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ABSTRACT 

REDUCTIVE ACTIONS OF ALGEBRAIC GROUPS 

ON AFF!NE VARIETIES 

Walter Ricardo Ferrer Santos 

Let X be an arbitrary affine variety and Kan 

affine algebraic group acting on it. Then K acts on the 

algebra P(X) of polynomial functions on X. The objective of 

this paper is to study the relationship between the exist.alee 

of a variety structure on the set of orbits of Kon X and 

certain algebraic properties of the action of Kon P(X). 

INTRODUCTION 

This paper is divided into eight sections 

with a sharp methodological distinction between the first 

six and the last two. In the first six sections we study the 

case in which G is a group and Ka closed subgroup of G 

acting by multiplication. In this case the study of the or­

bit space G/K is simplified by the use of the intermediate 

ooncept of observable subgroup as introduced in [l]. Our 
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representation theoretical methods give elementary and 

selfcontained proofs of results obtained in [2] and [6]. In 

the last two sections our methods have a more ideal theoreti­

cal and algebraico-geometric emphasis, and some of these re­

sults can be used to reinterpret the work of the previous five 

sections. 

We proceed to give a brief description of each 

section. 

1. Observable subg roup s - Here we recall some 

definitions and results from [1]. The systemati~ study of the 

semigroup of all rational characters of K that are extendable 

to Gallows us to simplify some of the proofs of that paper. 

2. Geometrically reductive subg roup s and ob-

servability - Here we prove that if K is a geometrically 

reductive subgroup of G, then K is observable in G. 

3. Exactness and observability - We prove that 

if K is an exact subgroup of G then K is observable in G.For 

the concept of exact subgroup see [2]. This is the first 

stage of the proof that K exact in G implies G/K affine. The 

concept of exact subgroup will be reinterpreted in 7 

regard to the concept of linearly reductive group. 

with 

4. Existence of Affine Quotients - we prove 

that if K is geometrically reductive (or exact in G) then 

G/K is affine. From 2 and 3 we know that G/K is quasiaffine. 
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Using this, we cover G/K with affine patches (G/K)f where f 

is a K-invariant polynomial function. All that remains is to 

put all these patches together in a way that guarantees that 

G/K is affine. This is achieved in Lemma 4.2. 

5. Affine Quotients and inj ectivity - We prove 

some results that imply a converse of the results of 4, i.e., 

if the orbit space G/K is affine then K is exact in G. This 

was proved in [ 2] , our results are more general and refer to 

the case in wich Xis an arbitrary variety and K is a 

acting on X in such a way that X/K exists and is affine. 

6. More on geometrically reductive groups 

group 

Here, using the concept of exact subgroup, we present a proof 

of the following: If G is geometrically reductive and K is a 

subgroup of G such that G/K is affine, then K is geometrical­

ly reductive. This is a particular case of transitivity re­

sults presented in 8. In the framework of section 8 the above 

statement looses its otherwise rather mysterious character. 

We will describe sections 7 and 8 together. The 

definitions of these two sections have their origin in the 

following considerations. Let X be an affine variety and Kan 

affine algebraic group acting on it. If K is geometrically 

(linearly) reductive P(X)K is finitely generated and ( up to 

a closed subset of X there is a "quotient" X/K. {See [ 9] and 

[ 10]). The definitions of geometrically {linearly) reductive 

group have to do with the action of Kon any K-module algebra 

R. This 1s somewhat unnatural, one should be able to prove • 
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these results about orbits spaces using only properties of the 

action of Kon P(X). This leads to the introduction of the 

concept of geometrically (linearly) reductive action of K onX; 

then we prove the results about orbit spaces in this case.When 

Xis a group and Ka closed subgroup acting by multiplication, 

the concept of linearly reductive action coincides with the 

concept of exact subgroup. 

This paper was written while the author was a 

graduate student at U.C. Berkeley working under the direction 

of G. Hochschild. He suggested the possibility of obtaining 

new proofs of the results of [2] using the concept of 

observable subgroup. The author would like to thank Prof.Hochs 

child for his valuable suggestions and for allowing him to 

use his private notes on Invariant Theory. 

1. Observable Subgroup s 

The concept of observable subgroup of an affine 

algebraic group was introduced in [1] • . In this section we 

recall the main definitions and results. 

Let G be an affine algebraic group defined over 

an algebraically closed field F, and let K be a closed sub-

group of G. We denote by P(G) and P(K) the Hopf algebras of 

polynomial functions on G and K respectively. The restriction 

map n from P(G) to P(K) is a surjective Hopf algebra map. Now 

suppose that the algebraic group G acts on a vector space M 

by linear automorphisms. We say that Mis a rational G-module 

if the following two conditions are satisfied: • 
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a) For every me::M, the space V generated by m 

'{x.m/xe::G} is finite-dimensional. 

b) For every fe::V:, the functions f/m:~F,given 

by (f/m) (g) = f (gm), are in P (G). 

The group G acts on P(G) from the left by (x,f) (y)=f(yx)and 

from the right by (f.x) {y)=f{xy) for fe::P(G) x,ye::G. 

The G-module P(G) is a rational G-module when endowed with 

either one of these actions. 

Defn.1.1. Let G be an affine algebraic group 

and Ka closed subgroup. We say that a rational character 

y:K~F is extendable to G if there is a non zero element f 

of P(G) such that x.f=y(x) f for every xe::K. 

It is easy to see that if there is such an f then there is 

-another such, f say, satisfying the additional requirement 

TT(f)=y. In fact, we have f(x)~O for some element x of G, 

- -1 and we may take f=f{x) f.x. It is also clear that the 

character y is extendable to G if and only if there is an 

injective K-rnodule map from Fy to P(G), as Fy is simple as 

a K-module we deduce that y is extendable to G if and only 

if there is a finite-dimensional rational G-module Mand an 

injective K-rnodule map from Fy to M. A standard argument that 

goes back to Chevalley and that is based on certain exterior 

algebra techniques gives us the following (cf.[l] or [7] Ch 

XII): For every finite dimensional rational K-rnodule N,there 

is a finite-dimensional rational G-module M, a character p 

on K extendable to G, and an injective vector space honom:)l:phism 
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t:N+M such that for every xEK and nEN p(x) t(x.n) = x.t(n). 

In particular if y is a rational character of Kand we ta­

ke N=Fy we deduce the following: 

Theorem 1.2. For every rational character y 

of K there is a rational character . p..-of K that is extendable 

to G and such that yp is extendable to G. 

Defn.1.3. A subgroup K of G is said to be 

observable in G if given any finite-dimensional rational K-

module N, there is a finite-dimensional rational 

Mand an injective K-module map t:N+M. 

G-rnodule 

From now on, we will drop the word rational unless there is 

danger of confusion. 

It follows that K is observable in G if and only if every 

character of K is extendable to G. Evidently, this condi­

tion is necessary. In order to prove the sufficiency, con­

sider a finite-dimensional K-module N, and construct M, t 

and pas above . If we call p* the reciprocal character to 

p, there exists a non zero element u* of P(G) such that 

x.u* = p*(x) u* for every x in K. Let us denote by <Gu"'> 

the subspace of P{G) generated by the translates of u*, and 

consider the map t:N-+M ~ <Gu*> given by t(n)=t(n)®u*.Clearly 

E is injective. Moreover 

t(x.n)=t(x.n)0u* = p*(x)x.t(n)®u* = x.t(n)0p*(x)u* = x.E(n) 

for every xe:K. 

Defn.1.4. We shall denote the set of rational 

characters of K that are extendable to G by EG(K). The 
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multiplicative group of all rational characters of K will be 

denoted by X(K), and X(K) coincides with the subgroup gener­

ated by EG (K) • 

Proof. Let y 1 and y 2 be extendable characters 

of K. Consider f 1 and £2 their extensions to G, and take x1 
and x2 elements of G such that £1 (x1}~0 and f 2 (x2 }~0.Q:nsider 

-1 the function g of P(G) defined as g=(f1 .x1x2 )f2 . Then 
-1 g(x2 ) = f 1 (x1 ) f 2 (x

2 ) 'f O and if XE'l< x.g=x.(f
1 .x

1
x 2 )x.£2 = 

r
1

(x) Y2 (x) g. 

Thus y 1 y 2 £EG(K). Finally Theo.1.2. says that every character 

of K can be written as the quotient of two extendable ones. 

Q.E.D. 

Corollary 1.6. The following four conditions 

are equivalent: 

a) The subgroup K is observable in G. 

b) EG (K) = X (K) • 

c) For every element of EG(K) there is a q>O 

such that p*q£EG(K). 

d) For every element p of EG (K) , the :reciprocal 

p* also belongs to EG(K). 

