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Dedication

This book is dedicated to the memory of Professor César Ades who passed away on March
14, 2012. César was Professor of the Postgraduate Program of Experimental Psychology
at the Institute of Psychology, University of Sdo Paulo. He started the study of sound
communication as part of animal behavior, from the perspective of ethology at the
Department of Experimental Psychology. An analysis based on the Fonoteca Cesar Ades
(FOCA) is presented in chapter 2. The author, Patricia Monticelli, did her master's and
doctorate under his supervision studying the vocal repertoire of Cavia aperea and Cavia
porcellus. The book is also dedicated to the memory of Edila Aparecida de Souza who
worked for 23 years in the Ethology Lab. She was a motivated professional and gave her
best to our University. Edila was one of thousands of people who have died from
coronavirus. She passed away on June 3rd, 2020, at age 62. We remember her positive
outlook on life, spontaneity, and willingness to work for a common goal and will continue
working with this same attitude, in the face of enormous challenges. The Covid-19
pandemic has turned the world upside down. Vaccines are in development thanks to the
efforts of scientists around the world. Science gives us hope for the future in our turbulent

world.

Emma Otta and Patricia Ferreira Monticelli
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About the book

The chapters in this eBook provide an overview of the scientific topics discussed at
the online scientific meeting that inspired the book. The meeting Acoustic Communication:
An Interdisciplinary Approach took place online on November 19-20, 2020, with the
support of the Dean’s Office for Research of the University of Sao Paulo, Brazil. We were
experiencing a Covid-19 pandemic declared by the World Health Organization on March
11, 2020. Quarantine was declared in the State of Sdo Paulo on March 13, 2020. In this
context, we stress the importance of creating and preserving opportunities for the
communication and exchange of ideas and research experiences among researchers, in
addition to the University’s initiative in fostering new ways of holding scientific meetings.

The meeting and the book were jointly organized by us, Professor Emma Otta, from
the Department of Experimental Psychology of the University of S&o Paulo’s Institute of
Psychology (IPUSP), and Professor Patricia Ferreira Monticelli, from the University of Sdo
Paulo’s Department of Psychology at the Ribeirdo Preto School of Philosophy, Science
and Languages (FFCLRP-USP), as an extension of our research collaboration. Professor
Monticelli coordinates the Laboratory of Ethology and Bioacoustics where research is
carried out on reproductive, parental and communication behavioral aspects in terrestrial
mammals. Professor Otta coordinates the Laboratory of Psychoethology, where research
projects on Human Ethology are conducted. While studying nonverbal communication, she
became interested in paralanguage, the non-verbal dimension of speech that contributes to
its emotional quality.

During our collaborative research we noticed the need to consult specialists, given
the interdisciplinary nature of the research topics under investigation. We systematize this
experience here and share it with the readers through chapters that present the innovative
research discussed in the talks and subsequent discussions, in the form of Peer Comments
or Q&A transcription, prepared by the moderators of the presentations. We have divided
the book into four parts: Animal Bioacoustics, Human Bioacoustics, Methods used in

Bioacoustical Research and Analysis used in Bioacoustical Research.

Emma Otta & Patricia Ferreira Monticelli
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Foreword

This book covers a fascinating topic: bioacoustics. After the course of events that
guided me from an electronic engineer to a speech scientist, | thought my early dream of
becoming a zoologist was over. This dream came true when | first met Patricia Monticelli
and her lovely EBAC students back in 2016. Patricia's collaborations with psychologist
Emma Otta and other colleagues were very fruitful, culminating recently in the Acoustic
Communication: An Interdisciplinary Approach workshop. The book | have the honor of
introducing is an outcome of this memorable event.

In fourteen chapters, the 22 contributors offer not only an inherently
interdisciplinary approach to bioacoustics but give examples of several decades of
scientific research developed for (human) speech. This is presented in the four parts:
Animal Bioacoustics, Human Bioacoustics, Methods used in Bioacoustic Research, and
Analysis used in Bioacoustic Research.

Part A opens this volume with a presentation of Bioacoustics as a subfield of
Animal Communication, the latter a subfield of Ethology. Communication through sound
is shown to be pervasive in both humans and non-humans, characterizing a social behavior
that is crucial for each species. This is demonstrated when the authors investigate different
intra- and inter-species behavior in primates, birds, guinea pigs, domestic and wild pigs,
and domestic and wild horses, related or not to human interaction.

Part B describes what is known about speech production since Gunnar Fant’s work
on Source-Filter theory, as well as what the study of the prosody of emotions in both verbal
and non-verbal behaviors can offer to Bioacoustics, including the possibility of emotion
recognition.

Part C presents software and algorithms developed for acoustic analysis in both
human and non-human species, including infant cries. Praat, R, and BioVoice were used
by the contributors of Part C, including presentations and examples of Machine Learning
techniques for recognizing differences across bird species, different infant needs from their
cries, and event detection.

Part D closes the book by presenting acoustic analysis applications to highlight the
commonalities and differences in twins' speech, identify breathing issues in the case of
voice disorders and build devices for speech synthesis and speaker identification, which is

relevant for Forensic Phonetics in Speaker Comparison.



The researchers from Brazil, Canada, Denmark, and Uruguay that contributed to
this wonderful book are prominent figures in the area of human and non-human sound
communication. One major advantage of the 14 chapters is that they are written in a
language that can be understood by both experts and people new to the area.

This book will be an important tool not only for students of Biology but also those
in areas such as Computer Science, Electronic Engineering (including
Telecommunications), Linguistics (including Phonetics), and Psychology. Experts from
the same disciplines will also find a valuable resource for deepening their understanding of
communication in all its shades and meanings by opening a window to a world where social
networks must include non-human social networks aimed at a time where harmonic co-

existence between species and nature will be a reality.

Plinio A. Barbosa
Department of Linguistics, University of Campinas
January 27" 2021



Part A Animal Bioacoustics

Chapter 1

Presenting Bioacoustics in Ethology

Gabriel Francescoli!

Abstract

Bioacoustic contributions to science are many and can be interpreted within the framework
of several disciplines and subdisciplines from Biology to Social Sciences. The influence of
Bioacoustics in Ethology, Biosemiotics, Physiology, Neurosciences, etc. and vice versa has
modeled (and continues to model) in many ways the modern study of Animal
Communication. Here, | will give a brief overview of these relationships and some of the
research topics classically and currently addressed by researchers in these fields,
underscoring their importance to Animal Behavior studies.

Keywords: Behavior, Bioacoustics, Ethology, research trends.

Bioacoustics is a cross-disciplinary science that combines biology and acoustics,
usually referring to the investigation of sound production, transmission, and reception in
animals (including humans). From this definition, we can deduce that Bioacoustics deals
with the means of sound production and reception by animals, in a combination of sorts of
sensory ecology and physics. However, from my point of view, Bioacoustics is much more
than that because bioacoustic studies and tools influence many disciplines and
subdisciplines, in addition to Biology and the Social Sciences (Figure 1.1).

In this paper, I will highlight many of these connections and mutual influences
(obviously not all of them because there will always be new perspectives and influences |
may not be aware of) to illustrate why | think Bioacoustics per se is not investigated by
many researchers nowadays. As far as | know, this is because most Bioacoustic research is
ultimately aimed at understanding other types of problems that are "in the orbit" of other

disciplines and subdisciplines of Biology, Physics, Social Sciences, and even technology.

! Seccion Etologia, Facultad de Ciencias, Universidad de la Republica Montevideo, Uruguay.
gabo@fcien.edu.uy
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Figure 1.1. Diagram representing the relationships between Bioacoustics and other
scientific fields, as discussed in this paper.

Mutual influences between Bioacoustics and Ethology

As mentioned before, Bioacoustics is the study of biological sounds from a general
perspective, implying any biological sounds, irrespective of their use. This discipline
involves studies dealing with animal communication problems, and other uses of biological
sound production, such as sonar systems employed by many animals in traveling, hunting,
etc. Most studies on the biological sounds emitted by animals are related to Ethology or
Animal Behavior.

In Ethology, the main body of knowledge to which bioacoustic research results are
linked is the subfield of Animal Communication. Communication studies in Ethology have
a long tradition, sound communication being a very important subfield, and probably one
of the oldest because of the interest in biological sounds among naturalists and researchers
(Thorpe, 1979).

Sound signals are interesting and important to study because they are an extended
means of sending messages and exchanging information between living beings. Sound
signals are sometimes the best way to accomplish this, always depending on environmental
characteristics, mainly due to their propagation capabilities and because sound signals
(depending on their production mechanisms) are capable of quick and variable modulation,
allowing the generation of adaptable and variable signals.

Initial efforts to understand and record sound signals (mostly bird songs) used
musical notation and onomatopoeia, because of the lack of other recording media.
Nevertheless, when the first recording apparatus appeared, most studies investigated stored
sounds from physical and behavioral perspectives, using the best technologies available at



the time. The second step towards biological sound analysis linked to behavior was the
adaptation of a device used to analyze human voice and language for general use in animal
bioacoustics: sonography. These two steps resulted in what bioacoustics is today.

If we analyze the role played by acoustic signals and biological sounds in
ethological studies, we can see that many subjects of general ethology can be explained
and interpreted using communication studies and biological sounds. This is why | consider
that animal communication, as a "sub-discipline” of Ethology, plays a fundamental role in
the development of the discipline, and is perhaps the most relevant part of the relationship
between Ethology and Bioacoustics.

Animal communication studies (and bioacoustics, for that matter) are important in
Ethology because a significant part of behavioral studies dealing with social interactions
as a broad concept needs a communication system that allows individuals to coordinate
activities. This is a major point in ethological studies and can be confirmed by the fact that
you can devise a course in general Ethology and explain a majority of ethological concepts
using mainly communication examples and points of view.

Bioacoustics has contributed to Animal Communication studies in many ways,
from the earlier descriptive research that showed the basic characteristics of biological
sounds (Marler, 1977), to other more in-depth studies about signal design and their
particular characteristics for certain uses (Bradbury & Vehrencamp, 2011). Later
developments led researchers to study and interpret sound signals as part of repertoires or
"languages,” and the use of limited repertoires of sounds to generate signals conveying
different messages, such as different signals for different receivers (Marler et al., 1986);
differential repertoires for different sexes, ages, dominance status sub-groups (Bradbury &
Vehrencamp, 2011); rhythm, tempo and duration of acoustic signals to communicate
information (Francescoli, 2011); call combinations and compositional mechanisms
generating different meanings from a restricted signal repertoire (Engesser et al., 2016);
and different signals and combinations for predator identification and warning involving
syntactic and semantic contents in animal signals (Seyfarth et al., 1980; Suzuki, 2013;
Zuberbuhler, 2018). These studies also connect general Ethology and Animal
Communication with other disciplines and subdisciplines with which they share interests,

research, and results.
Other related and interacting disciplines

One of the disciplines linked to these studies is Physics, because of our need to

understand rules of sound production and reception that may act on animal sounds, limiting



their use and characteristics, such as performance constraints on the physical characteristics
of emissions (Podos, 1997); "honesty" rules in vertebrate sound production (Fitch &
Hauser, 2003); filters and sources of sound as a determinant of vocal signal characteristics
(Taylor & Reby, 2010); and low-frequency enhanced audition related to bullar morphology
in subterranean and desert rodents (Francescoli et al., 2012). These are very basic studies
in terms of sound characteristics and hearing, but they contribute to understanding basic
rules, identifying other more complex rules related to meaning and the use of sound signals.
The aforementioned goals are common to other disciplines related to Ethology, Animal
Communication and Bioacoustics, such as Cognitive Ethology, Biosemiotics, and
Neurosciences.

Communication systems in any channel, and specifically bioacoustic signals, are
potential gateways to understanding the cognitive abilities and capacities of many animals.
This could be achieved not only through a complete understanding of some species’
"language,” which would probably allow direct communication between members of that
species and us (there are some examples of these kinds of interactions, albeit very limited,
such as the communicative and cognitive studies on parrots conducted by Pepperberg,
2006). Nonetheless, a number of studies have used sound signals in sophisticated
experiments that provide insight into the mental capabilities of species such as different
types of dog barks in different situations and towards different individuals (Fischer et al.,
2001), and intentional vocalizations to attract the attention of others in dangerous situations
(Crockford et al., 2015).

The link between stimulus, action, and neural "support” for cognitive and
behavioral tasks relates Bioacoustics and Ethology to Neurosciences and Physiology
because these disciplines allow in-depth analysis of some of the morpho-physiological
bases of these behaviors. Some studies link human neural and hormonal systems to the
regulation and performance of their animal counterparts while communicating, and
determine some of the ways in which the relations between stimuli (external and internal)
and responses can modulate communicative acts and adapt them to ongoing physical
conditions. Another point regarding this relationship is memory studies, since they help
understand some of the capabilities of communication systems and the implied social
relationships.

The Biosemiotic approach, on the other hand, aims to understand the characteristics
of animal (biotic) signals that allow subjects to generate meaningful utterances that can
influence and even mislead receptors, because of the mental processes involved in

generating signal meaning content and the repertoires used, such as deception and signal



misuse in fireflies (EI-Hani et al., 2010); triadic relationships in behavior and signals
(Francescoli, 2017); and agonism management using vocal signals in subterranean rodents
(Francescoli & Schleich, 2018). Thus, what Biosemiotics attempts to understand is the
generation of mental content or behavioral acts that allow the encoding and decoding of
information into communication signals (sounds, in our case), and the processing and
interpretation of external and internal information allowing a biological agent to interpret
the world around it, interact with it and make the proper decisions. This process produces
different levels of behavior (signals to other individuals) that are also the subject of
ethological studies (von Uexkiill, 1926; ethological sequence analysis as narrative analysis,
Francescoli, 2019).

In my opinion, all of these disciplines and research fields combine different
viewpoints and study methods that help us better understand Bioacoustics, animal
communication in particular, and Animal Behavior (Ethology) in general.
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Peer Commentary

Bioacoustics as an interdisciplinary approach and the
duality seismic-vocal signaling

By Lilian Cristina Luchesi

In this first chapter, Gabriel Francescoli discussed the insertion of Bioacoustics in
Ethology. He shared some perspectives on the interdisciplinary approach and raised some
issues to ponder in the Bioacoustics research area. In this section, I will comment on some
of the aspects discussed by Francescoli, ending with the use of seismic signaling by rodents.

Not all zoologists and ethologists studying acoustical species practice Bioacoustics,
and others focus only on the acoustic part of the signals themselves. In Francescoli’s
viewpoint, researchers normally go beyond acoustic signal analysis to other disciplines
more connected with the behavioral and biosemiotics aspects of scientific studies. Some
are only interested in the signals per se, mainly in the physics portion of the signal. Others
are interested in acoustic signals but not interested in or able to cope with more advanced
physics in analyzing acoustic signals per se. The challenge may be developing physics
skills to deal with some of the problems with the signal itself. Professor Francescoli faces
some of these problems in his approach once he is more interested in the communication
part of animal behavior than the physical properties of signal transmission and reception.
From what | see, it helps to establish partnerships with other parts of communication
science, namely the physical properties of signals and their dispersion, to improve our
overall knowledge of Bioacoustics.

Many books are available for those who might want to understand bioacoustics’
interdisciplinarity and its approaches better. One of these is the general acoustic handbook
edited by Thomas Rossing (Springer Handbook of Acoustics, 2014) and the book by
Bradbury and VVehrencamp (2011) (Principles of Animal Communication), which focuses
more on animal communication science. Some manuals describe vocal anatomy, sound
production, and acoustic analysis for human speech, such as Ball and Rahilly (2000) and
Harrington and Cassidy (1999). Brazilian professors Plinio Barbosa and Sandra Madureira
(2015) published a Phonetic Acoustic Manual describing theory and experimental
procedures used by Brazilian and European speakers. There are also many more manuals

in different languages to better study human voice production, speaking, and singing.



