proc. Nat. Acad. Scie. USA, Vol 70, No. 3,
pp 646-648, March 1973) and we will limit ourselves to the
following comments (that were pointed out to the author by
G.Hochschild). Let G be an affine algebraic group and K a
closed subgroup. Let R0 be a G-module algebra and assume that
G acts on R0 in a geometrically reductive way. The G-module
structure on R, induces a P(G)-comodule structure P:Ry” R8P (G)
related to the G~action by p(r) = Zri ® £, and x.r=2fi(x)ri

for xeG, If we endow Ry @ P(G) with the G-module structure
w.(r @ £) = x.r @ £.x 1, it is easy to show that

D(RO) = (RO ® P(G))G and that p is injective. Now, consider



- 43 -

the action of G on Ry @ P(G) given by x*(r @ f)= r @ x.f.The

following computation shows that, with respect tothese struc-

tures p is a G-module map. If p(r) =Ir; @ f; and XeG, we

have p(x.r) = p(Zfi(x)ri) = Zfi(x)p(ri) . If plr )-grljaf i3
= 1 " . & . @ f. =

and A(fi) ifik 2 ix + ve have Ej rlJ fl:l i

= I r. @ f! ® £

Now, p(x.r) = Ej fi(X)(rij @ f..) =

ik 1 ik ik* 1]

-— " 1
- ikf k(X)(rl @ flk

) = ir 2 Zfikflk(X) = Zri ® x.fi

* - X
X Zri 2] fi x*p(r).

-1

As x*(y.(r @ f)) = y.r @ x.f.y = y.(x*(r'@ £)) the map ¢

induces an isomorphism of F-algebras from éito(R ] P(G)K)G

Now assume that R, and P(G) are finitely generated as F-
algebras. Then R, & P(G)K is a finitely generated(RO,G)-mod—
ule algebra. By our assumption on G we deduce thatﬂ%@P«an%
and thus Rg is finitely generated as an F-algebra. Thus. , in

this situation, P(G)K is a universal object with respect

to the finite generation of rings of K-invariants.

8. Orbit Varieties

Defn.8.1. Let K be an affine algebraic group
acting on a variety X. A categorical quotient of X by K is a
pair (Y,$), where Y is a variety and ¢:X*Y is a morphism

such that:

i) If x and x' are in the same orbit of X,

then ¢(x) = ¢(x').
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ii) Given any variety Z and a morphism y: X2
which is constant on orbits, there is a unique morphism §:Y-»2
such that x¢=0

If moreover ¢-l(y) consists exactly of one orbit
for every y in ¥, then (Y,¢) is called an orbit space.

The definition above and the one given in
Section 5 (Defn.5.1l.) coincide when X is an affine variety .
The following theorem is well known in the casewhere the group
K is geometrically reductive, see [11l], and our proof sketched

here is very similar to the one presented there.

Theorem 8.2. Let K be an affine algebraic group

acting on the affine variety X in a geometrically reductive
way (meaning that K acts on P(X) in a geometrically reductive
way) . Then, there is an affine variety Y and a morphism ¢:X+Y
such that
i)¢ is K-invariant
ii)¢ is surjective
iii) If U is open in Y the map ¢*: OY(U)-+OX(‘1>_1
(U))"is an isomorphism of O, (U) onto (_)_X(¢—1(U))K
iv) If W is a closed K-invariant subset of X

then ¢(W) is closed in Y.

v) If Wl and W, are disjoint closed invariant

subsets of X, then ¢(Wif n ¢(W2T = ¢. (Here denotes

Zariski closure).

Proof. We known that P(X)K is a finitely

generated F-algebra (Theorem 7.6.). Define Y to be the
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affine variety associated with P(X)K and ¢ the map induced
by the inclusion P(X)K‘* P(X). The proof of i) is straight-
forward. (If XK = x,K for X) 1 X, €X for every fe P(X)K

f(¢(xl)) = f(¢(x2) , as the elements of P(X)K separate the

points of Y we deduce that ¢(x1) = ¢(x,).).Fo- prove ii)
consider an element y of ¥, and let fl""'fr generate the
maximal ideal corresponding to y in P(Y) = P(X)K. Using

Lemma 7.1., we deduce that ZfiP(X) # P(X), so that there is
a maximal ideal of P(X) containing EfiP(X). If x is the point
of X corresponding to that ideal, then ¢(x) = y. Assertion
iii) can be proved as in [11]. Let f be an element of P(X)K,
then it is enough to check iii) for U=Y, , and in this case

(P(X)K = (P(X)f)K. It is clear that iv) is a consequence

)¢
of v). v) Consider the ideals Il and 12 of Wl and W2 in P (X).