Proof. a)=;>b) has already been proved. 

implication b)=k) is obvious. To prove that c)~d) we 

The 

take 

pEBG(K) and q>O such that p*qcEG(K). Then pq-l P*q£EG(K) 

thus p*EEG(K). Finally condition d) says that EG(K) is a sub­

group of X(K). By Lemma 1.5., this implies b). 

Q.E.D. 
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The following result will be extremely useful 

to us in the sequel. The proof is in [1] . 

. Theorem 1. 7. Let G be an affine algebraic group 

and Ka closed subgroup. Then, K is observable in G if and 

only if the homogeneous space G/K is quasi-affine. 

2. Geometrically reductive subg roup s and observability 

Throughout, Sq (V) will stand for the harogeneous 

component of degree q of the symmetric algebra built on V,arrl 

F will denote the base field. 

Oefn.2.1. An affine algebraic group K is said 

to be geometrically reductive if for every rational K-module 

V and every non-zero K-module map A:V+F, there is a q>0 and 

an x in Sq(V)K such that Sq(A) (x) = 1, where Sq(A) is the 

map Sq{V) 4 F obtained from A in the canonical fashion. 

Defn.2.2. An affine algebraic group K is said 

to be linearly reductive if for every rational K-module v 

and every non-zero K-module map A:V4F, there is an x in VK 

such that A(x)=l. 

Clearly condition 2.2 is verified if and only 

if the map A splits as a K-module map, ana analogously 2.1 

is verified if and only if the map sq 0.) splits as a K-m:xiule 

map. 

It is known from [ SJ and [ 10 J , that an affine 

algebraic group is reductive, in the sense that its unipotent 

iadioal is trivial, if and only if it is geometrically reduc­

't.;1 "~. 

It is also known after Nagata that, if char F=0, then the 
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concepts defined in 2.1 and 2.2 coincide, and if char F=p>O, 

there are very few linearly reductive groups. 

The following two results are standard, see 

[4] or [11], we will state and prove them here in order to 

have avail able references. The author 1. was unable to find a 

proof of the implication a)=) b) of Theorem 2. 4. in the liter­

ature. 

Theorem 2.3. The following four conditions 

are equivalent: 

a) If R1 and R2 are K-module algebras, and 

¢:R1+R2 is a surjective K-module algebra map, then ¢(R~)=R~. 

b) If A:M+N is a surjective map of K-modules, 

then the restricted map A/MK: MK+NK is surjective. 

c) The group K is linearly reductive 

d) Every rational K-module is semisimple. 

Proof. a)~b). Given A:M+N consider S(M) and 

S(N), the symmetric algebras built on Mand N respectively. 

If we apply the conclusion of a) to the map S(A):S(M)+S(N)we 

deduce the conclusion of b). ; The_ impl_icatibn b) => c) is evident. 

We omit the proof of c) => a) , which is identical with the prOCJf 

of the implication b)=>a) of the next theorem. As to the 

equivalence of d) and b) we refer the reader to [4] because 

we won 1 t need the proof in the rest. 

Q.E.D. 

Theorem 2.4. The following two conditions are 

equivaleflt: 
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a) If R
1 

and R2 are K-module algebras, and 

¢:R1+R2 is a surjective K-module algebra map, then for every 
. K 

r 2 ER~ , there is a q> O and an r 1E R1 such that ·cp (r1 ) = ri . 
b) The group K is geometrically reductive. 

Proof. a)=) b) . Let >.., V and F be as in Defn . 

2.1. and consider the maps{>..): S(V)+S(F). The map S(>..) is 

a surjective K-module algebra map. Thus as lES(F)K there is 

at in S(V)K and a q>O such that S(>..) (t)=l.1 .... 1 (where the 

dot indicates the product in S(V), and there are q factors 

1). If we look at the part of degree q oft and call it tq, 

q K ) we have that t ES (V) and S(>.. (t )=1 .....• 1. In the notation q q 
of Defn.2.1. Sq(A) (tq)=µS(A) (tq)=l (wh~re µ indicates multi-

plication). Thus, we have that t verifies the required pro-q 

perties. 

b)=)a). If r 2=0 the result is trivial. If r 2 ~o consider sER1 

such that ¢(s)=r2 . Define Mas the K-module generated by 

,· {xs/xEK} and M' as the K-module generated by' {xs-s/xEK} .Then 

M=Fs+M' and the sum is direct, because cf>(M')=(O) and ¢(s)~O. 

Define the map >..:M+F by writing m=A(m)s+m', with m'EM'. Then 

it is clear that\ is a surjective K-module map, and 

the following diagram commutes 

:\ M--..... F 

that 

r $ rr2 
R1 > R2 , where i is the inclusion rrap 

and u _ (a) = ar2 . Consider the q-th symmetric power of M, r2 
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where q is as in b). We have the commitative diagram 

Sq (M) 
Sq(>.) 

Sq(F) µ 

l s _q Ci> l Sq(u ) r u q r2 r2 

Sq(~ Sq(:pl sq CR2) µ 
R2 
( 

Rl 

whereµ is the multiplication map. Take x£Sq(M)K such that 

µSq().) (x)=l, and put r
1=µSq(i) (x). Asµ and Sq(i) are 

K-module maps, r
1 

is K-invariant. Now, ~' (r
1

)=µSq(~)Sq(i) (x)= 

=ur1 µSq().) (x)=ri(l)=r~. 

Q.E.D. 

We want to prove that if K is a geometrically 

reductive subgroup of G, then K is observable in G. First, 

we establish a Lemma that allows us to go from 

reducible case to the general one. 

their-

Lemma 2.5. Let K be a geometrically reductive 

group and K1 a normal closed subgroup of finite index. Then 

K1 is geometrically reductive. 

Proof. Let V be a rational K1-module and 

consider the F-space FK (K,V) of all functions f:K~v 
1 

satis-

fying f(xy)=x.f(y) VXEKl y£K. We make K act on FK {K,V) 
l 

(z.f) (y)=f(yz). Now, for ally and z in Kand all x in 

by 

we have, (z.f) (xy)=f(xyz)=x.f(yz)=x. (z.f) (y), so that if f 

belongs to FK
1 

(K,V) so does z.f. If Vis a finite dimensional 

R1~module, then FK (K,V) is a finite-dimensional K-module.It 
1 

f.gllows easily that FK (K,V) is a rational K-module.Consider 
1 
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the map Ev: FK {K,V)-+V given by Ev(f)=f(l). Ev is a Kl-m:dule 
1 

map, because EV(x.f)=(x.f) (l)=f(x)=f(xl)=x.f(l). 

Now, let V be the trivial K1-module F. Evidently FK (K,F)can 
1 

be identifield with the K-module F(K/K1 ,F) of all maps from 

K/K
1 

to F with the K-action given by (z.f) (xX1 }=f(xzK1 ), and 

the map EF is given by EF(f)=f(1K1 ). Let y:V-+F be a sur-

jective morphism of K1-modules, and consider the map 

y*: FK (K,V)~FK (K,F) given by y*(f)=yf. The following dia-
l 1 

gram is commutative, 

y* 
FK (K,F) = F(K/K1 ,F} 

1 

V 
'( -------~ F 

Let us make a coset decomposition K=K1 x 1u·•Kix2u • • .u K1 xr, with 

x 1 =1, and choose v 0 £v such that y(v
0

)=1. Define f 0 :K~v by 

f
0 (kxi)=k.v

0 
for every element k of K

1 . 

It is clear from the very definition that f
0

£FK (K,V). 
1 

Moreover, the function y*(f
0

) on K/K
1 is easily seen to be 

simply the constant function with value 1, which we shall 

denote by 1. Now, consider the K-module M generated by f
0 

in 

FK (K,V). The following diagram is commutative and the maps 
l 

tllat land in Fare surjective, 

y* M ~F 

!~ 
V y , where y* denotes the compcsite 

of y~ with the identification of Fl with F. Observe that y* 
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is a K-map. 

The diagram 
q (-*) 

Sq (M) S )' • F 

[sq<Evl /sq(yl 

sq(V) / , 1s commutative for every 

q>O. If we choose q such that Sq(y*) splits as a K-module 

map and call t the splitting map, the diagram shows that 

the K
1
-module map Sq(Ev)t splits Sq(y), because 

Sq(y) Sq(EV)t = Sq(y*)t = idF. 

Q.E.D. 

Theorem 2.6. Let G be an affine algebraic 

group and Ka closed subgroup. If K is geometrically reduc­

tive then K is observable in G. 

Proof. Let G1 be the connected component of 

the identity in G.Using [l], Theorem 6, we know that K is 

observable in G if and only if K ·n- G1 is observable in G1 . 