The Bioacoustics referentiality debate of animal communication and the
opposing views of functional referentiality and automatic, emotional response of

vocal signals

In Francescoli’s point of view, referentiality is a significant problem, and practical
referentiality is the concept we are mainly striving for in our studies because it is the most
widely accepted in the scientific community. However, referentiality as a whole acts
through mental mechanisms whose existence has yet to be proven, and that should be our
main goal. Many animal species exhibit referentiality in which mental content plays an
important role. Still, how can we access this mental content to demonstrate that it does exist
scientifically? We have to deal with this type of duality, in that many researchers firmly
believe that there is mental referentiality in several higher vertebrate species. Nevertheless,
for now, we must remain with the concept of practical referentiality because we cannot
enter these animals’ minds to show what occurs scientifically. That is the ultimate problem
with these types of interactions.

| bring some elements to illustrate this debate and the ultimate problem highlighted
by Francescoli. First, we could return to the starting point when the first known
experimental observation of animal signaling was made by Darwin (1871) of the
Cercopithecus vocal response to a snake (Townsend & Manser, 2013). After that, the
pursuit of the signaling—meaning relation grew. Researchers seek to answer the
evolutionary question: are animal communication signals full of meaning, or are they just
automatic responses to constraints? Only 150 years later, Struhsaker (1967) described
different alarm calls among vervet monkeys (Cercopithecus aethiops) to various predation
risks. Nearly thirteen years later, Seyfarth et al. (1980a, 1980b) described three distinct
signals for different classes of predators, including leopards, eagles, and snakes, which
evoked different responses such as running up trees, looking up or running into dense bush,
and looking at the ground around them, irrespective of the context in which the signals
occurred. Furthermore, this association between predator class and type of alarm call
appeared to improve from the infant to adult stages of a primate’s life (Seyfarth et al.,
1980b). These findings and their repercussions on animal communications studies were
documented in a special issue devoted to the forty years of Seyfarth, Cheney’s, and
Marler’s work: Communication in Nonhumans: The Fortieth Anniversary of Seyfarth,
Cheney, and Marler (ABC, 7(2), 2020) presenting some of their research and the continued
debate (Vonk, 2020).



Having different alarm calls for distinct classes of predators is not an exclusive trait
of primates. Among rodents, diverse alarm calls for different classes of predators or
differential urgency flight responses also evoked different responses in Gunnison’s prairie
dogs, Cynomys gunnisoni (Kiriazis & Slobodchikoff, 2006), ground squirrels (Owings &
Leger, 1980), and Belding’s ground squirrels, Spermophilus beldingi, (Robinson, 1980).
Only six bird species exhibit functionally referential alarm calls (see Gill & Bierema, 2013
for a review). Several studies support the evidence of referential signals for different
constraints evoking different responses. However, this theory does not support some
signals or encounter obstacles in establishing a relation between signal and response and
could be better classified as an emotional response (Rendall et al., 2009). For this reason,
they could be redefined and referred to as signals that influence other actions rather than
signals transmitting encoded information (Owren et al., 2010).

The dichotomy between the information or the emotional signals contained in
animal alarm calls is false. Nowadays, it is widely accepted that both components
(cognitive and emotional) are impossible to separate (Snowdon, 2020). As Francescolli
said, the problem is how to access mental content using the scientific method. The search
for a better understanding of the information in signals and how it can affect the

conspecifics’ behavior should be encouraged in future research (McRae, 2020).

Discussing the duality in the use of vocal or seismic signals; the transmission of

the seismic signal, and its relation to different substrates

To Francescoli, when considering the seismic signaling transmission, the problem
is that any solid substrate can be used to produce seismic sounds or signals. The problem
is that the range over which signals can travel to other animals or the velocity of sound
transmission depends on the composition of the substrate. Sand, highly or loosely
compacted soil, or even rocks, are not the same because these seismic signals are very
similar to those produced by some seismic events in nature, and their propagation
characteristics are similar.

Concerning the seismic signal and vocal duality, the former are produced by
tapping on the substrate with body parts such as limbs, teeth, or in many cases, the skull.
In almost any case, they also produce sounds, but this sound probably does not propagate
at long ranges as seismic signals do. There is also a problem with reception. Seismic signals
may not be analyzed in a specialized brain but are still analyzed like any other sound. As
such, are they seismic signals or sounds, depending on what part of the brain is analyzing

the signal? Other researchers in the field of subterranean rodents, Francescoli’s specialty,



proposed a neuro-specialized part of the animal’s brain that analyzes these tapping patterns,
thereby characterizing “real” seismic signals. Thus, to Francescoli, the problem has not yet
been completely solved.

Adding information to what Francescoli said, many questions remain on how the
substrate interferes with seismic signals. Seismic communication may have evolved to
communicate to predators (Shelley and Blumstein, 2005). This signal modality is present
in more than 320 species, distributed among nine major orders that use substrate-borne
vibrations as an information source (Hill, 2008, 2009). Cocroft and Rodriguez (2005)
estimated that over 195,000 taxa use vibrational signals alone or in combination with other
mechanical signaling methods among insect species. There is some information about
environmental interference in signaling transmission (Francescoli, 2017; Gordon & Uetz,
2012; Hill, 2008; see O’Connell-Rodwell, 2007 review), but the physical properties of
seismic signaling are still poorly understood. As such, we return to the first point discussed

here: Bioacoustics as an interdisciplinary research area.

The communication system of the tuco-tuco transmitting and identifying

information

Francescoli says tuco-tucos may transmit information (age, sex) through vocal
signals, and the recipients can identify it. Studying the Ctenomys pearsoni species, he found
that female’s long-range vocalizations (not all female tuco-tucos use long-range
vocalizations) varied throughout the year. They are very short-range during the non-
reproductive season, at the end of the reproductive season when they may be pregnant, and
longer at the beginning of the reproductive season when females are “advertising” their
condition. Males, on the other hand, vocalize long-distance calls all year long. Since males
usually approach females by excavating a communication tunnel between their burrows
(and do it apparently without significant errors in locating the female tunnels), avoiding
high energy expenditure, Francescoli and colleagues postulate that long-range
vocalizations make it possible to locate emitters in space inside the population. The length
of the emission (and perhaps the repetition rate) may reveal the sex and reproductive
condition of the emitter. These hypotheses are based on direct observation and radio-
tracking of individuals in a population of more than 30 tuco-tucos during a two-year study.
However, no playback experiments were conducted in the field to test them. Some of his
yet unpublished results from laboratory tests show that females of different ages (estimated
by their weight) reacted differently to the broadcast of male vocalizations during the

reproductive period. The younger ones approach the sound source, and older ones display



ambiguous responses, depending on their reproductive condition. Still, all these captured
females were probably older, more experienced individuals than their younger counterparts
in their first reproductive period.

If we look at their auditory structures, their malleus in the middle ear is not enlarged
and dense as far as we know. This anatomical specialization may be adapted to perceive
substrate vibrations like in the golden mole. Enhanced low-frequency reception seems to
work through different tympanic bulla inflation levels and internal partitioning. For more
information on the topic, see Francescoli et al. (2012), where the subject is studied and
discussed for many species of tuco-tucos belonging to almost all the genus distribution in
South America.

In conclusion, there are many issues still waiting to be investigated on animal
communication systems. | want to highlight that, specifically on rodent acoustic
communication, Professor Francescoli wrote a review of the last three decades of
subterranean acoustic communication, discussing some aspects of the tuco-tuco
communication system (Schleich & Francescoli, 2018). This review is part of Rodent
Bioacoustics (2018), covering several aspects of rodent communication systems. For
example, different acoustic signals were observed between tuco-tuco males and females;
females exhibited their signals (type C signals) in sexual encounters with Ctenomys
pearsoni (Francescoli, 1999) and C. talarum (Schleich & Busch, 2002), which could be
considered phenotypic plasticity (Francescoli, 2017). In addition, the naked mole-rat
(Heterocephalus glaber) was recently included among mammals using acoustic
communication to transmit social information about group membership through different
colony dialects (Barker et al., 2021). This discovery shows how rich acoustic

communication in nonhuman animals can be and the different paths taken within this field.
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Chapter 2

Exploring terrestrial mammals’ acoustic
communication as a web process

Patricia Ferreira Monticelli2

Abstract

Social life involves a dynamic network of individuals of the same species interacting
directly and indirectly. An audience that does not affect a dyadic interaction may use the
exchange (not the signal alone) as an information source. Here, | take some examples of
loud calls from the Emmons et al. audiobook of neotropical mammals as well as my own
and explore their effects on a communication network. Beyond the emitter-recipient dyad,
there may be others (third-parties) that can benefit from watching (or hearing) the dyad
performance. Communicating through sound is energetically expensive and may pose a
survival risk. Loud signaling may also benefit the emitter. In Caviinae rodents, for instance,
female whining may attract other males’ attention and challenge their performance, an
opportunity for mate choice when the male offers no direct parental investment. In caviid
societies, female whining is enough to promote mate choice, and broader home range
females, such as the jaguar, must use loud calls to reach very distant mates.

Keywords: Animal behavior, Bioacoustics, crying, loud-call, web communication, whine.

In 2005, four years after the XXVII International Ethological Conference
(TUbingen, Germany), a book edited by Peter McGregor containing articles by prominent
authors in bioacoustics was published. Animal Communication Networks (ACN) resulted
from the communication network symposium held at the annual event. Like previous books
on animal communication, it described signaling as “one of the most conspicuous
behaviors” in communication interactions, with consequences for reproduction and
survival (McGregor, 2005, Introduction, p. 1). Unlike the others, however, the ACN book
breaks with the traditional (or didactical) dyadic characterization of communication
involving information transmission between an emitter and a recipient (Hauser, 1998).
McGregor (2005) describes communication as “inherently social behavior,” and should

therefore be considered under a species’ social life issues.
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Social life involves a dynamic network of individuals of the same species
interacting directly or indirectly. An audience that does not affect a dyadic interaction may
use the interaction (not the signal alone) as a source of cues or information. Using
information for self-convenience (the operational level of selective forces in natural
selection) constitutes eavesdropping behavior (McGregor, 1993). Eavesdropping here does
not include the illegitimate receiver (Otte, 1974) or the signal interceptor (e.g., a bat
locating an anuran by its advertisement call; Ryan, 1988).

In social eavesdropping (Peake, 2005; or merely eavesdropping, as proposed by
Searcy & Nowicki, 2005), a third-party benefits from monitoring other members of the
species, memorizing the participants’ identities and performance, and making decisions
accordingly (McGregor, 2005; Searcy & Nowicki, 2005). Passerines exhibit a wide range
of eavesdropping behaviors, observed in nature or experimental paradigms (McGregor,
2005). For instance, a third-party male that has observed two other males interacting in a
cage will be more likely to challenge the “loser” than the “winner” in later opportunities.
In nature, a third-party receiver would benefit from invading the territory of the less

aggressive singing male instead of one of its more aggressive neighbors (McGregor, 2005).
Loud calling in mammals from the audience perspective

Mammalian species communicate through acoustic signals that can travel long
distances, expanding the concept of an audience. Whether in more local, territorial species
or those in which individuals are dispersed over broad areas, in the so-called “fluid social
system” (McComb & Reby, 2005), whenever an individual emits a loud call, any
conspecific in the broadcast area is a potential receiver. Even softer calls can reach traveling
individuals (third parties). For instance, if a maned-wolf reproductive couple calls each
other after hunting in different territories (Kleiman, 1972; Dietz, 1984), what effect would
it have on a third party that was just passing by, whether male or female? It could be
advantageous for all of them, supposing that the third party is not looking for hunting
territory or a sexual partner (Dietz, 1984). A young animal that might be injured if caught
in a defended territory would also benefit by leaving silently. The couple's investment in
producing the loud call would not negatively affect them, as observed by McComb and
Reby when studying lions, elephants, and cervids (McComb & Reby, 2005). What if the
traveling individual is a healthy male seeking hunting territory? The acoustic structure of
the loud "extended-bark™ (Dietz, 1984) of the resident male could inform the silent
approaching male about its ability to defend its territory, benefiting the third-party male,

and perhaps the resident male if it was advertising itself (using the communication network



to its advantage). This would characterize a "social eavesdropping” episode, as defined by
McGregor (1993), with consequences for the individuals' reproductive success. If we
ignore the fact that social eavesdropping behavior is a potential selective force over signal
design and use, we may not formulate a robust hypothesis about signal evolution (Cheney
& Seyfarth, 1999). Thus, | will start by presenting the data collected on my research
interest, namely terrestrial neotropical mammals. Which of their calls should be analyzed
from the audience's perspective?

Louise Emmons and colleagues compiled a sound library to serve as a field guide
to rainforest mammals in association with Conservation International and published by the
Cornell Laboratory of Ornithology (Emmons et al., 1997). They divided the collection of
mammal calls into six broad categories, according to the recording context and the
observed reactions, as follows: (1) disturbance or alarm calls that are usually sequences of
snorts, barks, and chucks (or the seismic signal of foot-stomping), ranging from less intense
to very loud calls; (2) loud or long calls, harsh species-specific roars, whistles or screams,
are found in almost all 54 neotropical primates in their audio guide, and many of the non-
primate species (foxes, dogs, raccoons, cats, tapirs, and spiny rats). The authors suggest
that some of these were equivalent to bird songs, used in territorial defense (e.g., in spacing
groups or individuals in natural areas; such as in howler monkeys, Kitchen et al., 2015) and
reproduction (e.g., promoting contact between sexual partners such as in the Puma
concolor, Potter, 2002, and the maned-wolf, Chrysocyon brachyurus, Brady, 1981). This
includes species-specific medium-to-short-distance courtship calls, which are rarely
observed in mammals (Magrini & Monticelli, 2012). (3) Defensive/aggressive or threat
calls include non-vocal sounds, such as tooth grinding or rattling and growling or hissing-
like signals. These may function to repel or intimidate a threatener and, unlike species-
specific loud calls, are shared by very distant taxa, such as small birds and canids (Emmons
et al., 1997). (4) Distress calls (agony cries) are soft or loud cries or screams uttered in
extremely dangerous situations, such as when being caught by a predator or handled by a
human, or after being injured in a dispute with a conspecific. (5) The social calls category
is diverse and may be associated with mood (Eisenberg, 1974). It consists of variable
squeals, whines, or grunts uttered during minor conflict interactions before injuries occur,
during food or other resource disputes or close social contact (e.g., naso-anal contact
between caviomorph rodents, Eisenberg, 1974; Barros et al., 2011; Verzola-Olivio &
Monticelli, 2017; Alencar-Jr & Monticelli, no prelo; in Carnivora such as giant otters,
tapirs, raccoons, among many others; Emmons et al., 1997; Gasco, Ferro & Monticelli,
2019; and the canids studied by Brady, 1981). Finally, (6) the isolation call is a medium-



intensity peep-like sequence of notes uttered by infants separated from their mother or in
danger (e.g., in Caviidae: domestic and wild cavies, Monticelli et al., 2004; capybaras,
Barros et al., 2011; and pacas, Lima et al., 2018; and in many primates and non-primate
species, Emmons et al., 1997).

Under this proposed classification, mammals communicate at longer distances
when disturbed or warned, separated from others (an infant from its mother, a mother from
its infant, reproductive pairs from each other, or members from the rest of the group) or in
danger. Some of these calls are presented in Figures 2.1 and 2.2, extracted from the
Emmons et al. field guide and EBAC sound library collection (FOCA)3.

Note the similarity in the acoustic structure of loud calls used in corresponding
situations (Figure 2.1), comparing the calls produced by isolated infants of different species
(first line in the figure) and the disturbance/alarm calls on the second line. There may be a
difference between the communication function of infants calling their mother and
conspecifics warning others about a detected risk, which may be reflected in the type of
signal. In both cases, predators or competing individuals may constitute the third parties
that also exert selective pressure on signaling behavior. A social eavesdropper would
benefit by perceiving its species’ alarm call. With respect to infant cries, the third-party
may ignore the attack (in the case of an infanticide male with access to females when killing
her young), or act in its indirect reproductive success (supposing genetic partnership and
the possibility of helping the infant).

Terrestrial mammals uttered the loud infant calls presented in Figure 2.1, all
inhabiting the Atlantic Forest biome. These calls cover a large frequency band and are
composed of high-pitched units that are not exactly the same (notes that are not stereotyped
may reflect internal state variations, Eisenberg, 1974). On the other hand, long-distance
alarm calls occupy a narrower frequency band and are formed by rapidly repeated lower-
pitched notes of the same structure. The difference in structure can be explained in terms
of sound transmission and the utility of the calls: a lost infant needs to be located, while an
individual that shouts danger would have to be hidden. In terms of sound transmission, at
ground level (the calling location of a terrestrial mammal) in tropical forest habitats, sound
attenuation is lower between 500 and 2,000 Hz (Marten et al., 1977). This means that to
travel over longer distances with minimum attenuation, the sound should concentrate
energy in this small frequency band, as seen in the alarm calls represented on the second

line of Figure 2.1.