We have I,+I, = P(X). Consider the map I,— P (X)/I; given by

1 2
the projection. This is a surjective (P(X),K)-module algebra
map. There is a function g in I§ such that g+l = 1+1, ,i.e.
g—lell. Then g is K-invariant and g(Wl)=l R g(W2)=O.Iéganﬁng

g as an element of P(Y) we have that g(¢(Wl))=l g(¢(W2))=0,

hence ¢(W10n¢(W2) = ¢,
Q.E.D.

Corollary 8.3. Let K,X,Y and be as above.Then

(U,¢) is a categorical quotient of ¢_1(U) by K for every

open subset U of Y.

Corollary 8.4. In the above notation, ¢(xl) =

= ¢(x,) if and only if 67§1710 67;;7* ¢ . (0(x) denotes the
orbBit of x).
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Corollary 8.5. In the situation above,if the

orbits of K on X are closed, then Y is an orbit space.
Finally the following result can be proved in

the same way as in([1l].

Theorem 8.6. Let X,K,Y,and ¢ be as in Theorem

8.2., and let X' be the subset of X defined by X'={ xeX/0 (x)
is closed and dim 0(x) has the maximum value}l. Then there
is an open subset Y' of Y such that ¢-1(Y') = X' and (Y',¢)
is an orbit space for the action of K on X'.

Now let us assume that X is an arbitrary affine
variety and K is an affine algebraic group acting on X in a
geometrically reductive way and such that the map
a: X x K*X x X given by a(x,k)=(x,xk) is an isomorphism onto
its image. Assume moreover that there is an abstract group
L acting transitively from the left on X as a group of
variety automorphisms commuting with the K-action. Then, all
the K-orbits on X are closed. This is because there is always
one closed orbit and L permutes the orbits transitively.Using
Corollary 8.5., we conclude that the orbit space of X with
respect to the action of K exists and is affine.The folloving

Theorem is a generalization of results in [2].

Theorem 8.7. Let X be an affine variety and

K an affine algebraic group acting on X from the right in
such a way that the map a: X x K + X x X, where ax,k)=(x,xk),
is an isomorphism onto its image. Suppose moreover that there

15 dn abstract group L acting on X as a group of affine va-
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riety automorphisms commuting with the action of K. Then the
following conditions are equivalent:
a) The orbit space X/K exists and is affine.
b) P(X) is injective as a K-module.
c) K acts on X in a linearly reductive way.

d) K acts on X in a geometrically reductive way.

Proof. a¥ = b). This was proved in Section 5.
b = c¢). This is a consequence of Lem-
ma 3.2. and the fact that P(X) is injective as a K-module if
the functor from K-modules to F-spaces given by M »(P(X) @b@K
is exact.
cy = d). Obvious.
dY = a). See coments before the statement

of the Theorem.

Q.E.D.

Corollary 8.8. Let G be a group and K a
closed subgroup of G. Then the following conditions are
equivalent:

a) G/K is affine.

b) P(G) is injective as a K-module.

c) K acts on G in a linearly reductive way.

d) K acts on G in a geometrically reductive
way .

As to the counterexample to the converse of
Theorem 7.12 any three algebraic groups KcGeL such that L/K

18 affine and G/K or L/K not affine will do. Take for example



G a Borel subgroup of L and K trivial or take K = J[a O} /

az0 aeF }, G = {2 21 / acz0 a,b,ceF'}, L=GL(2,F).

The last Corollary also provides examples of
groups K that act on a K-module algebra R, in a cgeometrically
reductive way but are not geometrically reductive. It is
enough to construct a pair KecG such that G/K is affine but

K is not reductive.

Finally, it is clear from our definitions that

K is geometrically reductive if and only if K acts in a
geometrically reductive way on every K-module algebra R
(take Ry=F with the trivial action). As a consequence of

the comments that follow Theorem 6.1., to check the geometric
reductivity of K, it is enough to prove that K acts on
every K-module algebra of the form P(G) with KcG in a

geometrically reductive way.
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