By Lemma 2.5. it is enough to prove Theorem 2.6. for the 

case in which G is connected. Let n:P(G)~P(K) be the 

restriction map and let p be a character in EG(K) .There is 

a non zero element u of P(G) such that n(u)=p and x.u=p(x)u 

for every element x of K. Choose an element u from P(G)such 

that 1T (u) =p*. Let _ <Ku> denote the sub K-module of P (G) ge­

nerated by u, and consider the composite F-linear map 

- TT ® TT F p * a: Fu~ <Ku> - -- ® F p j F, where j(p®p*}=l. 

It is clear that a is a K-module map when Fis endowed with 

the trivial K-module structure. As K is geometricallyreduc-
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tive and a is surjective there is a q>O and an element· tin 

sq(Fu a ~Ku>)K such that Sq(n9n) (t) = (p0p*)q. Let us write 

t=~ (ua£11) (u9fi 2 ) ... (uSfiq), where we use juxtaposition 

1 

to indicate the product in the symme tric algebra, and the 

elements fij are in. <Ku>. Set v=~ fil ••• fiq' and 

From the fact that tis K-fixed, it follows that f is 

K-fixed. The following computation proves that vis a p*q -

semiinvariant: 

We have v(l)=1r(v) (1) = f1r(fil) (1) ••. n(fiq) (1). On the other 

hand we have that 1r(f .. )=).., .p*, from Sq(1r&1r) (t)=(MU*)q, we 
1) 1) 

find that t ).. 11 ••• )..iq=l, which shows that v(l)=l. Thus vis 

a non-zero p*q-semiinvariant, showing that p*q£EG(K). Our 

result follows from Corollary 1.6. 

Q.E.D. 

3. Exactness and observability 

Let G be an affine algebraic group over an 

algebraically closed field F, and let K be a closed subgroup. 

We can define induced representations in the category of 

rational modules as follows. Let N be an arbitrary (rational) 

K-module and let us endow P(G)®N with a left K-module struc­

ture in the usual (diagonal) way. The group G acts on the 

right on P(G)®N by (f®n) .x = (f.x)0n for X£G. We endow P(G) 

~N with the left G-module structure associated to the right 

G-module structure given above. As the diagonal K action and 

the G action commute (P(G)~N)K is a left G-subrnodule of the 

G=module P(G)~N. We call the module (P(G)®N)K the G-module 
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induced by the K-module N. 

Defn.3.1. We say that the subgroup K of G is 

exact if the induced representation functor is exact. 

As the induced representation functor is always left exact 

the meaningful part of the definition above is the following: 

if a: M-+-N is a surjective K-module map, then the restricted 

map (id@ a): (P(G} SM)K~ (P(G}8N)K is surjective. It is 

immediate that K is exact in G if and only if, for every ra­

tional K-module M, one has H1 (K,P(G)0M)=O, where H1 indicates 

the first rational cohomology group. It is also known that 

the condition H1 (K,P(G)0M)=O for every Mis equivalent to 

the assertion that P(G) is injective as a K-module. See [2] 

for the definition of exact subgroup and [2] or [3] for the 

results mentioned above. 

If Risa K-module algebra we define theabelian 

category of (R,K)-modules as follows: the objects of the 

category are F-spaces M that are at the same time K- modules 

and R-modules, such that the actions are related by 

x(rm}=(xr) (xm) for XEK, rER, mEM; the morphisms in this cat­

egory are defined in the obvious way. We shall denote by 

M(R,K) the category of (R,K)-modules. 

Lemma 3.2. Let G be an affine algebraic group 

and Ka closed subgroup. Let F denote the fixed point fun::tor 

from M(P(G),K) to the category of F-spaces. Then K is exact 

in G if and only if Fis exact. 
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Proof. If Mis a K-module then P(G) QM is a 

(P(G),K)-module. Therefore, the condition that F be exact 

implies that K is exact in G. Conversely, let Mand N be 

(P(G),K)-modules and let a:M+N be a surjective map in the 

corresponding category. If µM denotes the map from P(G)SM to 

M given by the action of P(G) on Mand µN indicates the 

corresponding map for N, then µMand µN are K-module maps, 

and the following diagram is commutative 

P(G) s M 
µM 

M 

1 id0a la 
µN 

P (G) 0 N N The maps 

SM: M+P(G)0M sM(m)=lrimt and sN are also K-module maps that 

split µM and µN and also fit into a commutative diagram as 

follows: 

SM 
P (G) ® M ------

1 idSa 

P(G) 0 N N • Taking K-fixed 

parts we get the following pair of commutative diagrams: 

(P (G)iM) :dSa 

(P(G}0N)K ---- - - hori-

zontal maps are the restrictions ofµ ands. From the diaJram 

follows immediately that if (id 0 a) (P(G) 0 M)K)=(P(G) 0 N)~ 

then a(MK)=NK. 

Q.E.D. 
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The concept of exact subgroup of an affine 
algebraic group was introduced in [2]. Later in this paper 
we will reinterpret ·this concept and connect it with a 
certain generalization of the notion of linearly reductive 
group. In [2) it was proved that K is exact in G if and only 
if the homogeneous space G/K is affine. Their proof that K 
exact in G implies that G/K is affine goes along the following 
lines. Using the fact that every reductive group is geometri­
cally reductive (see (5)), they prove that G/K is affine if 
and only if G/K is affine, where K is the unipotentradical u . u 
of K. Next they prove that if U is a unipotent subgroup of G, 
then U is exact if and only if G/U is affine. (See [2),Theo­
rem 3.1, Theorem 4.3 and Lemma 4.1). In this section and the 
next we present a proof that K exact in G implies G/K affine 
that does not use the results of [5] and is 

theoretical in spirit. 

representation 

First, we need to know how to pass from the 
case tn which the group G is irreducible to the general on~ 
This ts acomplished using Lemma 3.3 . . 

Lemma 3.3. Let K be an exact subgroup of G 
and K1 a normal connected subgroup of K of finite index.Then 
K1 is exact in G. 

Proof. The induction functor is transitive . 
This means that if Kand Lare closed subgroups of Gsuch that 
KcLcG 1 and if we denote by VIL the L-module induced by the 
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K-module V we have v\L IG = vlG. Thus, in order to prove that 
K1 is exact in Git is enough to prove that K1 is exact in 
K. Consider the decomposition of K into a finite number of 
cosets module K1 , as follows K=K1x 1 u K1 x 2 ••• · u K1 xr, with 

" -1 x1=1. I.et P={fEP(K)/f/K1=0} and put Q=1 I P.x1 . 
i;ael 

The set of zeros of Q can be computed as: 

Z(Q)~~EK/(f.xi 1 ) (x)=O Y fEP i=2 ... r}= 

d-bcEK/f(x~1 x)=O V fEP i=2 •.. r}= 
, -1 u ={xEK/xi x£K1 for some i=2, .•. ,r}= i;ael x1 K1 = 

Thus Q is an ideal that is K1 invariant and P+Q=P(K). 
shows that the restriction map n:P(K)~P(K1 ) splits as 

This 

a 

K
1
-module algebra map. Using a result due to Hochschild whose 

proof (in a more general context) can be found in [3], we 
deduce that P(K) is injective as a K1-module, which implies 
that K1 is exact in K. If we don't want to use that result, 
we proceed in the way indicated above to decompose P(K} as a 
direct sum of algebras A

1 e ... e An such that A
1 is 

isomorphic to P(K1 ), every Ai is stable under translations by 

.Kl, every translation effected by an element of K permutes 
the A:-'s, and K acts transitively on the set of A. 's from l. 

l. 
the right as well as from the left. Jhus, if we write 
l=f1+ ..• +f with f. EA. , then the Hopf algebra Ff

1
+ . . . +Ff can n 1 1. n 

be identified with the algebra of polynomial functions on 
K/K 1 . It is clear from the construction above that 

~P(Kl) 0 P(K)Kl. Hence, as P(K1 ) ~ V with the di~gonal 

P(K) ;; 

K -1 
me6u1e structure is . i somorphic to P(K

1
) 0 V with the trivial 
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K
1
-structure on V and the usual on P(K1 ), we deduce 

(P(K
1

)&V)Kl. ~ P(K
1

)Kl 0 V ~ V. 

that 

Thus, (P(K)SV)Kl = P(K)Kla(P(Kl)~V)Kl = P(K)Klav, shows that 

K1 is exact in K. 

Note: In the situation above, P(K1 ) is a direct 

summand of P(K). 

Theorem 3.4. Let G be an affine 

Q.E.D. 

K1-module 

algebraic 

group and let K be a closed subgroup of G. Then K exact in 

G implies that K is observable in G. 

Proof. Let G1 denote the connected component 

of the identity in G, and set K'=KnG1 . The fact that K is 

exact in G implies that K'is exact in G1 . Indeed, from Lemma 

3.3 we have that P(G) is injective as a K'-module. As we 

noticed before, P(G
1

) is a direct G1-module summand of P(G). 

A fortiori, P(G1 ) is a direct K'-module summand of P(G). 