3 Fonoteca César Ades (FOCA).



Some infant calls may also follow this rule, but they may get lost closer to their
mother. Thus, for binaural location, wider-band spectra may favor sound location, since
they contain a larger number of frequencies for comparison purposes than narrower-band
sounds (Marler, 1955; Vencl, 1977). In summary, there are two distinct form-and-function
models for loud communication without visual contact, one favoring locality, and the other
based on nonlocality (Marler, 1967). A lost infant calling for its mother needs to be found
quickly, and an “easy-to-locate signal” would help the mother. But how to avoid infanticide
by males and predators finding the infant first? This may be regulated by calling duration
and infant behavior. In wild cavies (“wild guinea-pigs”), isolated infants utter a short
sequence of whistles looking for the mother while remaining undercover in captivity.
Seconds later, it would find its mother or repeat the series one more time before staying
silent (Monticelli & Ades, 2013). If the infant is isolated in a cage, following an
experimental paradigm to obtain long sequences of whistles from guinea-pig infants, the
wild infant will stay silent. I interpret this as a hierarchical motivational process (Monticelli
etal., 2004; Corat et al., 2012). To freeze would be more urgent than looking for the mother
in this open arena.

Another noteworthy detail in Figure 2.1 is related to the moco6, a caviomorph rodent,
like capybaras and cavies, that inhabits a diverse environment. It is endemic to the
Caatinga, the open, hot and dry Brazilian biome. Even in such different habitats, one can
find a suggestive convergence in signal structure in the long-distance alarm calls. The
evolution of signals has long been addressed by Peter Marler and Eugene Morton and
recently reviewed in Magrath et al. (2020). The similarity in alarm call structure creates
opportunities for heterospecific recognition and self-centered response (e.g., marmosets

and birds: Vencl, 1977; among birds, reciprocally: Magrath et al., 2007).
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Figure 2.1. Loud calls of disturbed or warned terrestrial mammals: infants separated from the mother (above) and alarmed or disturbed
individuals. Note the similarity in their structure: a wide frequency band of high-pitched units in infant isolation calls, and narrower in
frequency band and pitch, and composed of rapidly repeated stereotyped short units. Records used in the spectrograms were obtained from Emmons

et al. audiobook (1997): Tapirus terrestris, Herpailurus yaguarondi, Speothos venaticus juvenile and Potos flavus; and FOCA: Cavia aperea, Hydrochaeris
hydrochoerus, and Kerodon rupestris. All images were prepared in Raven 1.5 Hann window using 1024 FFT and overlap 90.
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Another category of loud calls uttered by neotropical terrestrial mammals are those
used in reproductive contexts: signaling estrous and reuniting sexual partners (Figure 2.2).
These may be the loudest or longest-distance calls in non-primate terrestrial mammals.
Notes are longer, more chaotic, and concentrate energy over a thin band in the lower
frequencies. They are used by top predators that may pay lower trade-offs for being heard
by predators other than human beings. Playback jaguar calls can be made by an aluminum
instrument prepared by hunters to attract males.

Nevertheless, our interest here is the benefit of a third party in other conspecific
signal exchange interactions. Almost any male jaguar or puma hearing a female of their
species calling may achieve mating if they are the first to arrive, but what happens if they
are not? Would they benefit from noting the presence of another male? They could use this
information to remain quiet, avoid injury, and wait for a distraction of the first male, or, if
they know they are larger, force the female to mate. What if the third party is a female
jaguar or puma? Could they benefit from hearing other females' interactions with males? |
have no answer to these questions, and am not sure if anyone has. But we may be able to
determine these and other species' communicative and cognitive abilities by studying their

reactions as an eavesdropping phenomenon in a communication web.
The crying guinea-pig

Female guinea pigs emit a low whistle and whining sound when approached by a
male and when interacting with other females (Berryman, 1976; Figure 2.3). Taken
together, it sounds like a cry. Males also cry during moderate arousal levels when
interacting with a larger or dominant male (Berryman, 1976; Coulon, 1982), and infants
emit high-pitched cries and whistles when alone (Arvola, 1974; Berryman, 1976).
According to Berryman’s observations, receptive females would also squeal (a series of
higher-pitched notes, with variably modulated frequency) while whining during courtship.

A complete description of the guinea-pig’s acoustic repertoire was provided by
John Arvola (1974) and Julia Berryman (1976) before the digital recording and analysis of
sounds. My students and | extended these descriptions to other caviid rodent species and
adopted the existing technology, which is significantly more advanced than in the 1970s.
A mix of subsounds and whines are uttered almost continuously by guinea-pigs in social
conditions and they are silent only while resting (Berryman, 1976).

The guinea-pig Cavia porcellus is a domestic form of the wild Andean cavy (Cavia

tschudii) (Spotorno et al., 2004). In Brazil, other wild cavy species are present, including



C. magna, C. intermedia, and C. aperea, all of which we have recorded. Despite being
more economical in sound production, the communicative behavior of wild species is
similar to that of C. porcellus in social conditions. When in groups, wild cavies will also
approach each other after resting or arriving from another location, using subsounds and
whines (Figure 2.3). Domestication exaggerated sound production (Monticelli & Ades,
2011, 2013), but subsounds and cries seem to be ancestral traits in Cavia taxa, and are
shared among the four species we studied. They may be even more ancestral: the mocd
Kerodon rupestris (subfamily Hydrochaerinae), sister of Caviinae, also cries in similar
contexts (Figure 2.3). The role of female whining-squealing, or merely crying during
courtship in Caviidae remains unknown.

The web communication approach provided me with insights. Consider a group of
guinea-pigs kept in 30m? (Jacobs, 1976) or 12m? (Verzola-Olivio, 2016) outdoor
enclosures. After a few days together, the mixed group of males and females will become
structured in hierarchical dominance ranks (not precisely linear, Jacobs, 1976; Verzola-
Olivio, 2016), divided into affinity clusters consisting of male-female or female-female
dyads (Verzola-Olivio, 2016). Higher-ranking males monitor females within their cluster,
safeguarding against the approach of other males, and establish stronger associations with
one “preferred female” (Jacobs, 1976). The female-defense-polygyny may occur via male
courtship behavior throughout the year, independently of estrous and the male’s ability to
repel other males. Jacob’s naturalistic study showed nuances in group behavior: at the end
of pregnancy, the associating males court their cluster females more than any other males,
even when he was not the “group’s normal alpha male”; on the day the male’s cluster
female gives birth, which coincides with postpartum estrus, in 10 out of 18 episodes, non-
alphas rose in ranking order when compared to their modal daily rank during pregnancy.
Male-female associations usually endure through successive pregnancies (an association
pair lasted more than 13 months); nevertheless, male replacements occurred most
commonly during female estrous, after severe fighting between the original association
male and the challenger. Half of the eight supposed replacements involved multiparous
females, two occurred during the female’s first pregnancy, and the other two between
pregnancies. None of these interactions took place in silence. Males purred while
displaying a varied courtship repertoire of circling, rumbling, moving their feet up and
down from the substrate, pursuing and pressing the female’s back with their chin, and so
on (Rood, 1972). The female being courted moves, urinates, turns her body around to face

the male, and eventually stops, allowing him to mount and displaying lordosis, while



vocalizing intermittently, stopping when he moves away, to chase other males, for instance.
When he chases her or tries to mount her, the cries become modulated in frequency and
intensity. The female cries aloud, stops and permits mounting, and then faces and hits the
male before moving on again and being followed by him. The same behavior is seen in the
wild species.

This is an opportunity for mate choice. The cry can be heard by other males, even
in free-living populations. It is clearly associated with the male courtship call (purr) in
domestic and wild species (Monticelli & Ades, 2011); female cries usually overlap with
the purr in our recordings. In the Laboratory, cry emission affects the other males in the
same cage or room; they will all move frenetically, purring, growling, or squealing, and
some will risk approaching the defended female in the outdoor enclosures (Rood, 1972;
Jacobs, 1976; Verzola-Olivio, 2016). The concurrent males may teeth-chatter and display
agonist activities against each other, such as growling.

According to Jacobs, the association with a male is not permanent. The male may
be replaced by another, due to apparent female disinterest (immediate or later) and
increased interest in the second male. The author observed differences in male courtship
repertoire according to its affinity with the female. During their courtship display,
association males exhibit circling, rumping, and swaying. This suggests that this enriched
display plays a role in mate choice and male competition. Thus, I presume that females’
relatively loud calls are a form of eavesdropping on cavy males. A set of experiments could
be conducted to test for the presence of eavesdropping and the performance of non-
association males (satellite or subordinate males, according to Asher et al., 2008), in line
with McGregor's (2005) paradigms. How does female choice correlate with the distinct

qualities of crying?
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Figure 2.3. The caviid rodent cry consists of low whistles, whines and squeals that sound like a cry. At the top of the figure is an edited
sequence of subsounds, low-whistles and whines ending with squeals (the last four notes) uttered by Kerodon rupestris, popularly known as
mocO. At the bottom, whines naturally change to higher-pitched screams and squeals, changing again to a sequence of whines, produced by a
guinea-pig (C. porcellus) when a human scratched its back; and two sequences of whines and squeals uttered by a free-living wild cavy (Cavia
intermedia) female during social foraging.




While | aimed to explore the web communication theory applied to the
neotropical species of terrestrial mammals, the search does not end here. The ACN
book inspires us to investigate further. It considers that intermediate recipients may
also transfer (retransmit) information they acquire to others; the third-party would
acquire self-use and transmit data to third connections in the network. The next steps
are to obtain evidence to support or challenge the web communication theory, in line
with Peter McGregor's suggestion, extending to the contribution of McComb and Reby

(2005) to Old World terrestrial mammal species.
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Peer commentary

By Gabriel Francescoli

In her lecture, Patricia Monticelli presented the web communication approach
to bioacoustics using terrestrial Neotropical mammals as a model. She shared her
research and perspectives based on McGregor's book about web Communication. In
her opinion, the book promoted the use of the network approach. Animals use the
information they obtain from a vocal interaction, not for the signal alone, but for their
benefit, since it generates long-lasting fame for the participants (the traditional emitter
and recipient of a communication interaction).

Considering the possibility of eavesdropping on animal communication, she
starts with the advantages for an eavesdropper. If an animal hears others vocally
competing for food, it receives two important pieces of information: food is available
and the mood and size conditions of the competitors. Based on its own experiences in
previous disputes, it can judge if it will steal the items. It is a little more interesting to
think about the adaptive consequences for the emitter. If someone can hear me
interacting with a recipient, and I am aware of this, I may manipulate the signal to
intimidate both competitors. If they can identify me and memorize my performance,
they may avoid competing with me in future situations. | save time and energy. Let us
take the puma and the jaguar (and | suppose this also occurs in cavies and coatis).
Females will probably still call when interacting with a male, as | saw in a video posted
on the internet. If she already has a partner, why is she still calling? It may be a
reproductive strategy to attract another, perhaps better, male (a third party) to the
scene. | can see how this can work from the emitter's perspective; this female, for
instance, gains an advantage when she still communicates while in estrus, even if she
has a sexual partner.

The classical playback experiments may reveal the aspects of the sound that
serve as cues to eavesdropping. We always wonder about the "messages™ in the call.
Individual recognition, sex, mood, and age are aspects that have been found in
mammal calls, which are also informative to eavesdroppers. Based on this information,
they can plan their next move by recalling the result of their performance in previous

experiences with a known individual; they can decide between cooperating or taking



advantage of others, and so on. In summary, individuals in a communication web have
opportunities to evaluate the consequences of their next actions and make better

decisions for themselves.



Chapter 3

Vocal mimicry in parrots

Maria Luisa da Silva & Leiliany Negrdo de Moura*

Abstract

Parrots are attractive, colorful, smart and interactive birds; since they can imitate the
human voice, parrots are frequently trafficked and some species are critically
endangered. How they mimic is still unknown. We offer a number of hypotheses to
explain their ability to mimic human voice and present some of the results of 10 years
of research on the orange-winged Amazon in nature to support our theories.

Keywords. Parrots, Orange-winged Amazon, Vocal learning, Vocal mimicry.

The order Psittaciformes, comprising the families Strigopidae, Nestoridae,
Cacatuidae, Psittacidae, Psittrichasidae and Psittaculidae, which include birds such as
the Amazon parrots, cockatoos, lorikeets, lories, and parakeets (Joseph et al. 2012), is
a very large group of easily recognized birds, generally restricted to the tropics
worldwide. There are 33 species of Amazon parrots in Brazil, called papagaios in
Portuguese. Parrots’ size varies from 27cm (Amazona xanthops) to 40 cm (Amazona
farinosa). The Psittacidae family has the largest number of endangered species (Colar
& Juniper, 1992) and recording groups of these species in one location can give a false
impression of stability, masking populations of endangered species that are not
reproducing (Sick, 1997; Moura et al. 2008; Moura et al. 2010). The monogamous
reproductive system with altricial nestlings (born without plumes, eyes closed and
depending on their parents), that take more than 4 months to emancipate, also
contributes to the threat of these charismatic birds, a situation we observed in the
orange-winged Amazon Amazona amazonica (Moura et al. 2011, 2014). Because they
are attractive, colorful, smart, interactive, and imitate the human voice these birds
make desired pets; they are frequent victims of wildlife trafficking. Their ability to
mimic human voices is not fully understood, but we offer a number of hypotheses to

explain this ability and present some of the results of 10 years of research on the
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orange-winged Amazon in nature to support our theories (Moura et al. 2010, 2011,
2014).

Vocal learning

The conceptual basis of animal acoustic communication is related to the
biological species concept. Each species performs a vocalization that represents the
species-specific song, a way to achieve successful reproduction and bear offspring
with high quality genes (Silva & Vielliard, 2010). The vocal learning model has been
extensively studied in Oscines (Kroodsma & Miller 1996, Marler 2004, Todt 2004).
As in human beings, vocal learning depends on hearing, and the process of birdsong
learning is considered to be mediated by the memorization and vocal coordination
skill. This implies the precise movement of both sides of the internal tympaniformis
membrane of the syrinx, the unique avian vocal organ, and the resulting response from
the sensorimotor process. Song learners exhibit functional songs only in the presence
of a model (Vielliard 2004; Silva & Vielliard, 2010). The syrinx provides the potential
ability to produce sounds independent of resonance, without the physical limitations
related to body size expected in other vertebrates that use vocal cords (Silva &
Vielliard op cit.). Sound utterance in birds corresponds to low-cost metabolic energy
that has been demonstrated in distress calls, the most costly (Jurisevic et al. 1999,
Vielliard, 2000). We recorded a small 9-grams manakin (Machaeropterus regulus)
uttering an 800 Hz song, a frequency too low for a small larynx and tiny body,
considering other similar vertebrates (Silva et al. 2001).

Songbirds, parrots and hummingbirds have evolved vocal learning and
associated brain structures independently. In mammals, cetaceans, bats and primates
also achieved vocal learning (Jarvis et al., 2000; Silva & Vielliard, 2010). The study
of vocal learning has advanced in recent years with research on the neurophysiological
bases that underlie this communication strategy in birds. Investigations on vocal
behavior in neotropical birds have shown that complex and unpredictable songs can
be produced even by hummingbirds, scarcely investigated in terms of sound
communication (Jarvis et al. 2000; Silva & Vielliard 2006).

A molecule identified as forkhead box P2 - FOXP2, which is related to the
motor-control mechanism through the auditory response of vocal communication in
humans, was studied in a vocal learner bird, the zebra finch (Taeniopygia guttata)
(Teramitsu & White 2006). When adult males sing alone, FOXP2 mRNA is strongly



inhibited in area X of the brain nuclei related to the song process, but this does not
occur when females are nearby. Authors have concluded that FOXP2 plays an
important role in vocal control and depends on social context. Both behavioral and
neurobiological studies reveal the importance of social contact in the ontogenesis of
sound learning, at different levels of exposure to various contexts in periods

determined by specific features.
Vocal mimicry

The ability to mimic artificial or human sounds or other species’ songs has
been recorded in a number of bird species. Interspecific vocal mimicry is common
among birds, and earlier studies have suggested that 15-20% of passerine species
mimic to some degree (Marshall, 1950; Hindmarsh, 1984); however, this is almost
certainly an underestimate, since sonographic analysis may reveal unsuspected
mimics. Examples are the mockingbird (Marshall, 1950), Drongo Dicrurus paradiseus
(Goodale & Kotagama, 2006), Menuridae, Ptilonorhynchidae and Atrichornithidae
(Lyrebirds, Satin bowerbird, and Scrub-birds), Starling Sturnus vulgaris (Hindmarsh,
1984) and rare recordings of the grey parrot in the wild (Cruickshank et al.,1993) or
other Psittaciformes, such as the budgerigar Melopsittacus undulatus, whose contact
call imitation in adults likely contributes to pair bond formation and maintenance (Hile
et al. 2000). Neotropical regions harbor some species of the genera Sporophila (S.
violacea and S. laniirostris), which imitate alarm calls from other species inhabiting
surrounding areas and mimic sounds with reduced significance for the model (Morton,
1976).