Therefore, P(G1 ) is injective as a K'-module. By the same 

considerations we made at the beginning of the proof of 

Theorem 2.6., it is enough to prove our Theorem in the case 

where G is connected. Consider a character P of K that is 

extendable to G, and let u be an extension of p that restric.-

ted to K coincides with P. Take uEP(G) such that TI(u) = p* 

( n dehotes the restriction map from G to K) , and consider the 

K-module, <KU> generated by ii in P (G) . Let a denote the map 

n6h: F'U ®· <Ku>-+ Fp 0 Fp*. 
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Clearly, a is a surjective K-module map. Using the exactness 

of Kin G, we deduce that the map 

(id 19 a): (P(G)0F~<Ku>)K-+ (P(G)0Fp&p*)K is surjective. The 

element 10p0p* is K~invariant. Therefore, there is an elarent 

t= Efi & u & gi E(P(G) 0 Fu & <Ku>)K such that I:fi &p& n(g~= 

consider 

the element f=uEfigi of P(G). Ast is K-invariant, f is in 

P(G)K. Moreover, i:fi (l)gi (1) = i:fi (1)1T(gi) (1) = i:fi (l)Ai = 1. 

Consequently, if we put v=I:figi, we have 

uv=f = x.f = x.u x.v = p(x)u (x.v), whence x.v=p*(x)v. 

This shows that the character p* is extendable to G. Thus K 

is observable in G by Corollary 1.6. 

Q.E.D. 

4. Existence of Affine Quotients 

We prove that, in the cases studied above , 

where K is geometrically reductive or K is exact in G, the 

orbit space G/K is not only quasi-affine but actually affine . 

This is a consequence of the following algebraic lemma. 

Lemma 4.1. Let K be an observable subgroup of 

G. In addition, suppose that, for every proper ideal I of 

K P(G) , the ideal IP(G) is a proper ideal of P(G). Then G/K 

is affine. 

Proof. As G/K is quasi-affine, there is a 

non-~ero element fin P(G)K such that the corresponding prin-

cipal open set (G/K)f is affine. Consider the ideal I of 
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P(G)K that is generated by the elements f.x with x in G. The 

ideal IP(G) cannot have any zero in G, because if there is a 

y
0 

in G such that (f.x) (y0 ) = O for every x in G, the function 

f is zero on Gy0=G. Consequently IP(G)=P(G). By assumption, 

we must therefore have I=P(G)K. Thus we can find a .finite set 

of points x1 , ... ,xr in G such that the ideal generated by 
K -1 the f.x1 •s is all of P(G) . Now (G/K)f.xi = xi {G/K)f' so 

that (G/K)f.x. is affine for each i=l, ••• ,r. From this 
1 

follows that G/K is affine. 

it 

Q.E.D. 

At the end of the proof of Lemma 4.1 we 

made use of the following result: Let X be a quasi-affine va­

riety and f 1 , ... ,fn elements of P(X) the algebra of evecywhere 
I 

defined regular functions, such that: 

a) The functions £1 generate the unit ideal 

of P(X). 

b) The open sets xf. are affine for every i. 
1 

Then Xis an affine variety. The proof proceeds as follows. 

First we observe that the algebra of polynomial functions on 

xf. is isomorfic with the localization, P(X)f. of P(X) with 
1 . 1 

respect to the multiplicative set of the powers off .. Using 
1 

that P(X)f. is finitely generated as an algebra over the 
1 

base field and condition a) we deduce that P(X) is finitely 

generated as an algebra. Then the cannonical map from X to 

the Spect (P(X)) is injective because Xis quasi-affine, and 

is ah isomorfism on every open set xf .. 
i 
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The next Lemma appeared in a slightly differ­

ent form in [9]. We need to have a proof avaible for future 

reference and we include it here. 

Lemma 4.2. Let K be a geometrically reductive 

affine algebraic group, and let R be an arbitrary K-module 

algebra. If I is an ideal of RK such that IR =R , then I=RK. 

Proof. Let l=f1 r 1 + .•• +fnrn with f 1 £I, rie:R. 

We shall prove by induction on n that the ideal generated by 

the f. 'sin RK coincides with RK. If n=l from the l. equality 

Thus 

x. r 1-r1 EAnn (f 1 ), and then r
1 

+Ann (f 1 ) E (R/Ann (f 1 )) K. By 'lheorem · 

2.4. there is a tERK such that t-r1e:Ann(f1 ). Then tf1=rffl, 

thus, i~ we raise the equality l=f1 r 1 to the q-th power we 

get l=ff rf = ff-lt fl= f 1 (tff-l). Thus I=RK. For a general 

n, since Rf1 is K-stable, we may apply the inductive hypoth­

esis to the cannonical image of I in (R/Rf
1

)K. This shows 

K that l+f1 R = s 2 f 2+ ... +snfn+f1 R where si+f1 R £ (R/f1 R) . By 

Theorem 2.4., there are elements s. in RK such that 
J. 

- k si-si E f 1 R, for some k>O. There is an r in R such that 

1-f1 r = s 2 f 2+ ... +snfn. Raising l-f1 r to a convenient power 

we deduce that there are elements s2 , ..• , sn £ RK and re:R such 

that 

1 = f 1 (x.r)+s2 f 2+ ... +snfn. This shows that x.r - r belongs to 

the annihilator, J say, of f
1 

in R. Then the elementr+Je:(R/J)K. 

Applying Theorem 2.4 we deduce the existence of an element 

se:tl and a q> 0 such that ~-SEJ. Thus r q fq = s fq Raising 1 1· 
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the equality l-s 2£ 2- ••. -snfn = f 1r to the q-th power we 

deduce that l=rif1+ •.• +r~fn with ricRK. Thus I=RK. 

Q.E.D. 

From Lemma 4.2. Lemma 4.1. and the results of Section 2 we 

deduce the following result. 

Theorem 4.3. Let G be an affine algebraic 

group and Ka closed geometrically reductive subgroup of G. 

Then the quotient space G/K is affine. 

A relative criterion for a quotient space to 

be affine is as follows. 

Theorem 4. 4. Let G be an affine algebraic group 

and K a closed subgr oup that is exact in G, then the qu::>tient 

space G/K is affine. 

Proof. Let I be an ideal of P(G)K such that 

P(G)I=I. Consider a 1 , .•. ,ar elements of I such that 

a 1f 1+ .•. +arfr=l for some fi£P(G). Look at the map 

$: e P(G) ~ P(G) given by $(r1 , ... ,r )=Ea.r .. The map$ is a i=l r i i 

surjective {P(G),K)-module map. Thus, as K is exact in G, we 

deduce, using Lemma 3.2., that $(
1
i

1
P(G)K) = P(G)K. 

particular I=P(G)K. 

5. Aff~~e Quotients and Injectivity 

In 

Q.E.D. 

The main purpose of this section is to prove 
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the converse of Theorem 4.4. We consider a somewhat more 

general situation with a view to the generalizations of 

Section 8. In the case where G is a group and Ka closed 

subgroup, the methods used here were developped in [2], §4, 

to obtain similar results. Using the relationship between the 

sheaf cohomology of the homogeneous space G/K and the rational 

cohomology of certain K-modules, Habousch in [6], claims to 

prove Corollary 5.5 below. However, his proof seems inconplete 

to the author. 

Let F be a fixed algebraically closed field. 

All our varieties will be defined over F, and their "points" 

will be undestood to be F-rational points. Let X be an 

affine variety, and let K be an affine algebraic group acting 

on X from the right in such a way that the action Xx K~x is 

a morphism of affine varieties. 

Defn.5.1. We say that an orbit variety for 

the action of Kon X exists if there is a pair (Y,T) where Y 

is an algebraic variety and Ta surjective open morphism from 

X to Y such that: 

a} T(x} = T(x'} if and only if xK = x'K. 

b} If U is an open subset of X the map 

T*: Oy(T(U))~Ox(U) is injective and its image consists of 

all elements f of OX(U} that are constant on sets of thefrom 

x.KnU for XEK. If the orbit variety exists, it is unique up 

to isomorphisms and we denote it by X/K. 

Theorem 5.2. Suppose there is an abstract 

group L actings transitively on X from the left as a group 
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of variety automorphisms in such a way that the actions of L 

and K commute. If the orbit variety X/K exists and is affine, 

then the algebra P(X) is faithfully flat as a KP(X)-module, 

where KP(X) denotes the K-fixed part of P(X). 

Proof. --consi der the inclusion 11, (X) C p (X) • It is an 

easy consequence of Noether's norrcalization theorem that there is an f 

in l<p(X) such that P(X) _is free as a 1l>cx) f_nodule .For every elenent 1 

of L, \'lie have f .1 E. Kp (X) , and P (X} f _ 11s free as a 11> (X} f _ 1-nodule. As 

the action of Lon Xis, transitive,it follows that the ideal generated 

by the f. l's, with 1 ranging over L,coincides with ~ (X) ~ Hence, there is 

a finite set {f1 , .•• ,fn) of elements of ¾>ex) such 

P{X}f. is free as a KP{X)f_-module and moreover the 
l. l. 

that 

ideal 

generated by the f 1 ' s is all of KP (X). By standard corrm1tative 

algebra, this implies that P(X} is faithfully flat as a 

KP(X)-module. 

Q.E.D. 

We recall the ·definition of fiber products of 

algebraic varieties. Given a pair of varieties X and Y and 

maps f:x~s g:Y~s into another variety s, the product of x 

and Y over S, denoted by X x8 Y is a triple (Z,TT
1

,TI
2

) where 

Z is an algebraic variety, TI 1 and TI 2 are morphisms of varie­

ties from Z to x1 and x 2 respectively that verify fTil = gTT
2

, 

and such that if (Z 1 ,y 1 ,y 2 ) is another triple as above,there 

is one and only one map t:z 1+z that reakes the diagram below 

commutative. 
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r: 

The map t will be denoted by y 1 xs y 2 . If X, Y and S are affine 

varieties given by i=spect(A), Y=Spect(B) and S=Spect(C),then 
., 

also Z is affine, being given by Spec (A0CB}. 

Let X be an affine variety and Ka group acting 

on X as in Defn.5.1. Consider the fiber product X xX/KX coming 

from the cannonical morphism T: X+X/K. Clearly X xX/KX can be 

identified with the subset of Xx X given by the condition 

, { (xl, X2} e::X x X/x1K=x2K} . Then if we define the map a:X x :R+X x X 

by a (x,k)=(x,xk), it is clear that the image of a in Xx X is 

X xX/K X. For the rest of this section we will consider ~Qnly 

such actions of Kon X for which the map a defined above is 

an isomorphism onto its image. This implies that K acts on X 

without fixed points and that for every orbit T the map 

Under these hypotheses a: Xx K + X xX/K Xis an 

of affine varieties. It induces an isomorphism 

isomorphism 

a*: P(X) 0 P(X) ~ P(X) 9 P(K). Moreover if X denotes the 
KP (X) 

P(K)-comodule structure on P(X) andµ is the multiplication of 

the algebra P(X), then the map a* 

&r; @Mplicitly, if t=Efi 

S 1 (lj ~ Efigij ~ hij • 

®K g. 
p (X} 1 

is given by a*=(µ0id) (id® X) 
KP(X) 

and X ( g. ) =r g. . ®h . . , then 
1 lJ lJ 
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If we let K act on P(X) ®K P(X) trivially on the first 
P(X) 

factor and with the induced action on the second factor, and 

on P(X) 0 P(K) trivially on the first factor and with the 

induced action on the second; the map a* is a left K-module 

map. 

Theorem 5.3. Let X be an affine variety and 

let K be an affine algebraic group acting on X in such a way 

that the map a(x,k)=(x,xk) is an isomorphism onto its image. 

Suppose, moreover, that the orbit variety X/K exists and is 

affine, and that there is a group L acting on the left in a 

transitive way as a group of automorphisms of X commutingwith 

the K-action. Then P(X) is injective as a K-module. 

Proof. It is well known (see [3] or [8J)that 

P(X) is injective as a K-module if and only if the functor 

W ~ K(P(X) 0 W) is exact where we regard P(X) ®Was a K-mo-

dule with the diagonal left K-action. Let w
1 

--Y+ w
2 

be a 

surjective K-module map. We want to examine the map 

id0y 
K(P(X) 0 w2). An elementary computation 

shows that K(P(X) 0 W.) ~ w. , where the isomorphism is 
1 1 

given by Efk 0 wk- Ifk(l)wk , and the K-module structure on 

P(X) 0 w1 is the diagonal structure. 

Thus, from the surjectivity of Y, we deduce that the map 

id 9 id 0 y 
is 

surj~otive. If we endow P(X) with the trivial left K-module 

actiQfi we deduce that the map 
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K (P (X) 0 p (K) S wl) id ® id 0 y ) K (P (X) 0 P (K) 0 W2) is 

surjecti ve. Using the fact that ci.'* is a K-module map we 
deduce that the map 

id 0 id 0 Y ) K (P (X) 0 p (X) 0 W ) 
KP(X) . 2 

is surjective provided we endow the tensor products ____ above 
' with the diagonal left K-module structure by making K act 

trivially on the first tensor factor and with the given 
actions on the second and third factor. Thus the map 

K . ts surjective. Now, as J? (Xl is faithfully flat as a P (X) -mod1.r 

le, we deduce that the map 

K id 0 y .. K (P (X) 101 W2) , (P(X) 0 w1 ) ---~--7 ~ is surjective. 

Q.E.D. 

Now suppose that Xis an affine algebraic 
group G and that K is a closed subgroup of G. All the hy-

potesis of Theorem 5.3. are satisfield, and we deduce the 
following result. 

Theorem 5.4. Let G be an affine algebraic 
group and Ka closed subgroup of G. If G/K is affine, then 
P (G) is injective as a K-module, and the induced :representation 

functor is exact. 

6. Mbre on Geometrically Reductive Group s 

Here we prove that, if G is a ~trically 
reductive affine algebraic group and Ka closed subgroup 
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of G such that the quotient G/K is affine, then K is geomet­

rically reductive. 

This result was first proved by Bialinicki­

Birula in the case of characteristic zero. Later, Richardson 

in [12] and Habousch in [6] presented proofs for arbitrary 

characteristic. Our proof relies on the concept of exactness 

and is similar to the one in [6]. In section 7, we 

reinterpret this theorem as a particular case of a 

tivity theorem. 

will 

transi-

Theorem 6.1. Let G be an affine algebraic 

group and K a closed subgroup of G such that the quotient G/K 

is affine. Then, if G is geometrically reductive, so is K. 

Proof. Let V be an arbitrary K-module, and 

let y: V-+F be a surjective K-map. Applying the induced repre­

sentation functor to y we get a map y: (P (G} S V} K-+- (P (G} (9 F} K= 

=P(G}K given by y(rfi (9 vi) = ry(v1 )£1 . 

Consider the map Ev: (P (G) 0 V) K-+ V given by 

EV(!:£1 0 vi) =!:fi (1) vi. The K-fixed par_t (P (G) s V) K is taken 

with respect to the left diagonal action and the G-action ~n 

K -1 
(P(G) 0 V) is : g. (Ef1 0 v 1 ) = !:f1 .g 0 v

1
• The following 

calculation shows that Ev is a K-module map. 

-1 -1 
!:k .f1 s k .vi= Efi 0 vi implies that 

-1 -1 1 
tf1 (k )k .vi= rfi (l)vi , whence tfi(k- )vi= k • Ev ( i: f i 0v i } . 

-1 
Ef. (k )v. = 

l l 



The diagram 

® V)K -
-

P(G)K (P (G) y 
➔ 

lEv lE 
V 

y 
F 

is commutative where Eis the map given by the evaluation at 

1. As K is exact in G there is a te:(P{G) x V)K such that 

y(t)=l, where 1 denotes the constant function of value 1 on 

G. If we denote by. <Gt> the sub G-module of (P (G) 0 V) K gen­

erated by t, the map y can be considered as a G-module map 

from <Gt> to F, and with that interpretation the diagram 

-
, <Gt> ____ Y __ ..,> F 

lY 
V , is commutative. 

As G is geometrically reductive, there is a q>O and 

xe:sq_ (<Gt>) G such that sq (y) (x) =l. Let y=Sq (Ev) (x). 

ye:sq (V) K, and sq (y) (y) = sq (y) sq (Ev) (x) = sq (y) (x) =l. 

an 

Then 

Q.E.D. 

Using Theorem 6.1., · we can answer the 

following question. What groups are universally exact? In 

other words, what are the affine algebraic groups K such that, 

whenever K is embedded in an arbitrary G as a closed subgroup, 

the quotient G/K is affine? The answer is "The (geometrical-

ly) reductive qroups". Indeed, we know from Section 4 that 
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geometrically reductive groups are universally exact. Now 

let K be a universally exact group. We can imbed Kin a 

GL(n,F) as a closed subgroup. Now K is exact in GL(n,F),and 

since GL(n,F) is geometrically reductive, it follows that K 

is geometrically reductive. 

It is an open problem to characterize the 

universally observable groups. 

ry 

7. Invariant Theo 

In this section, we establish results on 

rings of invariants that we use in Section 8 for studying 

orbits spaces. We use a degree of generality that allows us 

to clarify and unify certain results. 

Let K be an affine algebraic group defined 

over an algebraically closed field F and let C be an arbitrary 

abelian subcategory of the category of all rational K-rrodules. 