The drongo’s behavior demonstrates that alarm-associated calls may have
learned components, and that birds can learn the appropriate usage of calls that encode
different types of information. Like humans, they have also developed the rare trait of
vocal learning, that is, the ability to acquire vocalizations through imitation rather than
by instinct. Mimicry is normally suppressed by the need for specific identification, but
may emerge as a displacement activity, where a species is exposed to predation or
disturbance as a result of the need to make a loud and continuous noise that can be
expressed in song if it is biologically advantageous (Goodale & Kotagama, 2006).

However, the species-specific code must be maintained. Songs mediated by
vocal learning are identified by variations in populations (dialects) or individuals, to

allow recognition at the same levels. The species-specific code can be placed in any



parameter of the song, and imitating strangers in a temporal structure may be a code
for specific recognition. This is what must have occurred with the well-known polyglot
thrush (Turdus lawrencei) from the southwestern Amazon: its song consists
exclusively of imitations, but still provokes a specific territorial defense reaction to its
playback. In addition to not being clear where the specific recognition code is located,
because there is no single sound element of its own, its ability to memorize imitations
Is astounding. The 15-minute song performed by a songbird in Acre, Brazil, contained
reliable imitations of the complete and complex songs of 52 different species, some

not vocalizing at that time of the year (Vielliard, 2004).
Amazon Parrots

Our field work observations of orange-winged Amazon Amazona amazonica
behavior show that this species is highly social; we even observed flocks of parrots
having “conversations”. We studied the population of Parrot Island (Ilha dos
Papagaios), a roosting site for A. amazonica, a common species in the region. It is
located in Guajara Bay, south of Belém, Brazil (01°31° 37°” S, 48° 30” 22°° W), and
covers an area of 7.4 ha. The number of parrots increased from April/2004 (3,899) to
July/2004 (8,539), and began to decline in August/2004 (5,351). This decrease was
presumably due to the onset of the breeding season, when paired individuals leave the
roost in search of a nest, where they breed and rear young until the nestlings can fly
(Moura et al. 2008; 2010).

We have studied the complex communication of A. amazonica, and identified
a repertoire of nine different vocalizations, such as maintaining pair and group contact
(two types of calls), predation risk (three types of alarm call) and agonistic situations
(Moura et al., 2011). Certain calls are used in specific behavioral contexts and can
elicit appropriate answers. The species exhibits a complex vocal repertoire during
breeding, suggesting the importance of these signals for its survival. The social
organization and prolonged ontogenetic development of this parrot may explain these
sophisticated acoustic communication systems. We also described population dialects,
recorded in 8 to 10 individuals per population in Camaréa (llha do Marajd), Magalhées
Barata, Moju, Salindpolis, Santa Barbara and Tailandia do Para, all Para state
municipalities, as well as Palmas in Tocantins state, Brazil. The distances between the
areas are not proportional to the connection distance obtained in cluster analysis. We

concluded that the sound parameters vary independently of distance, and that species-



specific recognition parameters are maintained despite the significant variation within
and between populations. Our findings on vocalizations of the present species confirm
the existence of vocal learning and population cultural transmission. We also observed
gestural communication, related to parental care, when the species was near the nest.
Despite A. amazonica displays a sophisticated vocal repertoire, their behavioral
gestures may represent a survival strategy, and clever defense of the nest, reducing the
risk of attracting the attention of predators (Moura et al. 2014). We recorded and
observed the breeding, vocal and gestural behavior of this species for over ten years
without recording or hearing any imitation of strange sounds or those of other species.

How can we explain parrot speakers? Irene Pepperberg studied a special case,
perhaps the smartest parrot in the world, the grey Psittacus erithacus by the name of
Alex. This parrot species is known for its intelligence and vocal mimicry ability. Alex
could perform various cognitive tasks and spoke English at a level comparable to a
very young child (Pepperberg 1999, 2002). Although the Psittacinae brain is organized
very differently from that of mammals, studies of avian cognition have produced
surprising results. Some parrot species speak more than others, which may be related
to the nature of their own species-specific song, usually contact calls. Amazona aestiva
can repeat more understandable words and music than Amazona amazonica, for
example (Vielliard, 1994 and personal communications). Based on our personal
experiences and the studies and references presented here, we can surmise why parrots
speak to their human companions in captivity but rarely mimic other bird species in
the wild. We personally observed how important social contact is for Psittaciformes
species. They are gregarious and live in crowded roosting sites, exchanging important
information about foraging and how to avoid predators. When a person raises a parrot
at home, it is typically a young bird; otherwise, there is significant likelihood that the
specimen will die. The bird then starts to establish an interaction by mimicking words,
which may raise its chances of survival. This hypothesis is speculative and further

studies with other parrot species in the wild and in captivity may provide an answer.

Acknowledgments

We thank Jacques Vielliard (in memoriam) for his invaluable assistance and all
our current and former students. We also thank the Federal University of Para, CNPq,

Boticario Foundation for the Protection of Nature and CAPES for funding this project.



References

Colar, N. J. & Juniper, A. T. (1992). Dimensions and causes of the Parrot conservation
crisis. In: S. R. Beissinger & N. F. R. Snyder (eds.). New world parrots in crisis
(pp. 1-24). Washington: Smithsonian Institution Press.

Cruickshank, A. J., Gautier, J. & Chappuis, C. (1993). Vocal mimicry in wild African
Grey Parrots Psittacus erithacus. Ibis, 135(3), 293-299.
https://doi.org/10.1111/j.1474-919X.1993.tb02846.x

Goodale E. & Kotagama S. W. (2006). Context-dependent vocal mimicry in a
passerine bird. Proceedings of the Royal Society B: Biological Sciences, 27
3875-880. http://doi.org/10.1098/rspb.2005.3392

Hile, A. G., Plummer, T. K., & Striedter, G. F. (2000). Male vocal imitation produces
call convergence during pair bonding in budgerigars, Melopsittacus undulatus.
Animal Behaviour, 59(6), 1209-1218. https://doi.org/10.1006/anbe.1999.1438

Hindmarsh, A.M. (1984). Vocal Mimicry in Starlings. Behaviour, 90(4), 302-324.
https://doi.org/10.1163/156853984X00182

Jarvis, E. D., Ribeiro, S., Silva, M. L., Ventura, D., Vielliard, J., & Mello, C. V. (2000).
Behaviourally driven gene expression reveals song nuclei in hummingbird brain.
Nature, 406, 628-32. https://doi.org/10.1038/35020570

Jarvis, E. D. & Mello, C. V. (2000). Molecular mapping of brain areas involved in
parrot vocal communication. Journal of Comparative Neurology, 419(1), 1-31.
10.1002/(SIC1)1096-9861(20000327)419:1<1::AID-CNE1>3.0.CO;2-M

Joseph, L, Toon, A., Schirtzinger,E. Wright, T. Schodde, R. (2012). A revised
nomenclature and classification for family-group taxa of parrots
(Psittaciformes). Zootaxa, 3205, 26-40.
http://dx.doi.org/10.11646/zootaxa.3205.1.2

Jurisevic, M., Sanderson, K. & Baudinete, R. (1999). Metabolic Rates Associated with
Distress and Begging Calls in Birds. Physiological and Biochemical Zoology,
72(1), 38-43. https://doi.org/10.1086/316636

Kroodsma, D. E. & Miller, E. H. (1996). Acoustic communication in birds. New York:
Academic Press.

Marler, P. (2004). Innateness and the instinct to learn. Anais da Academia Brasileira
de Ciéncias, 76(2), 189-200. https://doi.org/10.1590/S0001-
37652004000200002

Marshall, A.J. (1950). The function of Vocal Mimicry in Birds, Emu-—Austral.
Ornithology, 50(1), 5-16. https://doi.org/10.1071/MU950005

Morton, E. (1976). Vocal Mimicry in the Thick-Billed Euphonia. The Wilson Bulletin,
88(3), 485-487.

Moura, L. N.; Vielliard, J.; Silva, M. L. (2008). Flutuacdo populacional e
comportamento reprodutivo do Papagaio-do-mangue Amazona amazonica (pp.
223-238). In Jaime Martinez & Némora P. Prestes (Ed.): Biologia da
Conservacdo: estudo de caso com o Papagaio-chardo e outros papagaios
brasileiros. Passo Fundo: UPF Editora.


https://doi.org/10.1111/j.1474-919X.1993.tb02846.x
https://royalsocietypublishing.org/journal/rspb
http://doi.org/10.1098/rspb.2005.3392
http://doi.org/10.1098/rspb.2005.3392
https://doi.org/10.1006/anbe.1999.1438
https://doi.org/10.1163/156853984X00182
https://doi.org/10.1038/35020570
http://dx.doi.org/10.1002/(SICI)1096-9861(20000327)419:1%3C1::AID-CNE1%3E3.0.CO;2-M
http://dx.doi.org/10.11646/zootaxa.3205.1.2
https://doi.org/10.1086/316636
https://doi.org/10.1590/S0001-37652004000200002
https://doi.org/10.1590/S0001-37652004000200002
https://doi.org/10.1071/MU950005

Moura, L. N.; Vielliard, J.; Silva, M. L. (2010). Seasonal fluctuation of the Orange-
Winged Amazon at a roosting site in Amazonia. The Wilson Journal of
Ornithology, 122(1), 88 - 94. https://doi.org/10.1676/09-013.1

Moura, L. N., Silva, M. L., Vielliard, J.M.E. (2011). Vocal repertoire of wild breeding
Orange-winged Parrot Amazona amazonica in Amazonia. Bioacoustics, 20,
331-340._https://doi.org/10.1080/09524622.2011.9753655

Moura, L. N., Silva, M. L., Garotti, M. F., Rodrigues, A. L. F., Santos, A. C. Ribeiro,
I.F. (2014). Gestural communication in a new world parrot. Behavioural
Processes 105 (2014) 46-48. https://doi.org/10.1016/j.beproc.2014.03.003

Pepperberg, I. M. (1999). The Alex studies. Cambridge, MA: Harvard University Press.

Pepperberg, 1. M. (2002). Cognitive and communicative abilities of grey parrots.
Current Directions in Psychological Science, 11(3), 83-87.

Sick, H. (1997). Ornitologia brasileira [Brazilian ornithology] (2nd. ed.). Rio de
Janeiro: Nova Fronteira.

Silva, M. L., Baudet, G., Sigrist, T. & Vielliard, J. (2001). — Descricdo do
comportamento de corte do Dancarino-de-coroa-vermelha, Machaeropterus
regulus (Aves, Pipridae). Bol. Mus. Biol. Mello Leitdo (N.Sér.) 11/12: 171-188.

Silva, M. L.; Vielliard, J. A. (2006). Entropy calculations for measuring bird song
diversity: the case of the white-vented violet-ear (Colibri serrirostris) (Aves,
Trochilidae). Razprave IV. razreda SAZU, XLVII-3.

Silva, M. L.; Vielliard, J. A. (2010). A aprendizagem vocal em aves: evidéncias
comportamentais e neurobioldgicas (pp. 177-197). In Alda Loureiro Henriques,
Grauben José Alves de Assis, Regina Célia Souza Brito & William Lee Berdel
Martin (Eds.) Estudos do Comportamento Il. Belém: Editora da UFPA..

Teramitsu, I. & White, S. A. (2006). FoxP2 Regulation during undirected singing in
adult songbirds. Journal of Neuroscience, 26(28), 7390-7394.
https://doi.org/10.1523/JNEUROSCI.1662-06.2006

Todt, D. (2004). From birdsong to speech: a plea for comparative approaches. Anais
da Academia Brasileira de Ciéncias, 76(2), 201-208.
https://doi.org/10.1590/S0001-37652004000200003

Vielliard, J. (2004). A diversidade de sinais e sistemas de comunicacao sonora na fauna
brasileira. I Seminario Musica Ciéncia Tecnologia: Aculstica musical. USP, Séo
Paulo.

Vielliard, J. (2000). Bird community as an indicator of biodiversity: results from
quantitative surveys in Brazil. Anais da Academia Brasileira de Ciéncias, 72(3).
https://doi.org/10.1590/S0001-37652000000300006

Vielliard, J. (1994). Bioacoustics and phylogeny among Amazona Parrots. The
Ornithological Notebook of the International Ornithological Congress. P634.
Hofburg, Vienna. August 20-25.



https://doi.org/10.1676/09-013.1
https://doi.org/10.1080/09524622.2011.9753655
https://doi.org/10.1016/j.beproc.2014.03.003
https://www.amazon.com.br/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Alda+Loureiro+Henriques&text=Alda+Loureiro+Henriques&sort=relevancerank&search-alias=stripbooks
https://www.amazon.com.br/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Grauben+Jos%C3%A9+Alves+de+Assis&text=Grauben+Jos%C3%A9+Alves+de+Assis&sort=relevancerank&search-alias=stripbooks
https://www.amazon.com.br/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Regina+C%C3%A9lia+Souza+Brito&text=Regina+C%C3%A9lia+Souza+Brito&sort=relevancerank&search-alias=stripbooks
https://www.amazon.com.br/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Regina+C%C3%A9lia+Souza+Brito&text=Regina+C%C3%A9lia+Souza+Brito&sort=relevancerank&search-alias=stripbooks
https://www.amazon.com.br/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=William+Lee+Berdel+Martin&text=William+Lee+Berdel+Martin&sort=relevancerank&search-alias=stripbooks
https://www.amazon.com.br/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=William+Lee+Berdel+Martin&text=William+Lee+Berdel+Martin&sort=relevancerank&search-alias=stripbooks
https://doi.org/10.1523/JNEUROSCI.1662-06.2006
https://doi.org/10.1590/S0001-37652004000200003
https://doi.org/10.1590/S0001-37652000000300006

Peer Commentary

By Patricia Ferreira Monticelli and Aline D. Carneiro Gasco

| had the satisfaction of chairing a session of my good friend Maria Luisa da
Silva - “Malu” - on the phenomenon of voice mimicry by parrots and commenting
about this with Aline’s hand and heart. Maria Luisa da Silva (Silva; hereafter) is an
Associate Professor at the Federal University of Para (UFPA) in Belém, surrounded
by the Brazilian Amazonia biome. She holds a Ph.D. in Neuroscience and Behavior
and is internationally recognized in ornithology and bioacoustics. One of her most
celebrated works is the secret life of the orange-winged Amazon and was documented
in a movie in 2011 (access here). In addition, Silva has done outstanding work on the
International Bioacoustics Council (IBAC), which has dubbed her the Dame of
Brazilian Bioacoustics.

Vocal mimicry in birds is a quite well-known phenomenon related to the ability
to learn sounds. Three avian taxa can learn sounds of their species: parrots,
hummingbirds, and passerines. Among the Passerines, Lawrence’s Thrush (Turdus
lawrencii) has the amazing ability to mimic many sounds. T. polyglottus goes further:
Jacques Vielliard (2004) counted up to 52 sequences of other species’ songs in its
repertoire.

Parrots are the most cherished bird and sought to have at home. Both wild and
companion parrots form everlasting pair bonds with conspecifics that may facilitate
the mimicking process by changing the acoustic repertoire or due to a song-learning
adaptive function (Hile et al., 2000). The pair bond formation in wild parrots also
involves cross-modal communication. During a period of up to 4 months, the parents
will look together after the nestling and communicate mostly through the visual
channel to each other. The male parent will be most of the time occupied with guarding
the nest entrance and communicating with the female through head movements
(Moura et al., 2014). The focus of the parrot pair will be to misdirect any chance of
revealing the nest entrance to humans and other potential predators (Mouraet al., 2011;

watch the video here).