An F-algebra object in C is an object in C that is at the sane tine a 
commutative algebra with identity. We assume throughout that, 

K if R is an algebra object in C and rER, then the set Rr is 

an object of C and the maps R+Rr+R defined respectively as 

multiplication by r and set theoretical inclusion are C-maps. 

As we saw in Theorems 2.3 and 2.4, the 

following two (alternative) axioms are highly relevant to 

the reductivity properties of K. 

Axiom A. Let R1 and R2 be F-algebra objects 

of C and let~ be a surjective algebra map from R
1 

to R
2
that 
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K is also a morphism of C. Then, for every r 2 ER2 , there is a 
q> 0 such that r~ E <j> (R~) . 

Axiom B. Let R1 , R2 and~ be as in Axiom A. 
Then ¢ (R~) = 

Note that, in the case where C is ·. -~ the 
category of all rational K-modules, Axiom B holds if and 
only if K is linearly reductive, and Axiom A holds if and 
only if K is geometrically reductive (Theorems 2.3 and 2.4). 
It is also clear that if K is geometrically reductive then 
Axiom A holds for any category C as above, and similarly for 
Axiom B. Conversely if K satisfies Axiom A for every categ:>ry 
C as above, then K is geometrically reductive (and similarly 
for Axiom Band linear reductivity). It will became clear in 
section 8 how to construct an affine algebraic group K that 
is not geometrically reductive, but satisfies Axiom A on a 
certain category C of rational K-modules. 

We will prove that, if C is a category as above for which 
Axiom A holds, and that satisfies some mild additional 
hypothesis, then, RK is finitely generated for every fi-
nitely generated F-algebra object R of C. 
We need some preparation for proving that result. Let R be 

K an F-algebra object in C. If rER , then the map R+Rr has 
kernel l~{sER/sr=O} that is (by our assumptions) an 
of C. The map R~R/I is a C-map. In this situation, 
following analogous of Lemma 4.2. is valid. 

object 

the 
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Lemma 7.1. Let C be an abelian category as 

above that satisfies Axiom A. Let R be an algebra object of 

C. If I is an ideal of RK such that m=R then I=RK. 

Note that we do not assume that I is an object of C.The proof 

of this result is identical with that of Lemma 4.2. 

Lemma 7.2. Let C be an abelian category of 

K-modules satisfying Axiom A. Let R be an algebra object of 

C, and let J be an ideal of R that is also an object of C 

and such that the inclusion JcR is a morphism of C. If(R/J)K 

is finitely generated as an F-algebra, then so is RK/JnRK. 

Proof. Consider the commutative diagram 

where all the non horizontal maps are inclusions. As R and 

R/J are algebra objects of C and rr is a surjective algebra 

homomorphism that is also a morphism of the category C, 

Axiom A yields the existence of exponents q 1 , •.. ,qt such that 

T=F[ffl, •.. ,fft]cn(RK). Now let us look atTcn(Jl) c F[f1, ... ,ft]. 

Clearly F[f1 , ... ,ft] is finitely generated as a T-module. A 

fortiori F[f1 , ... ,ft] is finitely generated as a n(RK)-rrodule. 

A well known Lemma due to Artin and Tate says that, in this 

case, n(RK) is finitely generated as an F-algebra. Now the 

kernel of the map TT: RK _. R/J is ·J nRK. Thus TT (RK) ~RK /JnRK. 

Q.E.D. 
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Lemma 7.3. Let C be an abelian category of 

K-modules satisfying Axiom A. Let R be an algebra object of 

C and, for every element r of R, let I(r) denote the 

annhilator of r in R. Suppose that there exists an r£RK such 

that (R/Rr)K and (R/I(r))K are finitely generated F-algebras. 

Then RK is finitely generated as an F-algebra. 

Proof. Using Lemma 7. 2. for J=Rr and J=I (r) 

respectively we deduce that RK /RrnRK and RK /I (r.) nRK are fi­

nitely generated as F-algebras. Thus, we may write 

RK-= F,Cu1 , •.. ,ut] + Rr. n RK RK=Fl:v
1

, .•. ,v
5

] + I(r.)nRK. 

Put S ~ Fl:u1 , .•. ,ut,v1 , ••. ,vs]. In proving Lemma 7.2. we saw 

that (R/I(r))K is finitely generated as an RK/I(r)nRK-module. 

Accordingly, we choose elements c 1 , ••• ,c1 £R such that the 

elements c.+I(r) of R/I(r) are K-fixed and generate(R/I(r))K 
1 

as an RK/I(r.)nRK-module. Now, if XEK, then xci - ci£ I(r), 

K 
whence cir£R. We shall prove that F[u1 , ••• ,ut,v1 , ... ,v

5
,c1r, 

.•• ,c1rJ coincides with RK. Let r 0 ERK. There is an elements 

of s such that r 0-sE(Rr)nRK, i.e., r 0-s=arERK with aER. Now 

(xa-a)r=x(ar) - ar = 0. Thus, xa-a is in I(r), so that 

a+I(r)E(R/I(r))K. By the definition of the c. 's, there is an 
1 

element bin sc1+ ... +sc1 such that a-bEI(r). Now 

ar~brES[c1r, .•. ,c1rJ. Thus r 0-sES[c1r, ••• ,c1rJ, 

r 0 EF[u1 , ••. ,ut,v1 , ... ,v
5

,c1r, •.. ,c1rJ. 

whence 

Q.E.D. 



Theorem 7.4. Let C be an abelian category of 

K-modules satisfying Axiom A. Let R be an algebra object of 

C that is finitely generated as an F-algebra and graded in 

such a way that the action of K preserves the grading. Then 

RK is finitely generated as an F-algebra. 

Proof. Let F denote the family of all those 

1
homogeneous ideals of R which are also objects of C and have 

the property that Ic..+R is a morphism of C and (R/I)K is not 

finitely generated as an F-algebra. We wish to prove 

F=~. We do this by deriving a contradiction from 

that 

the 

assumption F~~- As R is noetherian, we have a maximal elerrent 

Im in F. Then Rm= R/Im is again an algebra object of C that 

is finitely generated as an F-algebra, is graded and such 

that the action of K preserves the grading. The ring RK is 
m 

not finitely generated, but (R /J)K is finitely generated for m 

every non zero homogeneous ideal J that is in C and such that 

a~ ts a map in C. Replacing R with Rm, we achieve that RK 

is not finitely generated but (R/J)R .is finitely generated 

for every ideal J as above. Let r be an homogeneous non zero 

element of RK. If the annihilator .I(r) of r in R is not zero, 

then Lemma 7.3. gives a contradiction. Thus, we may assume 

that r is not a zero divisor. Consider J=Rr. This is a non 

zero homogeneous ideal that is also an object in C, and the 

inclusion J~R is a map in C. Thus, (R/J)K is finitely 

generated. By Lemma 7.2., this implies that RK/unRK, i.e. , 

RK/~Kf is finitely generated. There are homogeneous elements 
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. K h ' ' RK/RK t RK/RK v
1

, ... ,vk in R w ose images in r genera e r as 

an F-algebra. We prove by induction on the degree that 

RK=F[v
1

, ... ,vk,r]. Let s£RK and put e=deg(s). By definition 

of the vi's, we have s=p (v1 , .. , vk) +tr where p is a polynomial 

and tERK. If e'=deg(r) we have s=p(v1 , ... ,vk)e+te-e'r. By 

induction we have that t ,£F[v1 , ... ,vk,r], then 
e-e . 

our 

conclusion follows. 

Q.E.D. 

To prove the theorem in the case of an arbitrary algebra 

object of C (not necessarly graded) we have to add multipli­

cative conditions to our category C. 

Defn. 7.5. An abelian subcategory of the 

category of rational K-modules is said to be multiplicative 

if, for every algebra object R of C, the algebra R9FR is 

again an element of C and the multiplication map µ: R9FR+ R 

is morphism of the category c. 

Theorem 7. 6. Let C be a multiplicative abelian 

category of K-modules satisfying Axiom A. Let R be an algebra 

object of C that is finitely generated as an F-algebra. Then 

RK is finitely generated as an F-algebra. 

Proof. Proceeding as in our proof of Theorem 

7.4., we see that is enough to derive a contradiction from 

the assumption that RK is not finitely generated, but that 

(R/J)K is finitely generated for every non-zero ideal J of 

R such that J£C and the map J£R£C. In doing this, we may 

tli§b ~~sU~e that ~K contains no zero divisor of R. In that 

@§~@, the fi•ld of fractions of RK,denoted by [RKJ, is a 
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finitely generated field extension of F (see cements follc:Mi.ng 

this proof). We can represent Ras a quotient S/Q where Sis 

a graded algebra object of C that is finitely generated asan 

F-algebra, and Q is an ideal of S that is also a C-subobject 

of S. Then SK is finitely generated as an ' F-algebra. We also 

know ( from Thm. 7. 2. , above) that SK /:Q.nSK is finitely generated 

as an F-algebra and that RK is integral ove~ SK/QnSK. Consider 

the following diagram 

The extension at the bottom is integral, whence the one at 

the top is algebraic. It is also finitely generated the 

extension [RK]/F is finitely generated). Thus, the extension 

[RKJ / [SKAQnSKJ is finite algebraic. By general commutative 

algebra, the integral closure of SK/QnSK in [ RKJ is finitely 

generated as an SK/QnSK-module. As sK/QnSK is noetherian we 

deduce that RK(that is contained in the integral closure 

mentioned above) is finitely generated as an SK/QnSK-module. 