Concerning companion parrots, it could confuse whether the vocal mimicry

would be a by-product of cognitive abilities or not. Silva presented two arguments to
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solve the confusion. Firstly, mimicry is always linked to social bonds because parrots
are highly social even without the companionship of conspecifics. It would prompt
them to use their natural ability to repeat what they hear from humans. Parrots living
with both conspecifics and human companions can either communicate with each
other or mimic speech. Silva once observed four parrots living under the
companionship of a human tutor. The parrot that was already uttering words taught the
others how to do that. Supposedly, the function of vocal mimicry may be to develop
social bonds and increase the reproductive repertoire of the parrots. Males with a larger
repertoire may offer better genes and then influence females’ reproductive choices.

Secondly, a standalone parrot that mimics humans may be misdirecting its need
to bond with a conspecific by bonding with a human tutor. Alternatively, this behavior
would be a response to a stressful environment. Silva disagrees with authors who
consider speech mimicry a natural behavior that means good welfare when performed
in captivity (Broom and Kirkden, 2004; Dawkins, 1990). In her opinion, the
assumption of human companionship providing enough social interactions to a parrot
is an anthropocentric view. Mimicry is inherent in parrots, and therefore, they can hear,
repeat, retain and learn speech. The vocal feedback parrots receive from human
companions is inadequate and, at the same time, is all they have to mimic.

The impressive potential of birds for learning alien sounds may lead one to
wonder about the extensive comparative studies. Is birds’ ability to communicate a
step toward the evolution of language? There are astonishing examples of birds’ social
and vocal complexity. Firstly, the chickadees (Poecile sp), a small passerine, combine
different syllable structures forming new call categories with different communicative
functions. Secondly, the Guira guira repertoire is composed of 27 signals that can also
be recombined in a wider variety of contexts (Marifio, 1989). G. guira is a gregarious
species that form groups of up to 12 individuals with distinct roles in the social group.
Some of them are “helpers” who emit three different alarm calls according to the
approaching danger, whether on land (a snake) or the air (a bird of prey) (Marifio,
1989). Lastly, the Rufous-bellied thrush (Turdus rufiventris) has a vocal
communication system individually distinguished (Silva, Piqueira & Vielliard, 2000).
All of those three examples may compel readers to see that comparative studies should
not equate bird communication to human language in terms of grammar.

Reaching out to the end, Silva and Leiliany Moura opened up about their

mutual experience hearing an extremely sad song uttered by a parrot mother facing a



dead nestling. The death was attributed to a spider they found in the nest. She
approached the nest and left immediately, performing a deep dive into the air while
uttering a unique whine-like call. Silva and Moura speculated if the song derived from
a changed mood caused by her dreadful experience. We can speculate about the

emotional content on that call and urge for further investigation.
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Chapter 4

The evolution of vocal expression of emotions:
evidence from a long-term project on ungulates

Elodie F. Mandel-Briefer® and Aline D. Carneiro Gasco®

Abstract

This chapter aims at presenting a summary of the main result of a long-term project,
in which Elodie Briefer and collaborators have compared how several species of
domestic and wild ungulates express and also perceive emotions, not only within but
also between species. The species included in this long-term project were the
following: goats (Capra hircus), cows (Bos taurus), domestic horses (Equus caballus),
Przewalski’s horses (Equus przewalskii), wild boars (Sus scrofa) and pigs (Sus scrofa
domesticus). Overall, a clear picture that arises from both the expression and
perception parts of the project is that expression of emotional arousal seems to have
been well conserved throughout evolution, whereas the expression of emotional
valence seems more species-specific.

Keywords: Affective state; arousal; domestication; motivation; source—filter theory;
valence.

Studying animal emotion
The dimensional approach

We will first discuss how to study animal emotions using the dimensional
approach, which consists in categorizing emotions according to their two main
dimensions: the first is valence, which can be positive (e.g., excited, happy, relaxed,
calm) or negative (e.g., fearful, anxious, sad, depressed); and the second is arousal,
which can be defined as bodily activation (Figure 4.1) (Russell 1980; Bradley et al.
2001; Mendl et al. 2010).
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Emotions of negative valence are part of the unpleasant-defensive motivational
system (Figure 4.1), which triggers avoidance from the emotion-eliciting stimulus.
This usually arises in contexts associated with a decrease in fitness. By contrast,
emotions of positive valence are part of the pleasant-appetitive motivational system
(Figure 4.1), which triggers an approach towards the emotion-eliciting stimulus, and
Is typical of contexts associated with an increase in fitness (Bradley et al. 2001).
Figure 4.1. lllustration of the dimensional approach (adapted from Briefer 2020). The
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valence differentiates the negative emotions, shown in the red box, from the positive
ones, shown in the green box. Arousal can be defined as the intensity of the valence.
The negative emotions are part of the unpleasant-defensive motivational system that
triggers avoidance. The positive emotions are part of the pleasant-appetitive
motivational system that triggers the approach.

The arousal dimension, which can be considered as the intensity of the valence,
ranges from low to high levels within both negative and positive valences (Figure 4.1)
(Russell, 1980; Mendl et al., 2010). Therefore, both low-arousal negative emotions,
such as depressed and sad, and high-arousal negative emotions, such as fearful and
anxious, can occur (Figure 4.1). The same applies to positive emotions; positive
emotions can be both of low arousal (e.g., calm and relaxed) and high arousal (e.g.,

happy and excited).



The observable components

Since verbal reports of emotions, which assess the subjective component of
emotions (‘feeling’) cannot be obtained in animals, assessments of their emotions must
be based on other observable components. These are the neuro-physiological,
behavioural and cognitive components (Mendl et al., 2010). The neuro-physiological
component can comprise, among others, changes in brain activity or in heart-rate,
which are mostly linked to the arousal of the emotion. The cognitive component is
reflected by changes in appraisal, attention, memory and judgments such as the
cognitive biases (Mendl et al., 2010). Finally, the behavioural component describes
how the animal reacts (e.g., changes in the ear, tail, body or head posture).

The behavioural component also comprises the expression of emotions, which
can be mainly facial or vocal. Since these expressions are aimed at regulating social
interactions (Briefer, 2018), they can be predicted to be rather conspicuous and allow
a human observer to perceive and measure them. Expressions of emotions are thus

very promising indicators of animal emotions for further investigations.

Evidence for vocal expression of emotions

According to the source-filter theory of vocal production, the human voice is
produced through the following mechanism: air coming from the lungs triggers the
vocal folds to vibrate, which determines the source of the sound and the lowest
frequency (or fundamental frequency; ‘FO’). This source sound is then filtered in the
vocal tract that comprises the vocal and nasal cavities. According to the shape and
properties of the vocal tract, some frequencies will be amplified and result in formant
frequencies, while others will be dampened (Fant, 1960). Overall, the experience of an
emotion will result in changes in the vocal apparatus during voice production, such as
a more tensed tract, rapid respiration, and decreased salivation. Those modifications
will, in turn, affect the acoustic structure of the voice (Juslin & Scherer, 2005).

In non-human animals, since vocalisations are produced in a fundamentally
similar way as in humans, we can expect similar effects of emotions on the acoustic
structure of their vocalisations (Briefer, 2020). In addition, since the majority of the
mammalian species have relatively less control over vocalisations compared to
humans (Jiirgens, 2009), we can expect an even more direct link between emotions

and the structure of vocalisations in animals than in humans (Briefer, 2012).
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In line with the above-mentioned predictions, the literature shows evidence for
vocal expression of emotions across species (reviewed in Briefer, 2012, 2020). The
expression of emotional arousal has been studied in a wide range of species,
particularly in contexts related to pain, hunger, and predation. By contrast, the
evidence for vocal expression of valence is still limited to a few species. Such limited
evidence suggests that, across species, calls tend to be shorter with lower and less
variable fundamental frequencies within positive emotions in comparison to negative
ones (Briefer, 2012, 2020) (Figure 4.2). This is also what Briefer and colleagues have
found in most species studied in their long-term project that included goats, domestic

horses, pigs, cows, Przewalski’s horses and wild boars (Figure 4.2).

Negative Positive
— — I IS BN DN S —
1
L] ()
i AN 5 [
4 Ads.
: ’ & e R
R & & 1
SR kil il A 48 | e U chE & dae g
— B Ll 1E1 1)
10.5s 6.3s

Figure 4.2. Oscillograms (above) and spectrograms (below) of emotionally negative
(left) and positive (right) contact calls produced by all the species included in Briefer
and collaborators’ long-term project; (from left to right) goat, domestic horse, pig,
cow, Przewalski’s horse and wild boar.

Evidence for vocal contagion of emotions

The encoding of emotional valence and arousal in the producer’s vocal signal
can be perceived by the receiver of the signal. This receiver can decode the producer’s
information and be affected by it, leading to a process termed ‘emotional contagion’,
or ‘state-matching’ (de Waal, 2008; Briefer, 2018). In addition, this process can occur
not only between one producer and one receiver, but also between several individuals
in a social group (Figure 4.3). As a result, the contagion of either low or high negative
(Figure 4.3a) or positive (Figure 4.3b) emotions can take place (Briefer, 2018), and
facilitate communication, coordination and cooperation among group members
(Preston & de Waal, 2002; de Waal, 2008; Spinka, 2012).



Vocalisations are salient and discrete events that are hard for the surrounding

listeners to avoid. Since vocalisations travel over very long distances, through
obstacles and even in the dark; they can be predicted to play a crucial role in the
contagion of emotions (Briefer, 2018). In non-human animals, there is strong evidence
suggesting that vocal contagion of emotional arousal occurs. In comparison, there is
little evidence for vocal contagion of emotional valence.
The contagion of emotional arousal results in matched emotional arousal between
producer and receiver of the vocalisations. Evidence has been provided using playback
experiments mainly in contexts of predation, aversion, aggression, stress and hunger
(reviewed in Briefer, 2018). Those studies suggested that playbacks of higher arousal
calls trigger behavioural responses suggesting higher arousal emotions in the receivers
during the experiments. By contrast, there is only limited evidence showing that calls
associated with positive emotions trigger more positive emotions in receivers when
compared with calls linked to negative emotions; and vice-versa (Briefer, 2018).
Indeed, the results of most studies published to date might lack proper control of the
arousal dimension due to the use of call types of different functions. Therefore, further
studies investigating vocal contagion of emotions are required and should account for
these confounding factors, particularly regarding contagion of emotional valence
(Briefer, 2018).
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Figure 4.3. Vocal contagion of (a) negative emotions and (b) positive emotions from
a producer to several receivers.



Goals of the Cross-species Study

In the long-term study of Briefer and collaborators focusing on the expression
and perception of emotional valence within and between ungulate species, three main
factors were considered to explain similarities and differences in emotion expression,
as well as cross-species perception of emotions: (1) phylogeny; (2) domestication; and
(3) familiarity with the species. In all experiments, the effect of emotional arousal was
carefully controlled for.

Methods and Hypotheses
Similarities among ungulates in vocal expression of emotions

To investigate the effect of phylogeny and domestication on vocal expression,
Briefer and colleagues have compared how domestic and wild Equidae (domestic and
Przewalski’s horses), and domestic and wild Suidae (domestic and wild pigs) express
emotional valence. To this aim, they recorded these four species in various positive
and negative situations of various arousal levels, assessed via heart-rate measurements
(in the domestic species) and via locomotion (in the wild species). After controlling
for changes related to arousal, variations in acoustic parameters related to valence were
investigated and compared between domestic and wild species.

The following hypotheses and predictions were made; if phylogeny played a
role in the expression of emotions, pigs and wild boars would be expected to express
emotions in a rather similar way, and domestic and Przewalski’s horses to do so as
well. If some indicators of emotions were highly conserved throughout evolution, as
suggested by Darwin (1872), it would be expected that Suidae and Equidae express
emotions in a similar way. If domestication played a role, it would be expected that
pigs and wild boars, as well as domestic and Przewalski’s horses, differ substantially

following the artificial selection that those species underwent during domestication.

Cross-species perception of emotions among ungulates and between ungulates

and humans

To investigate the cross-species perception of emotional valence and the effect
of familiarity, phylogeny and domestication on this phenomenon, the negative and

positive animal vocalisations recorded during the first part of the project, as well as



human actor voices from a validated database (GEMEP corpus; Bénziger and Scherer,
2010), were played back to the subjects. Domestic and Przewalski’s horses were thus
tested with conspecific whinnies, whinnies of each other and human voice. Similarly,
domestic and wild pigs were tested with conspecific grunts, each other’s grunts and
human voice. In addition, a large online questionnaire was conducted to test people’s
ability to rate the valence of ungulate’s contact calls correctly. To this aim, the sounds
of the four ungulate species mentioned above, in addition to cow and goat calls, were
included in that survey. We also collected data on participants’ demography,
familiarity with the various species and empathy.

The following hypotheses and predictions were made. If familiarity plays a role
in the cross-species perception of emotional valence, it would be expected that the
species familiar with humans could perceive the expression of emotions in the human
voice. By contrast, the closely-related domestic and wild ungulates had never heard
each other’s vocalisations. Therefore, it was not expected that they could perceive each
other’s expression of emotions.

Similar predictions can be proposed about the human perception of animal
vocalisations. Briefer and collaborators predicted that humans should perceive the
vocal expression of emotions in familiar species more easily than in those unfamiliar
to us. If phylogeny played a role in the cross-species perception of emotional valence,
it would be expected that all ungulates, and particularly closely-related species,
perceive each other’s expression of emotions. However, it was expected that these
species would not perceive the expression of emotions in our voice because humans
are more distantly related to them. Alternatively, it would be assumed that some
indicators of emotions could be very well conserved throughout evolution. Finally, if
domestication played a role in the cross-species perception of emotional valence, it
was expected that only the domestic ungulates, but not their wild counterpart, could

perceive the expression of emotions in human voice, and vice-versa.

Results

In the following sections, we will describe only the results regarding the
similarities in vocal expression of emotions among ungulates that are already
published in Briefer et al. (2015), Maigrot et al. (2017), Maigrot et al. (2018), and

Briefer et al. (2019). To have a glimpse of the results about the cross-species



perception of emotions among ungulates and between ungulates and humans that are

to be published, please refer to the online presentation delivered during the conference.

Vocal expression of emotions

Equidae

Domestic horse’s whinnies were shown to present a rather rare phenomenon
among mammals; the presence of two fundamental frequencies, hereafter called ‘FO’
(the lowest) and ‘G0’ (the highest), as shown in Figure 4.4a. The acoustic parameters
of the whinnies that changed according to the emotional valence were the energy
quartiles, the amplitude modulation, the duration and the value of GO (Briefer et al.,
2015). The main indicators of valence, after controlling for arousal, were a shorter
duration and a lower GO (Briefer et al., 2015) (Figure 4.4a).

Whinnies of Przewalski’s horses were found to have a structure similar to that
of domestic horses, with two fundamental frequencies. However, apart from a similar
decrease in energy quartiles and amplitude modulation rate between negative and
positive valence, other indicators of valence differed between the two species. In
particular, Przewalski’s horses did not produce shorter whinnies with a lower GO in

the positive contexts (Maigrot et al., 2017) (Figure 4.4b).

Amplitude

Frequency (Hz)

1.1s

Negative Positive G0 Negative  Positive

Figure 4.4. Oscillograms (above) and spectrograms (below) of negative and positive
whinnies of (a) a domestic horse and (b) a Przewalski’s horse.



Suidae

Domestic pigs produced grunts with notably higher formants, a narrower range
of the third formant and shorter duration in positive compared to negative situations
(Briefer et al., 2019) (Figure 4.5a). Similar changes were observed in the range of the
third formant and duration between negative and positive situations in wild boars.
However, the opposite pattern of formant change was observed, with formant
frequencies decreasing in negative situations in comparison to flat formants in positive
ones (Maigrot et al., 2018) (Figure 4.5b).
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Figure 4.5. Oscillograms (above) and spectrograms (below) of negative and positive
grunts of (a) a domestic pig and (b) a wild boar. The arrows indicate the 1st, 2nd and
3rd formants.

Cross-species perception of emotions

Domestic and wild ungulates
Detailed results of the playback experiment conducted with the four ungulate
species will be disclosed in an upcoming publication (Maigrot et al., submitted). The

results by Maigrot and collaborators suggest that all species except wild boars perceive
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indicators of emotional valence across species (including human voice). By contrast,
wild boars only reacted differently to negative and positive domestic pig grunts. Wild
boars displayed more behavioural indicators suggesting negative emotions during
playbacks of positive pig grunts compared to negative pig grunts. This might suggest
that wild boars were prompted to perceive positive pig grunts as negative due to the

difference in emotion expression between these two species (Maigrot et al., submitted).
Humans

The results of the online questionnaire, which will also be described in more
detail in an upcoming publication (Sowerby Greenall et al., close to submission),
suggest that participants were able to recognise the emotional arousal of vocalisations
in a relatively similar way across species. However, valence recognition depended on
the species, with some that were correctly classified above chance level and some even
below chance level. Other effects on our ability to recognise the emotions of animal
sounds were revealed, such as how often participants were in contact with the various
species and their empathic tendencies. Lastly, the duration and spectral center of
gravity were found to affect how correctly emotional arousal and valence were rated

(Sowerby Greenall et al., close to submission).

Concluding remarks

To conclude, Briefer and collaborators’ long-term project on ungulates
contributes to our understanding of the evolution of emotion expression and the role
that various factors (e.g., domestication) play in this process. In terms of expression,
the project showed that both phylogeny and domestication might have played a role in
the evolution of vocal expression of emotions. Indeed, similarities but also important
differences can be found in the way domestic and wild ungulates express emotional
valence. In terms of perception, the project revealed that phylogeny might have played
arole in the cross-species perception of emotions in Equidae; the horse species of this
study seemed to perceive indicators of emotional valence across species, suggesting
high conservation of some indicators throughout evolution. By contrast, in Suidae,
domestication might have affected the perception of emotions since domestic pigs, but
not wild boars, seemed to perceive indicators of emotional valence across species,

including humans. The results of the online questionnaire suggested that human



perception of the cross-species perception of emotions depended on familiarity with
the species (contact frequency), empathy and several vocal parameters.

Overall, a clear picture that arises from both the expression and perception
parts of the project is that, as suggested previously (e.g., Briefer et al., 2012; Filippi et
al., 2017), expression of emotional arousal seems to have been well conserved
throughout evolution, whereas the expression of emotional valence seems more

species-specific.
Acknowledgements

This research was funded by a Swiss National Science Foundation grant
awarded to E.F.B. (Grant No. PZ00P3 148200). We are thankful to all the people who
participated both in the playback experiments and on the online questionnaire. We also
thank the attendees of the online conference who participated in the Q&A session.
Thanks to the Institute of Psychology of the University of Sdo Paulo, the pandemic did

not prevent us from gathering virtually.

References

Béanziger, T., & Scherer, K. R. (2010). Introducing the Geneva Multimodal
Emotion Portrayal (GEMEP) corpus. In K. R. Scherer, T. Bénziger, & E. B.
Roesch (Eds.), Blueprint for affective computing: A sourcebook (pp. 271-294).
Oxford: Oxford University Press.

Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion
and motivation |: Defensive and appetitive reactions in picture processing.
Emotion, 1(3), 276-298. https://doi.org/10.1037/1528-3542.1.3.276

Briefer, E. F. (2012). Vocal expression of emotions in mammals: Mechanisms of
production and evidence. Journal of Zoology, 288(1), 1-20.
https://doi.org/10.1111/].1469-7998.2012.00920.x

Briefer, E. F., Padilla de la Torre, M., & McElligott, A. G. (2012). Mother goats
do not forget their kids’ calls. Proceedings of the Royal Society B: Biological
Sciences, 279(1743), 3749-3755. https://doi.org/10.1098/rspb.2012.0986

Briefer, E. F., Maigrot, A. L., Mandel, R., Freymond, S. B., Bachmann, I., &
Hillmann, E. (2015). Segregation of information about emotional arousal and
valence in  horse  whinnies.  Scientific  Reports,  5(1), 1-11.
https://doi.org/10.1038/srep09989

Briefer, E. F. (2018). Vocal contagion of emotions in non-human animals.
Proceedings of the Royal Society B: Biological Sciences, 285(1873), 20172783.
https://doi.org/10.1098/rspb.2017.2783



https://psycnet.apa.org/doi/10.1037/1528-3542.1.3.276
https://doi.org/10.1111/j.1469-7998.2012.00920.x
https://doi.org/10.1098/rspb.2012.0986
https://doi.org/10.1038/srep09989
https://doi.org/10.1098/rspb.2017.2783

Briefer, E. F., Vizier, E., Gygax, L., & Hillmann, E. (2019). Expression of
emotional valence in pig closed-mouth grunts: Involvement of both source- and
filter-related parameters. Journal of the Acoustical Society of America, 145(5),
2895-2908. https://doi.org/10.1121/1.5100612

Briefer, E. F. (2020). Coding for dynamic information: Vocal expression of
emotional arousal and valence in non-human animals. In T. Aubin, & N.
Mathevon (Eds), Coding strategies in vertebrate acoustic communication (pp.
137-162). Cham: Springer.

Darwin, C. R. (1872). The expression of the emotions in man and animals.
London: John Murray. 1st edition.

de Waal, F. B. M. (2008). Putting altruism back into altruism: The evolution of
empathy.  Annual Review of Psychology, 59, 279-300. DOI:
https://doi.org/10.1146/annurev.psych.59.103006.093625

Fant, G. (1960). Acoustic theory of speech production. New York: Mouton
Publishers, The Hague.

Filippi, P., Congdon, J. V., Hoang, J., Bowling, D. L., Reber, S. A., Pasukonis,
A., .. & Gintirkin, O. (2017). Humans recognize emotional arousal in
vocalizations across all classes of terrestrial vertebrates: Evidence for acoustic
universals. Proceedings of the Royal Society B: Biological Sciences, 284(1859),
20170990. https://doi.org/10.1098/rspb.2017.0990

Jurgens, U. (2009). The neural control of vocalization in mammals: A review.
Journal of Voice, 23, 1-10. https://doi.org/10.1016/j.jvoice.2007.07.005

Juslin, P., & Scherer, K. R. (2005). Vocal expression of affect. In J. Harrigan, R.
Rosenthal, & K. Scherer (Eds), The new handbook of methods in nonverbal
behavior research (pp. 65-135). Oxford: Oxford University Press.

Maigrot, A. L., Hillmann, E., Anne, C., & Briefer, E. F. (2017). Vocal expression
of emotional valence in Przewalski’s horses (Equus przewalskii). Scientific
Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-09437-1

Maigrot, A. L., Hillmann, E., & Briefer, E. F. (2018). Encoding of emotional
valence in  wild boar (Sus scrofa) calls. Animals, 8(6), 85.
https://doi.org/10.3390/ani8060085

Mendl, M., Burman, O. H. P. & Paul, E. S. (2010). An integrative and functional
framework for the study of animal emotion and mood. Proceedings of the Royal
Society B: Biological Sciences, 277, 2895-2904.
https://doi.org/10.1098/rspb.2010.0303

Preston, S. D., & de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate
bases. Behavioral and Brain  Sciences, 25(1), 1-20. DOI:
10.1017/s0140525x02000018

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and
Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714

Spinka, M. (2012). Social dimension of emotions and its implication for animal
welfare.  Applied Animal Behavior Science, 138(3-4), 170-181.
https://doi.org/10.1016/j.applanim.2012.02.005



https://doi.org/10.1121/1.5100612
https://doi.org/10.1121/1.5100612
https://doi.org/10.1146/annurev.psych.59.103006.093625
https://doi.org/10.1098/rspb.2017.0990
https://doi.org/10.1016/j.jvoice.2007.07.005
https://doi.org/10.1038/s41598-017-09437-1
https://doi.org/10.3390/ani8060085
https://doi.org/10.1098/rspb.2010.0303
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/empathy-its-ultimate-and-proximate-bases/953E0D092176FEE351ED81E933FE646D
https://psycnet.apa.org/doi/10.1037/h0077714
https://doi.org/10.1016/j.applanim.2012.02.005

Peer Commentary

By Aline D. Carneiro Gasco

The nature versus nurture controversy is likely solved for Elodie Briefer, as she
states in her chapter. Next, we tackle the emotions encoded in the calls as triggers of
emotional reactions, perception, and expression. In Briefer’s assumption, innate
emotions in wild and domestic animals are associated with releasing the cortisol
hormone in the blood (its circulating amount is usually an indicator of the emotional
arousal experienced). Domestication lowered the frightened levels of animals with
effects on the expression and experience of their emotions.

From Briefer’s chapter, it is clear that emotion perception plays an important
role in regulating social interactions. Moreover, nonhuman animals learn to perceive
others’ emotions in both arousal and valence dimensions. For example, animals
associate these calls with negative emotions when the negative utterances are produced
in an agonistic context of repeatedly biting and knocking. Therefore, perception of
emotions allows the individuals to regulate approaching and separation behaviors
according to the context.

Regarding the representative call types with unique emotional valence in the
species, Briefer states that different calls are often associated with different valence.
For instance, in negative situations, horses squeal, and in positive, they knickers; in
the same fashion, human laughter usually indicates positive emotions and crying,
negative ones. There are also call types uttered in positive and negative contexts, like
the widespread contact calls (horses’ whinnies, goats’ bleats, and pigs’ grunts) with
different functions that sometimes are misled.

Briefer tracked behavioral reactions of human listeners to playback trials with
emotional valence sounds. During the recordings of negative and positive calls, every
individual’s behavioral and physiological responses were observed to validate the
arousal and valence of the emotion triggered. The selection of the contexts triggering
the emotional vocalizations respected the assumption that positive situations were
associated with increased fitness in the wild. In contrast, the opposite ones showed a
decrease. Briefer used the separation or isolation paradigms to the negative emotions

experienced and the reunion and food reward to positive emotions. The emotional



valence was assessed by the arousal intensity and heart rate (in the domestic species)
or locomotion rate (in the wild species).

The computation of the behavioral responses was possible due to the procedure
described above. Hence, Briefer collected reliable data to measure the differences in
the behavioral responses among species as a function of the valence of the context.
She illustrated the behavioral data collection showing the cases of horses and goats. In
horses, the main indicator of valence was the height of the head being higher in
negative than in positive situations. By contrast, goats displayed their tails more often
in positive situations. However, Briefer pointed to the procedure’s limitations for
studying the vocal contagion of emotions in goats and horses. She shared her concerns
about the difficulties of matching behavioral responses with the indicators of positive
emotions during playback trials with listeners of the positive calls. The same
difficulties occurred with the indicators of negative emotions during playback of
negative calls.

As a final statement, Briefer described the main accomplishment in her
bioacoustic work. She highlighted the vocal parameters found to change with valence
in each ungulate species of her long-term study. Looking ahead, Briefer also plans to
artificially modify the acoustic parameters to investigate which one is more
determinant for valence perception. She has already taken the first step by running
playback experiments with goats, pigs, and horses using natural positive and negative
sounds. Preliminarily, she discovered that the animals perceive the difference in the
middle of the several playback treatments. She emphasized that horses produce two
partially independent fundamental frequencies in their whinnies: a phenomenon called
biphonation. The lowest one, FO, indicates arousal, while the other, GO, indicates
valence. Considering this rare acoustic feature in mammal vocalizations, Briefer
pursues the specific function of each of these two frequencies. She expects to

contribute very soon with new insights on horses’ emotional life.



Part B Human Bioacoustics

Chapter 5

Nonverbal acoustic communication from a
psychoethological perspective

Emma Otta’

Abstract

The focus of this chapter is on acoustic nonverbal communication and the expression
of emotions from a psychoethological perspective. Emotionally modulated speech,
indicated by paralinguistic cues — such as speaking rate, tone of voice, and intonation
contour — and vocal expressions — such as sobbing, screaming, and laughing — convey
information about their sender, whether intentionally or unintentionally. Some
paralinguistic cues and vocal cues may be used by the receiver to quickly infer the
internal state of the sender, his/her intentions and his/her ensuing behavior, thus
influencing the regulation of the interpersonal interaction. In this chapter, I will begin
by presenting a definition of emotion and a historical contextualization. The chapter
presents evidence of interspecific universals in emotional vocalizations. It
distinguishes dimensional and categorical approaches to acoustically transmitted
emotions. Evidence for both the universality and the cultural specificity of the
detection of emotions from speech and human vocalizations will be presented.
Unanswered questions and emerging topics will be pointed out throughout the chapter.

Keywords: Emotions, display, intentionality, paralinguistics, vocalizations.

Defining emotion

I will start by defining emotion from a functional perspective; this perspective
reflects the “wisdom of ages” (Lazarus & Lazarus, 1994), as emotion has evolved as
an adaptive mechanism through the process of evolution. | will use de Waal's
definition, which, in my opinion, is especially appropriate in articulating proximate
and distal levels of explanation (de Waal, 2011, p. 194):

" Department of Experimental Psychology of the Psychology Institute, University of S&o
Paulo, SP, Brazil. emmaotta@usp.br
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“An emotion is a temporary state brought about by biologically relevant external
stimuli, whether aversive or attractive. The emotion is marked by specific changes
in the organism’s body and mind — brain, hormones, muscles, viscera, heart,
etcetera. Which emotion is triggered is often predictable by the situation in which
the organism finds itself, and can further be inferred from behavioral changes and
evolved communication signals. There exists no one-on-one relation between an
emotion and ensuing behavior, however. Emotions combine with individual
experience and cognitive assessment of the situation to prepare the organism for an
optimal response. (...) Organisms have been selected to enter a particular bodily
and mental state under particular circumstances: those who did furthered their
interest better than those who did not.”

Emotions are triggered by significant life events on the basis of an individual’s
needs and well-being. According to the component process model (CPM) of emotion
(Scherer, 2009), five components are involved: (i) evaluation of the event — appraisal
of the situation; (ii) physiological activation — preparing the body for action; (ii)
expressive movements — vocal expressions, body postures, and facial expressions; (iii)
sense of purpose — motivational state directed towards a goal; and (iv) feelings —

subjective experience (Figure 5.1).

Event Bodily Expressive

Evaluation arousal movements
novelty, skin crying, Action subjective
predictability / conductance, laughing, tendencies, experiences,
unpredictability, facial electro smiling, approach e.g.,
pleasantness / myographic frowning, reactions, contentment,
unpleasantness, reactions, body avoidance bitterness
coping ability blood postures, reactions

pressure gestures

Figure 5.1. The five components of emotion (Source: after Sander et al., 2018).

Historical contextualization

Charles Darwin (1872) wrote about the expression of emotions in his book The
Expression of the Emotions in Man and Animals. He enunciated the principle of



antithesis according to which certain mental states trigger a strong and involuntary
tendency to perform certain movements. The induction of an opposite mental state
triggers an equally strong and involuntary tendency to perform antagonistic
movements. He illustrated the principle of antithesis with a dog in a threatening body
posture, in which the animal appears larger and stronger, and in an appeasing body

posture, in which it appears smaller and weaker (Figure 5.2).

“When a dog approaches a strange dog or man in a savage or hostile frame of mind
he walks upright and very stiffly; his head is slightly raised (...); the tail is held
erect and quite rigid; the hairs bristle, especially along the neck and back; the
pricked ears are directed forward, and the eyes have a fixed stare. (...) These actions
follow from the dog’s intention to attack his enemy. (...) As he prepares to spring
with a savage growl on his enemy, the canine teeth are uncovered. ...” (Darwin,
1872, pp. 50-51)

Darwin then invites us to imagine that the dog suddenly notices that the
individual he is approaching is not a stranger but his master. In this case, the dog's

behavior changes immediately to the opposite.

“Instead of walking upright, the body sinks downwards or even crouches, and is
thrown into flexuous movements; his tail, instead of being held stiff and upright, is
lowered and wagged from side to side; his hair instantly becomes smooth; his ears
are depressed and drawn backwards, but not closely to the head; and his lips hang
loosely. (...) the eyelids become elongated, and the eyes no longer appear round
and staring.” (p. 51)



Figure 5.2. Principle of antithesis illustrated by a dog in threatening and

appeasing postures (Source: Darwin, 1872, pp. 52-53). http://darwin-
online.org.uk/converted/pdf/1897 Expression F1152.pdf

Approximately 100 years after The Expression of the Emotions in Man and
Animals, the subject was revisited by Morton (1977, 1983), who compared the physical
structure of vocalizations used in the communication of mammals and birds at short
distances and the underlying motivation. Animals indicate their mood through vocal
sounds. Based on Darwin's antithesis principle, Morton argued that natural selection
results in a structural convergence of sounds used in "hostile” and "friendly" contexts.
An individual who tries to drive another away uses harsh (broadband), low-frequency
sounds. If the receiver does not move away, the interaction may escalate into attack,
indicating the sender’s aggressive disposition. We can speculate that evolution may
have favored roaring in aggressive animals because rough low-frequency vocalizations
make the vocalizing individual appear larger and more threatening in the face of a rival
(Morton, 1983). In threatening contexts, animals use this type of vocalization, while
in friendly contexts, they use relatively tonal, high-frequency sounds. Sound

characteristics (harsh quality, tonal quality, and sound frequency [pitch]) interact: 1)
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the lower the frequency, the more hostile the sender, and the higher the frequency, the
friendlier or more fearful the sender; 2) the greater the harshness, the more hostile the
sender, and the more pure and tone-like, the friendlier or more fearful the sender; and
3) a decrease in frequency indicates hostility, and an increase in frequency indicates
fear.