Thus, in the extension FcSK/QnSKcRK, the left part is a 

finitely generated algebra extension and the right part is 

a finitely generated SK/QnSK-module extension. Thus, RK is 

a finitely generated F-algebra. 

Q.E.D. 

Let R be a K-rnodule algebra such that RK does not have any 
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zero divisor. Let [R] denote the total ring of fractions of 

R, and let M be a maximal ideal of [ RJ • As R is finitely 

generated as an algebra [R]/M is a finitely generated field 

extension of F. As the map RK+[ R] /M is injective, we can 

identify [ RK] with a subfield of [ RJ /M, thus we deduce that 

[RKJ is a finitely generated field extension of F. 

We will fix our attention on the following 

context. Let R0 be a fixed rational K-module algebra and let 

c0 be the abelian category of (R0 ,K)-modules. Recall that 

an (R0 ,K)-module is an F-vector space M, that is at the sane 

time an R0-module and a K-module and the actions are related 

by the formula x. {fm)=x.f x.m for xEK, fER0 , mEM. We 

define morphisms of (R0
,K)-modules in the evident way. 

The category c0 satisfies the conditions on C that we 

assumed before, if R is an algebra object in c0 , then 

RSFR is again an algebra object in c0 and the nrultiplication 

is a morphism of the category. 

Defn.7.7. We say that K acts on R0 in a 

linearly reductive or exact way if the category c0 defined 

above satisfies Axiom B. 

Defn.7.8. We say that K acts on R0 in a 

geometrically reductive way if the category c
0 

defined above 

satisfies Axiom A. 

Theorem 7. 9. In the context above, the follCMing 

conditions a) o) and c) are equivalent, and condition c') 

iit@iies ail of them. 



- 39 -

a) K acts on R0 in a linearly reductive way. 

b) For every surjective map A:M➔N of (R0 ,K) -

modules the map A/MK: MK ➔ NK is surjective. 

c) For every K-stable ideal J of R0 and every 

surjective map. A: M4 R0/J of (R0 ,K)-modules there is an mEMK 

such that A(m)=l+J. 

c') For every K-stable ideal J of R0 
, every 

s urj ecti ve map A : M 4 R0 / J splits as a K-module map. 

Theorem 7 _.10. In the above context, the fol­

lowing conditions a) and b) are equivalent, and conditionb') 

implies a) and b). 

a) K acts on R0 in a geometrically reductive 

way. 

b) For every {R0 ,K)-module M, every K-stable 

ideal J of R0 and every surjective (R0 ,K)-module map 

A:M➔R0 /J there is a q>O and an min Sq(M)K such that 

Sq(A): Sq(M) ➔R0 /J sends m to l+J. 

b') For every {R0 ,K)-module M, every K-stable 

ideal J of R0 and every surjective (R
0

,K)-module map 

A:M➔R0/J, there is a q>O such that the map Sq(A) splits as 

a K-map. 

The proofs of Theorem 2.3 and 2.4 yield proofs of Theorem7.9 

and 7.10. As we pointed out before, if the group K is 

linearly reductive then K acts in a linearly reductive way 

on every rational K-module algebra. Similarly for 

ficaily reductive groups. 

geomet-
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In particular, we deduce. 

Corollary 7.-11. If K acts on Ro in a geomet-

rically reductive way and Ro is finitely generated K-module 

algebra, then R~ is a finitely generated algebra. 

The concept of linearly reductive action is 

stronger than the concept of geometrically reductive action, 

but there is a particular case in which both concepts coin­

cide. Let G be an affine algebraic group and Ka closed 

subgroup of G, then there is a natural action of Kon P(G). 

We will prove in Section 8 that K acts in a linearly reduc­

tive way on P(G) if and only if it acts on P(G) in a geomet­

rically reductive way. Using this equivalence we can interpret 

Theorem 6.1.as a transitivity theorem; a particular case of 

the following result. 

Theorem 7.12. Let G be an affine algebraic 

group, Ka closed subgroup of G, and RO an arbitrary G-mod­

ule algebra. If K acts on P(G) in a geometrically reductive 

way and G acts on RO in a geometrically reductive way 

K acts on R0 in a geometrically reductive way. 

then 

Proof. Consider an arbitrary (RO,K)-module M, 

let I be a K-stable ideal of R0 and A a surjective (R0 ,K) 

map from M to R0/I. Using the result mentioned before about 

the equivalence of the concepts of linearly reductive actions 

and geometrically reductive actions of Kon P(G), from the 

hypotheses and from Theorem 7.9. we deduce that the map 

(id 9 X): {P(G) 0 M)K ~ (P(G) & RO/I)K is surjective. 
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Consider the map w:R0 0 (P(G) 0 M)K ~ RO 0 (P(G) & R0 /I)Kgiven 

by 1jj = id 9 id~>... We endow Ro 9 (P(G) & M)K as well as 

R0 0 (P (G) 0 R0/I) K with the G-structure given by the diagonal 

action and the R0 structure given by multiplication on the 

first tensor factor. Then,~ is a (R
0

,G)-module map . . Define 

EM:(P(G) 0 M)K ~ M as EM(Ef. 0 m.) = Ef. (l)rn. , then EM is 
1 1 1 1 

a K-map, and the following diagram is commutative. 

Ro 0 (P(G) 0 M)K . R 0 (P(G) 0 R0/I)K 

l 
0 

l id 0 EM id 9 ER /I 
0 

. RO 0 M 
id 0 :>t 

RO 0 Ro/I 

I l µ µ 

M R0/I 

The vertical maps µ are the maps given by the R0-module action. 

When we endow Mand R0/I with the given (R0 ,K)-module struc­

tures and R0 0 Mas well as Ra 0 Ra/I with the diagonal K­

module structure and the R0-module structure given by multi­

plication on the first tensor factor, all the vertical maps 

are (Ra,K)-module maps. Now, by looking at the surjective 

morphism S(~) of (R0 ,K)-algebras from the symmetric algebra 

built on R0 0 (P(G) 0 M)K to the symmetric algebra built on 

Ro 0 (P(G) 0 R0/I)K that is induced by w··, we deduce that 

there is an x in Sq(R
0 

0 (P(G) s M)K)G such that Sq(l/J) (x) = 

= 1 0 1 0 (l+I), with 1 9 1 0 (l+I) in(R0 & (P(G) 0 R0 /I)K)G. 

Then, if we call y = Sq(µ(id 0 EM)) (x), we have that y is 

in Sq(M)K and Sq(>..) (y) = µ(id 0 ER /I) (1 0 1 0 (l+I)) = l+I. 
0 

Q.E.D. 
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The converse of Theorem 7.12. is not true. A 

counter-example will be given aft~r Corollary 8.8. Thus the 

only case in which we can expect to deduce reductivity as­

sumptions for the action of Kon R from reductivity assump -

tions for the action of G on R, is when the quotient G/K is 

affine. If we look not at reductivity assumptions but only 

at the finiteness of rings of invariants, there is more that 

can be said. 

The following example shows that if K is a subgroup of G, 

P(G)K can be finitely generated even if K is not exact in G. 

Take G=SL2 (F) and K;,{ [~ ~ ) / b£F} • Then the quotient G/K 

is isomorphic to F2-(0,0} that is not affine, but hasfinitely 

generated ring of polynomial functions. This is a particular 

case of a situation that has been extensively studied - ( see 

for example G. Hochschild and G. Mostow "Unipotent Groups in 

Invariant Theory" Proc. Nat. Acad. Scie. USA, Vol 70, No. 3, 

pp 646-648, March 1973) and we will limit ourselves to the 

following comments (that were pointed out to the author by 

G.Hochschild). Let G be an affine algebraic group and K a 

closed subgroup. Let R0 be a G-module algebra and assume that 

G acts on R0 in a geometrically reductive way. The G-module 

structure on Ro induces a P (G)-comodule structure P:I\t%®1?(G) 

related to the G-action by p(r} = 1:r. ® f. and x.r=I:f. (x)r. 
1 1 1 1 

for xE;G. If we endow Ro & P(G) with the G-module structure 

x . (r ® f} x.r & f.x 
-1 

it is to show that == easy , 

fl (Ro) ,::: (RO ~ P(G))G and that p is injective. Now, consider 
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the action of G on R0 0 P(G) given by x*(r 9 f)= r 9 x.f.The 

following computation shows that, with respect tothese struc­

tures pis a G-module map. If p(r) = rr1 0 f 1 and xEG, we 

have p (x.r) = p n: fi (x) r 1 ) = E fi (x) p (r1 ) • If P (r1 ) = 3r 1 j&fij 

and M£1 ) = tfik 0 fik , we have {j r 1 j 9 fij 0 f 1 = 

= E ri 9 fik 0 f" Now, 
ik ik" p(x.r) = {j f 1 (x) (r .. 0 f .. ) = 

l.J l.J 

= }: f '.' k ( X) ( r . 0 f l_k) = 1 ri 0 ~f i_kf ik (x) = Er. 0 x.f. = 
ik i l. l. l. 