In line with Morton (1977, 1983), Ohala (1983) also proposed an innately
specified “frequency code”, relating the primary meaning of “large vocalizer” and the
secondary meanings “dominant, aggressive, and threatening” to low acoustic
frequency and the primary meaning of “small vocalizer” and the secondary meanings
“subordinate, submissive, non-threatening, and desirous of the receiver’s goodwill” to
high acoustic frequency. Chuenwattanapranithi et al. (2008) obtained support for the
size code hypothesis of emotional speech for two emotions — anger and happiness.
Human listeners judged the body size and emotion of the speaker. Thai listeners heard
speech sounds produced with a lengthened vocal tract, lowered FO, and roughened
voice quality as spoken by an angry individual, and speech sounds produced with a
shortened vocal tract, raised FO, and tone-like voice quality as spoken by a happy
person.

Inferences about mood in animals can be made based on observations of sender

and receiver behavior.

“This is not to say that animals feel angry when they growl, for we have no idea
whether our feelings are the same as the motivation in animals. But by observing
what happens when an animal growls (or squeals), we can use words such as
“aggressive" or “fearful” to describe whether it will probably attack or flee when it
growls or squeals.” (Morton, 1983, p. 345)

Returning to Darwin's example to illustrate the principle of antithesis, Morton

(1983) added acoustic communication to visual communication.

“Your pet dog is sleeping on the front porch. As you approach, Fido wakes up and
begins barking. The bark means that Fido has perceived something of interest to
him but the stimulus is too far away for him to make a “decision.” Should he attack
or be friendly? When you get closer, or yell his name, he changes from barking to
whines, sleeks his fur, and wags his tail at a low angle. On the other hand, if the
mailman had elicited the barks, Fido might begin to growl as he approached. It is
clear from Fido's actions what moods he exhibited through his vocalizations. (...)



When a dog growls, it also makes itself visually larger by erecting its fur; when it
whines, it sleeks its fur and hunches down to look smaller.” (p. 347)

There is redundancy in communication through the auditory and visual
channels, and this redundancy may increase the odds of communicating effectively. In
humans, the same general relationship exists between the physical structures of sounds
and the underlying motivation (hostility or appeasement). One person can say "Go
away!" in different ways to another, but when he/she feels truly angry, his/her feelings
may be expressed as “growling”. Intonation adds information to the content of his/her
speech, making it more emphatic. A low or falling voice expresses aggressiveness and
assertiveness, while a high or rising voice expresses friendly intentions (Morton,
1983).

Darwin’s Musical Protolanguage Hypothesis

Darwin developed a model of language evolution, known as the musical
protolanguage hypothesis. Figure 5.3 shows a schematic outline of this hypothesis. In
chapter 4 of The Expression of the Emotions in Man and Animals, Darwin addressed
sound emission and its use as a means of expressing courtship and rivalry. He
hypothesized that our ancestors used vocal utterances to express emotions before they
had acquired the power to articulate speech in human evolution. In Chapter 3 of The
Descent of Man, and Selection in Relation to Sex, he proposed a model of language
evolution based on a protolanguage that was more musical than linguistic and focused

on sexual selection as the underlying mechanism of this evolution.

Darwin (1871, p. 87) stated:

“I cannot doubt that language owes its origin to the imitation and modification of
various natural sounds, the voices of other animals, and man's own instinctive cries,
aided by signs and gestures. When we treat of sexual selection we shall see that
primeval man, or rather some early progenitor of man, probably first used his voice
in producing true musical cadences, that is in singing, as do some of the gibbon-
apes at the present day; and we may conclude from a widely spread analogy, that
this power would have been especially exerted during the courtship of the sexes,
would have expressed various emotions, such as love, jealousy, triumph, and would
have served as a challenge to rivals.”
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Figure 5.3. Schematic outline of Darwin’s musical protolanguage hypothesis (Based
on Zimmerman, Leliveld & Schehka, 2013 and Fitch, 2013).

Fitch (2010, 2013) summarized and updated this model. The first step was a
general increase in intelligence in the hominid lineage. Before vocalizations were used
meaningfully, they were used, “so to speak”, aesthetically, to fulfil many of the same
functions that modern humans use music today (courtship, bonding, territorial
advertisement and defense, competitive displays, etc.). (...) at—a later stage
(presumably during the evolution of meaningful language) some other selective force
kicked in, so that language became equally (or better) expressed in females, and was
pushed to develop early” Fitch (2013, p. 494, 497).

In his book The Singing Neanderthals, Mithen (2005) also proposed a proto-
music/language model. He created the acronym Hmmmm to name his model for the
early hominid communication system: holistic utterances with their own meaning (not
constituted by segmented elements or words), manipulative (with the ability to change
the affective states and behavior of others), multimodal (employing both sounds and
movements), musical (rhythmic and melodic), and mimetic (uses sound symbolism

and gesture).

In search of interspecific universals in emotional vocalizations

Based on Darwin's (1871, 1872) hypothesis that the vocal expression of
emotion has ancient roots and Morton’s (1977) model on the association of motivation

and structural rules of vocalizations, researchers began to search for interspecific



universals in emotional vocalizations. Fillipi et al. (2017) conducted a study in which
they asked human participants to evaluate the emotional content of the vocalizations
of nine species across three taxonomic classes: Amphibia, Mammalia, and Reptilia
(including Aves). They found that speakers of different languages (native speakers of
English, German and Mandarin, N=25 in each group) were able to identify increased
levels of activation in the vocalizations of all species represented. We conclude from
this study that humans are able to identify the emotional content in both conspecific
and heterospecific vocalizations, suggesting a biological basis. Basic mechanisms
underlying emotion perception in vocalizations may have appeared early during
phylogenesis and have been evolutionarily conserved across species.

Cross-species perception of emotion from vocal and visual cues has also been
investigated with dogs. In a research study for her master’s thesis developed under my
supervision as part of the Project Anthrozoo USP at the Postgraduate Program in
Experimental Psychology at the University of S&o Paulo, with the co-supervision of
Daniels Mills, Natalia Albuquerque (2013) used an intermodal preferential looking
paradigm. Domestic dogs (Canis familiaris) were presented with human faces or dog
faces with different emotional valences (happy/playful versus angry/aggressive).
While the stimuli were projected onto two screens, a single sound was played. The
sound could be a dog’s bark, a human voice with either positive or negative valence
or a control sound (neutral). We found that dogs looked significantly longer at both
conspecific and heterospecific faces whose expression corresponded to the valence of
the vocalization, leading to the conclusion that dogs have the mental prototypes for
positive versus negative categorization of affect and that they are able to integrate
acoustic and facial emotional information (Albuquerque et al., 2016). Additionally, the
dogs seemed to have a functional understanding of emotional expressions. When they
looked at angry human faces, they were more likely to mouth-lick than when they
looked at happy human faces (Albuquerque et al., 2018). Mouth-licking may serve as
an appeasement signal in dog-human communication (Firnkes, Bartels, Bidoli &
Erhard, 2017). It is at the lowest step of Shepherd's ladder of distress signals. Shepherd
(2002, 2009) attributes to this behavior the function of a calming signal that defuses
conflict and restores harmony in a social interaction. Dogs are the oldest domestic
animals, having lived with humans for approximately 10,000 years (Larson, Karlson,
& Perri, 2012). It might have been particularly advantageous for them to recognize the

emotions of humans and to react with appropriate behaviors during the process of



domestication, in which they may have evolved the ability to read human

communication cues.
Dimensional and Categorical Approaches to Acoustically Conveyed Emotions

The chapter proceeds by addressing acoustically transmitted emotions in
humans. Emotionally modulated speech and vocal expressions are evaluated in terms
of either dimensional or categorical approaches. Self-report instruments linked to these
approaches will be presented.

At the beginning of the twentieth century, Wilhelm Wundt (1905), the father of
experimental psychology, first proposed a dimensional approach according to which
emotions are characterized by their place in a three-dimensional space made up of
“arousal-calm”, “pleasure-displeasure”, and “relaxation-tension”. At the end of the
twentieth century, Russel (1980) revisited the subject and proposed a circumplex
model to express the structure of affect as evaluated by self-report. In this model,
affective concepts fell in the circle in the following order: pleasure (0°), excitement
(45°), arousal (90°), distress (135°), displeasure (180°), depression (225°), sleepiness
(270°), and relaxation (315°). Bradley and Lang (1994) proposed the self-assessment
manikin (SAM) as an easy-to-use nonverbal method for evaluating emotional reactions
to a wide variety of stimuli, including sounds (e.g., International Affective Digitized
Sound [IADS] System; Bradley & Lang, 2007), in terms of pleasure, arousal, and
dominance. The pleasure scale shows a smiling figure at one end and a frowning figure
at the other. The arousal scale shows a sleepy figure at one end and a wide-eyed figure
at the other. The dominance scale shows a small figure at one and a large figure at the
other. There was a 9-point rating scale for each dimension: research participants were
asked to choose one of five figures in each scale or to place a mark between any two
figures. The original paper-and-pencil self-report version evolved into a digital slider
version used in smartphones and tablets (Betella & Verschure, 2016). Below each
slider are two mirrored isosceles triangles that provide a visual cue for intensity.

Another approach to the study of acoustically conveyed emotions is the
categorical emotional approach. At the end of the nineteenth century, Darwin (1872)
first proposed a discrete emotions perspective with a main focus on the face,
suggesting that facial expressions of emotion are universal. In contrast to Wundt
(1905), he considered emotions distinct entities or modules, such as happiness,

sadness, fear, anger, disgust, and surprise. Darwin’s theory was extended by Ekman



(2009) and Panksepp (1998), assuming that basic emotions have unique characteristics
that distinguish them from one another in important ways (behavioral and
physiological reactions driven by specific neural reaction systems). These basic
emotions are affect programs, phylogenetically evolved adaptation patterns activated
by relevant eliciting events. In line with the predictions of the basic emotion theorists,
humans assign facial and vocal expressions of emotion to discrete emotion categories
with high accuracy. The Product Emotion Measurement Instrument (PrEmo) is an
instrument based on the categorical emotional approach (Desmet, 2019). It is a
pictorial self-report instrument in which a character expresses 14 different emotions
by his/her expressions, body, and voice. Half of the emotions are positive (joy, hope,
pride, admiration, satisfaction, fascination and attraction), and half are negative
(sadness, fear, shame, contempt, dissatisfaction, boredom and disgust). In addition to
basic emotions, this instrument includes social emotions that presuppose the ability to
think about emotions and behavior from the point of view of another individual.
Mendl, Burman and Paul (2010) combined dimensional and categorical
approaches for the study of emotions. Figure 5.4 schematically represents emotions in
a two-dimensional space summarizing a dimensional approach (valence and
activation) with an approach of discrete emotions (e.g., happiness, sadness, and fear).
The positive emotions are placed in quadrants Q1 and Q2, and the negative emotions
are placed in quadrants Q3 and Q4. The Q3-Q1 arrow represents the motivational
system of reward acquisition related to increased fitness. The Q4-Q2 arrow represents
the motivational system of punishment avoidance triggered by the perception of

danger or threat.
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Figure 4. Discrete emotions located in a two-dimensional space of valence and
activation (adapted from Mendl et al., 2010).

Stimulus materials

Researchers have developed a variety of stimulus materials that will be
illustrated here. Affective prosody recognition tasks are used for research purposes and
for clinical practice purposes. Individuals listen to neutral sentences (e.g., “The girl
went to the market”’) spoken in affective tones of voice (happy, sad, angry, etc.) and
are asked to name the emotional prosody. The Brazilian version of the Florida Affect
Battery (Bowers, Blonder & Heilman, 1999) was adapted from the English original by
two researchers from the University of Brasilia (Costa-Vieira & Souza, 2014). In the
naming of emotional prosody tasks, there are 20 trials with four repetitions of each of
five affects. The Florida Affect Battery also includes tasks in which there is conflict
between the semantic content and adequate voice intonation. An example is the

sentence “All the puppies are dead” said in a happy tone of voice. To correctly evaluate



the affective tone of voice of the speaker, the listener must disregard the content of the
message. The Florida Affect Battery also includes tasks in which there is conflict
between the semantic context and adequate voice intonation. Additionally, the battery
includes cross-modal facial prosody tasks in which individuals are required to match
the affect conveyed by a prosodic stimulus with a corresponding facial expression or
vice versa.

With the purpose of studying real emotional expressions, Silva, Barbosa and
Abelin (2016) selected speech samples of Brazilian Portuguese from the documentary
Jogo de Cena (Playing; Coutinho, 2007). The director had placed an announcement in
a newspaper inviting women to tell their stories in his documentary, sharing their joys
and sorrows. The film alternates between these women and actresses. There are few
studies using real-life voice records, and this study is interesting for this reason.

Further materials used for research focus on vocalizations instead of speech.
The Montreal Affective Voices (Belin, Fillion-Bilodeau & Gosselin, 2008) consists of
90 vocalizations corresponding to the emotions of anger, disgust, fear, pain, sadness,
surprise, joy and pleasure. Sauter et al. (2010) also created a set of nonverbal
vocalizations of negative and positive emotions, such as laughter, an angry growl,

retching sounds, screams of fear, moans of sexual pleasure, and sighs of relief.
Detection of emotions from speech and human vocalizations

This section of the chapter will present research findings on the ability of
listeners to identify emotions from speakers' voices. Comparisons have been made
between accuracy in the recognition of emotion in the face and in the voice. While joy
can be almost perfectly identified from facial expressions, listeners have difficulty
recognizing this emotion unequivocally in the voice (Scherer, 2003). Anger and
sadness were best recognized in the voice, followed by fear, whereas disgust was
identified just above chance level.

Comparisons are also made across languages and cultures. In Silva, Barbosa
and Abelin (2016), Brazilian and Swedish listeners evaluated authentic speech samples
extracted from the Brazilian documentary Jogo de Cena and from Swedish television
and interview programs. The Swedish and Brazilian listeners evaluated both corpora
similarly, leading to the conclusion that the listeners' native language did not influence

their perception of the emotions expressed by the speakers.



A meta-analysis conducted by Bak (2016) showed that research on emotional
prosody evaluated from speech is focused on English: 79% of the participants were
Germanic language speakers, with a predominance of English; 15% were Japanese
speakers; and 6% were speakers of other languages, including Portuguese, Spanish,
Arabic, Hindi and Hinba. This meta-analysis showed that humans infer affective states
from the emotional prosody of speech in different cultures, although the listeners
cannot understand the words and sentences voiced by the speakers (Pell, Monetta,
Ekmann & Kotz, 2009). The recognition of basic emotions (e.g., joy, sadness) was
superior to chance, but there was an own-language advantage in comparison to foreign
languages.

A study on intercultural recognition of basic emotions through nonverbal
vocalizations comparing representatives of maximally different populations in terms
of language and culture was conducted by Sauter, Eisner, Ekman and Scott (2010).
This research team, integrated by a proponent of the "Big Six" basic emotions,
compared Himba people from Namibia, who live by herding without contact with
Western culture, with English-speaking Europeans. Emotional vocalizations
corresponding to the basic emotions of joy, fear, anger, sadness, disgust and surprise
communicated the same emotional states regardless of culture, leading to the
conclusion that they are universals shared by all humans. In this study, however, the
researchers also found a significant interaction between the culture of the listener and
the emitter of vocalization, showing that each group performed better in relation to the
stimuli produced by members of its own culture. Some social emotions (e.g., pride)
were recognized only within culture. Negative emotions were recognized between
cultures, but several positive emotions were communicated by culturally specific
signals. The researchers concluded that affiliative social signals were shared mainly
with in-group members.