= x*Er. 0 fi = x*p (r) . 
l. 

As x*(y. (r 9 f)) = y.r 9 x.f.y-l = y.(x*(r'0 f)) the map p 

induces an isomorphism of F-algebras from~ to(R0 9 P(G)K)G. 

Now assume that R0 
and P(G)K are finitely generated as F­

algebras. Then R0 0 -P(G)K is a finitely generated(R0 ,G)-mod­

ule algebra. By our assumption on G we deduce that(Ro®P(G)K)G, 

and thus R~ is finitely generated as an F-algebra. Thus . , in 

this situation, P(G)K is a universal object with respect 

to the finite generation of rings of K-invariants. 

8. Orbit Varieties 

Defn.8.1. Let K be an affine algebraic group 

acting on a variety X. A categorical quotient of X by K is a 

pair (Y ,4>) , where Y is a variety and cf>: X-+ Y is a 

S\J.Ch that: 

morphism 

i) If x and x' are in the same orbit of X, 
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ii) Given any variety Zand a morphism w: X+Z 

which is constant on orbits, there is a unique morphism x:Y+Z 

such that x<P= $. 

If noreover <P-l (y) consists exactly of one orbit 

for every yin Y, then (Y,¢) is called an orbit space. 

The definition above and the one given in 

Section 5 (Defn.5.1.) coincide when xis an affine variety. 

The following theorem is well known in the casew:i.ere the group 

K is geometrically reductive, see (11], and our proof sketched 

here is very similar to the one presented there. 

Theorem 8.2. Let K be an affine algebraic group 

acting on the affine variety X in a geometrically reductive 

way (meaning that K acts on P(X) in a geometrically redoctive 

way). Then, there is an affine variety Yanda morphism ¢:X+Y 

such that 

i)<P is K-invariant 

ii)¢ is surjective 

iii) If U is 

(U))"is an isomorphism of 

-1 
open in Y the map¢*: Oy(U)+Ox(<P 

-1 K 
Qy(U) onto 2x<<P (U)) 

iv) If Wis a closed K-invariant subset of X 

then ¢{W) is closed in Y. 

v) If w1 and w2 are disjoint closed invariant 

subsets of X, then 4i (w1 ). 
n 4i (W

2
} = <P. (Here -- denotes 

Zariski closure). 

Proof. We known that P(X)K is a finitely 

generated F-algebra (Theorem 7.6.}. Define Y to be the 
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affine variety associated with P(X)K and¢ the map induced 

by the inclusion P(X)K~ P(X). The proof of i) is straight­

forward. (If x 1 K = x2K for x
1

,x
2

£X for every f £ P(X)K 

f(<f>(x1 )) = f(<f>(x2 ) , as the elements of P(X)K separate the 

points of Y we deduce that ¢(x1 ) = ¢(x2 ) .) .Tb • prove ii) 

consider an element y of Y, and let f 1 , ... ,fr generate · the 

maximal ideal corresponding toy in P(Y) = P(X)K. Using 

Lemma 7.1., we deduce that Ef.P(X) # P(X), so that there is 
l. 

a maximal ideal of P (X) containing Efi P (X). If x is the FOint 

of X corresponding to that ideal, then cf>(x) = y. Assertion 

K 
iii) can be proved as in [11]. Let f be an element of P(X) , 

then it is enough to check iii) for U=Yf, and in this case 

K (P(X)f) • It is clear that iv) is a consequence 

of v). v) Consider the ideals I 1 and 1 2 of w1 and w2 in P(X). 

We have r 1+r 2 = P(X). Consider the map r 2-t- P(X)/I1 given by 

the projection. This is a surjective (P(X),K)-module algebra 

map. There is a function gin I~ such that g+I 1 = l+I1 ,i.e. 

g-1£1 1 . Then g is K-invariant and g(W
1
)=1, g(w 2 )=0. Iegarding 

gas an element of P(Y) we have that g(¢(W1 ))=1 g(¢(w2 ))=0, 

hence cf> (W1 -0 net> (W
2

) = cf>. 
Q.E.D. 

Corollary 8.3. Let K,X,Y and be as above.Then 

(U,¢) is a categorical quotient of cp- 1 (u) by K for every 

open subset U of Y. 

Corollary 8.4. In the above notation, ¢(x1 ) = 

::.; cf> (x2 ) if and only if O (x1 )'. n O (x2 ) ;t <P • (0 (x) denotes the 

orbit: of x). 
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Corollary 8.5. In the situation above,if the 

orbits of Kon X are closed, then Y is an orbit space. 

Finally the following result can be proved in 

the same way as in[ll]. 

Theorem 8. 6. Let X, K, Y ,and cf> be as in Theorem 

8.2., and let X' be the subset of X defined by X'= { X£X/O(x) 

is closed and dim O(x) has the maximum value}. Then there 

is an open subset Y' of Y such that ~-l(Y') = X' and (Y' ,cf>) 

is an orbit space for the action of Kon X'. 

Now let us assume that Xis an arbitrary affine 

variety and K is an affine algebraic group acting on X in a 

geometrically reductive way and such that the map 

a: Xx K➔X x X given ,by a(x,k)=(x,xk) is an isomorphism onto 

its image. ·Assume moreover that there is an abstract group 

L acting transitively from the left on X as a group of 

variety automorphisms commuting with the K-action. Then, all 

the K-orbits on X are closed. This is because there is always 

one closed orbit and L permutes the orbits transitively.Using 

Corollary 8.5., we conclude that the orbit space of X with 

respect to the action of K exists and is affine. The foll<Ming 

Theorem is a generalization of results in [2]. 

Theorem 8.7. Let X be an affine variety and 

Kan affine algebraic group acting on X from the right in 

such a way that the map a.: X x K ➔ X x X, where a(x,k)={x,xk), 

is an isomorphism onto its image. Suppose moreover that there 

is arl abstract group L acting on X as a group of affine va-
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riety automorphisms commuting with the action of K. Then the 

following conditions are equivalent: 

a) The orbit space X/K exists and is affine. 

b) P(X) is injective as a K-module. 

c) K acts on X in a linearly reductive way. 

d} K acts on X in a geometrically reductive way. 

Proof. a} :::> b). This was proved in Section 5. 

bt :::> c). This is a consequence of Lem­

ma 3.2. and the fact that P(X) is injective as a K-module if 

the functor from 

is exact. 

K K-modules to F-spaces given by M -+-(P(X) ~ M) 

c} :::> d). Obvious. 

d} :::> a) . See cements before the staterrent 

of the Theorem. 

Q.E.D. 

Corollary 8.8. Let G be a group and K a 

closed subgroup of G. Then the following conditions are 

equivalent: 

a} G/K is affine. 

b} P(G) is injective as a K-module. 

c) K acts on Gin a linearly reductive way. 

d) K acts on Gin a geometrically reductive 

way. 

As to the counterexample to the converse of 

Theorem 7.12 any three algebraic groups KcGcL such that L/K 

1-§ affi:rte and G/K or L/K not affine will do. Take for exanple 

• 
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G a Borel subgroup of Land K trivial or take K ~ {[~ ~1 I 

aEF} • G ~ {(~ ~1 a,b,cEF } , a;t 0 I ac;tO L=GL(2,F). 

The last Corollary also provides examples of 

groups K that act on a K-module algebra R0 in a georretrically 

reductive way but are not geometrically reductive. It is 

e nough to construct a pair Kc G such that G/K is affine but 

K is not reductive. 

Fi n a l ly, it is clear from our definitions that 

K is geometrically reductive if and on l y if K acts in 

geometrica lly reductive way on every K-module algebra 

(take R0=F with the trivi a l act i on ). As a consequence 

a 

· R 
0 

of 

t h e comments i..hat fo llow Theore m 6. 1. , to check the georretric 

reductivity of K, it is e n o u gh to prove t h at K acts on 

e very K-module algebra of the form P(G) with KcG in 

geometric lly r ductive way . 
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