In addition to self-report measures, psychophysiological measures have been
used to investigate the processing of emotional prosody, including event-related
potentials (ERPs), which identify specific brain activity by means of EEG in the
presence of speech or vocalization samples. Basic emotions are differentiated by
means of the P200 component captured by electrodes located in frontal-central
positions. The differentiation between emotional speech and neutral speech occurs in
an initial time window of 170 to 230 ms after the onset of stimulus (Paulmann,
Bleichner, & Kotz, 2013; Schirmer, Simpson, & Escoffier, 2007). Through ERPs the



differential reactions of humans to fear vocalizations compared to control sounds 150
msec after the onset of the stimulus were demonstrated (Sauter & Eimer, 2010). Rapid
detection of affective signals can be important. If conspecific others in the
surroundings are frightened, staying alert and preparing for imminent danger may have

survival advantages.

Concluding remarks

In this chapter, several topics related to acoustic nonverbal communication and
the encoding and decoding of emotions have been addressed from a psychoethological
perspective. Although scientists still struggle to define emotions, an operational
definition was proposed, taking into account proximate and ultimate levels of
causation. Research perspectives were presented based on the categorical approach to
emotion, which goes back to Charles Darwin, pioneer in the study of emotions, and
the dimensional approach to emotion, which goes back to Wundt, founder of the first
psychology laboratory. A review was conducted of research findings of universals in
nonhuman emotional vocalizations and cross-cultural recognition of basic emotions
among humans. The present chapter shows evidence of interspecific universals and
cross-cultural recognition of emotions and of an in-group advantage in the
understanding of emotion. A universal acoustic affect program (Sauter et al., 2010)

seems to coexist with culturally specific affect programs (Elfenbein & Ambady, 2003).
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Peer Commentary

By Sylvia Corte

Emma Otta is a Professor at the Department of Experimental Psychology,
Institute of Psychology (IPUSP), of the University of Sdo Paulo, S&o Paulo, SP, Brazil.
I will comment on some of the aspects discussed by Professor Otta on a topic
sometimes forgotten but with profound implications for acoustic communication and
its emotional components, acoustic nonverbal communication. She approaches the
topic from a psychoethological perspective, explaining emotions from a functional
perspective and giving evidence of interspecific universals in the interpretation of
emotions, for instance, the sounds emitted during laughter and crying in human babies.
Otta refers to some research that showed that babies laughed in some situations that
also triggered crying. However, this is a developmental process, where laughing
substitutes crying. In addition, the stimuli that triggered laughing became less physical,
such as tickling, and more cognitive during development. From an evolutionary
perspective, there is a discussion about the contexts in which smiling and laughing
appear. For example, smiling occurs in more conflictive situations and laughing in
rougher and tumble play situations. Finally, we could study the acoustic manifestations
of crying, laughing, and smiling from a longitudinal perspective in children.

Otta commented about the Twin Panel’s interest in studying these
manifestations in their participants. They are now studying acoustic communication in
twins (see Claudio Possani chapter). They recorded twins’ voices individually in the
lab before COVID-19 and compiled the voices of one hundred pairs, which are
currently being decoded using the PRAAT software. The Panel now is also studying
children. It will be very interesting to study crying in twins and the development of
their nonverbal vocalizations (crying and laughing) and language.

I wanted to inquire about the famous ‘“Neanderthal flute,” discovered in a cave
in Slovenia, to be exposed to another of the topics exposed during the talk. One study
dismissed the artifact as nothing more than a bone that had been chewed on by hyenas,
while others argue it was a musical instrument. Could early humans, like the

Neanderthal, have such sophisticated ways of communication?



Otta addresses archaeological evidence of wind instruments from the Upper
Paleolithic (between 12,000 and 50,000 years ago) in association with modern humans
(Homo sapiens). Neanderthals, the closest relatives of modern humans, became extinct
around 40,000 years ago. A juvenile bear femur with two complete holes from the
Middle Paleolithic was found in a cave in Slovenia in 1995. This piece of bone divides
opinions. Some experts believe it is a flute, the oldest musical instrument, while others
believe it is only a chewed -carnivore bone, a pseudo-artifact. Computed
microtomography studies show that a Neanderthal-made artifact cannot be ruled out.
Although we lack a thorough understanding of Neanderthal behavior, some
anthropologists believe they may have been intelligent, self-aware individuals using a
primatological analogy. Chimpanzees, for example, drum on hollow trees and have a
preference for some music over silence. One could surmise that Neanderthals may also
have expressed something similar. Perhaps the Neanderthal flute was a flute and not a
chewed carnivore bone.

Next, Professor Otta added some comments regarding another complex issue:
how and why human language skills differ from our hominid ancestors and other living
hominid species. How language evolved has been debated since Darwin. There are
perceptual and cognitive abilities underlying language comprehension and production
shared with other perceptual and cognitive processes present in nonhuman animals.
However, there are grammar and syntax components that differentiate human language
from animal communication systems. Human language refers to external things in the
world and objects and events distant in place and time employing arbitrary symbols
based on rules for combining these elements. According to Herbert Terrace in his
article Noam Chomsky, all animals, ourselves included, communicate, but only
humans use language as we do. Nonverbal communication appears earlier in
nonhuman development and is also present in nonverbal individuals. Very interesting
research had been carried out on children with an underdeveloped brain system. In
other words, they have no cortex and communicate nonverbally. The researchers
discuss their expectations that these individuals will not communicate. Nevertheless,
they have a very rich communication system, characterized by smiling and gazing, for
example. So, the role of nonverbal and verbal communication in humans can be
studied separately.

Non-verbal and verbal communication in humans is a case of multimodal

communication that can be exploited in some situations. We can study how they are



related and how we can learn from this. We can examine this multimodal combination
in recent research (Albuquerque, 2013) on dogs: does a dog understand that an angry
vocalization accompanies an angry face? The situation is more complex when we are
dealing with humans. Professor Otta considered that both animals and humans make
sense of the variety of sights, sounds, and affective states. They need to coordinate this
input and make associations between one sense (e.g., sight) and another (e.g., sound).
In the case of dogs, their behavior suggested that they could relate what they saw,
heard, and felt. For example, they licked the nose more frequently when observing a
negative facial expression than with a positive valence, especially in response to
humans. It was an appeasement gesture, and researchers can hypothesize that it was a
reaction to a threat exhibited in a prone conflict situation.

Dogs are very sensitive to human behavior and friendly or threatening
communication signals. It is the result of the domestication process that probably
involved relatively intense selection for tameness. However, nonverbal and verbal
communication is a case of multimodal communication, and the combination of these

various dimensions is a very interesting subject.



Chapter 6
Physiology of Vocal Production

Domingos H. Tsuji®

Abstract

One of the greatest skills acquired by the human species during its evolutionary
development was the ability to formulate complex ideas and communicate them to
their peers through speech. This can be defined as a set of vocal sounds used for oral
communication between human beings and consists of a set of words that are formed
by different phonemes which, in turn, are composed of vowels and consonants. Here,
| present the sound production and articulatory apparatus in terms of their morphology
and functionality.

Keywords: Human voice, source-filter theory; sound producing, speech,

In an overview, the production of human voice used in speech depends on a
central neurological control that, through its peripheral nerves, controls the human
speaking apparatus, which consists of several organs and anatomical structures (Figure
6.1). The perfectly coordinated functioning of these anatomical structures guarantees
speech production, which, at the peripheral level, depends on exhalation, production
of the fundamental sound of the larynx (the vocal fold vibration sound), sound
resonance, and articulation (Isshiki, 1989). The purpose of this presentation is to

provide basic background information for understanding each of these steps.
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Figure 6.1. Human speaking apparatus.

Exhalation: the primary energy source

Exhalation produces a flow of air molecules that constitute the energetic force
for voice production. The physiological mechanisms in this step of vocal production
are quite complex; however, it can be said that they depend on adequate motor control
of the structures involved in breathing. These structures are the trachea, lungs, bronchi,
bronchioles, and alveoli contained in the rib cage or chest cavity. The latter space is
delimited by the sternum bone at the front, costal vertebrae, diaphragm, and spine. The
main muscles that directly control chest cavity volume are the external and internal
intercostal muscles and the diaphragm, which are essential to control inspiration and
expiration of pulmonary air (Hansen, 2019). When modifying the volume of the
abdominal cavity, the abdominal muscles indirectly influence chest volume and are
essential in vocal emission and support for more complex vocal activities such as
singing.

The respiratory function as a whole, especially respiratory mechanics, depends
on individual anatomophysiological characteristics, such as chest cavity dimensions
and the anatomical structures involved, tissue elastic properties, lung volume,
respiratory muscle performance and the central nervous system, which coordinates and
controls the entire functional process. Thus, it can be considered that everyone has a

unique respiratory capacity.



Production of the fundamental sound of the larynx: vocal fold vibration

Anatomically, the larynx is located in the anterior region of the neck (Figure
6.2), contiguous to the trachea, consisting of bone and cartilaginous skeleton, muscles
and ligament structures and covered internally by respiratory mucosa. The main
cartilages of the larynx are epiglottis, thyroid, cricoid (unpaired) and arytenoid (paired)
(Figure 6.3), connected to each other by membranes, ligaments, joints, and muscles.
Internally, some membranes and ligaments are covered by mucous tissue on each side,
the vocal fold and vestibular fold (false vocal fold), and between them the laryngeal
ventricle (sinus of Morgagni). In addition, structures such as the epiglottis,
aryepiglottic folds on each side, the arytenoid region, interarytenoid fold, anterior

commissure and posterior glottis wall are identified (Figure 6.4).

Figure 6.2. Position of the larynx in the anterior cervical region,
connected caudally to the trachea.

With respect to the position of the vocal folds, the laryngeal cavity is divided
into three regions or levels: 1 — the glottis, which corresponds to the space delimited
by the vocal folds, anterior and posterior commissures; 2 - the supraglottis,
corresponding to the region above the vocal folds; 3 — the subglottis or infraglottis,
located below the vocal folds, extending to the lower border of the cricoid cartilage
(Imamura, Tsuji & Sennes, 2002) (Figure 6.5).

In 1974, Hirano was one of the first to describe the histological structure of the
human vocal fold and correlate it with the physiology of vocal production (Hirano,

1975). Based on the layered structure consisting of epithelium, connective tissue and



vocal muscle, he developed the cover-body theory for vocal fold vibration, according
to which the soft mobile cover, consisting of the mucous membrane, can vibrate over
the more rigid and stationary body, composed of the vocal ligament and vocal muscle.
The main intrinsic muscles of the larynx are the cricothyroid, lateral and

cricoarytenoids, thyroarytenoid and interarytenoid (Figure 6.6).
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Figure 6.3. Laryngeal skeleton. (a) anterior view; (b) posterior
view. HB- Hyoid bone; THm — Thyrohyoid membrane; T-
Thyroid cartilage; CTm — Cricothyroid membrane; C- Cricoid
cartilage; Tr — Trachea
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Figure 6.4. Internal view of the larynx. (A) respiratory position of vocal folds; (B)
vocal folds in phonatory position.
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Figure 6.5. Levels of the larynx. The glottis corresponds to the vocal
folds level.
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Figure 6.6. Intrinsic muscles and cartilages of the larynx. TA -
Thyroarytenoid muscle; V- Vocalis muscle; LCA- Lateral cricoarytenoid
muscle; PCA- Posterior cricoarytenoid muscle; IA- Interarytenoid muscle;
CT- Cricothyroid muscle; T- Thyroid cartilage; C- Cricoid cartilage; A-
Arytenoid cartilage; VL- Vocal ligament.

Under normal conditions, the air inhaled and exhaled by the lungs during
breathing experiences practically no resistance to its free transit through the upper
airways formed by the larynx, pharynx, oral and nasosinusal cavities. During voice
emission, however, the vocal folds assume an adduced phonatory position, closing the
glottis, which increases air resistance and raises the air pressure in the subglottic
region. The interaction between this pressure, cord structure and cord mechanical



properties produces vocal fold vibration, which transforms pressure energy into sound
energy.

The length, thickness, stiffness, and tension of the vocal folds are individual
characteristics and can be modified during vocal emission by the intrinsic muscles.
Sound properties such as intensity (voice loudness), vocal frequency (voice pitch) and
vocal registers depend not only on the anatomical and tissue properties, but also on the
functional capacity of these muscles, under neurological command, to modify and
modulate the folds’ structure, adapting them to a specific vocal task (for example
sustained falsetto emission). The muscles’ effects on vocal characteristics are

presented in Table 6.1.

Table 6.1: Functions of the intrinsic muscles of the larynx

Muscle Function

CT Cricothyroid Tensor — increases vocal pitch
TA +V Thyroarytenoid + Adductor, tensor, shorten vocal folds,

Vocalis increases glottic resistance and decreases voice

pitch

LCA Lateral cricoarytenoid  Adductor
PCA Posterior Abductor

cricoarytenoid
1A Interarytenoid Adductor

Source: Tsuji, Watanabe, Imamura & Sennes, in print

The sound produced during vocal fold vibration is the fundamental sound of
the larynx. It is a complex sound, consisting of the fundamental frequency (FO) and
other harmonic waves of multiple frequencies with decreasing amplitude (Figure 6.7a).
This complex sound travels through the vocal tract until it reaches the external
environment, where it undergoes modifications to its original characteristics caused by
resonance and articulation, allowing the formation of different vowels and consonants,

essential in producing the wide range of phonemes present in human speech.
Sound Resonance: vowel production

The pure or simple tone produced by a rigid vibrator such as a tuning fork,
corresponds to a single frequency, while the compound or complex sound, such as a
guitar string, is formed by a set of simultaneous sound frequencies. Harmonics, or

more precisely, harmonic partials, are partials whose frequencies are numerical integer



multiples of the fundamental. With compound sound, the lowest or fundamental
frequency (FO0) has the highest sound pressure intensity or amplitude. The other sound
waves, or harmonic waves (H1, H2, H3...) have progressively lower intensities as the
frequency increases. The vocal folds are a malleable vibrating structure that produces
a compound sound with harmonic partials when vibrating (Figure 6.7a). This laryngeal
or fundamental sound passes through the tubular structure of the vocal tract formed by
the pharynx, oral and nasal cavities, and reaches the external environment. During this
passage, harmonic waves with different wavelengths undergo the resonance
phenomenon, and can be amplified or attenuated, depending on the dimensions of the
resonating cavity. This anatomical segment is also known as the phonatory apparatus
filter. Because it is an irregularly shaped tubular structure, the vocal tract can be
considered a complex open resonator tube, formed by the connection of several tubes
with variable calibers and lengths. These dimensions can also be modified in infinite
ways by central neurological control during vocal emission. Central neurological
control, through peripheral innervation, coordinates the various muscles responsible
for mobilizing and modifying the larynx, pharyngeal wall, tongue, oral structures,
cheek, and palate configurations.

This complex human ability, capable of modifying vocal tract geometry, allows
the fundamental laryngeal sound to be modified by resonance, promoting the
amplification and attenuation of different harmonic frequencies. In voice production,
the harmonic frequencies amplified by the vocal tract are called harmonic formants
and the first three of these - F1, F2 and F3 - define the different vowels (Isshiki, 1989)
(Figure 6.7b). Thus, the formants are the characteristic frequency of each vowel. The
formant frequencies of vowels /a/, /i/ and /u/ are presented in Table 6.2 (Goncalves et
al., 2009).

The sound resonance phenomenon depends directly on the dimensions and
shapes of the resonator tube. Consequently, the resonating characteristics of the vocal
tract, composed of different cavities (pharyngeal, oral and nasal), exhibit a supposedly
resonance profile, and the coexistence of identical vocal tracts between different
individuals is very unlikely, monozygotic twins being an exception, albeit with some

caveats.
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Figure 6.7. Resonance phenomenon. (A) Complex glottic sound with fundamental
frequency (F0) and its harmonic frequencies. (B) the same sound spectrum after the
influence of vocal tract resonance. The amplified harmonic frequencies (F1, F2 and
F3) correspond to the first three formants that characterize vowel production.

Table 6.2. Average harmonic frequency values of the first three formants (F1, F2,
F3), in Hz for the vowels /a/, /i/ and /ul.
Females Males

Vowels F1 F2 F3 F1 F2 F3
a 1002.90 1549.95  2959.70 753.87 1278.70  2483.44

i 361.90 2583.89 3378.14 297.80 2150.85  2925.14

u 461.82 763.41 2902.55 345.27 799.51 2351.50

Articulation: consonant production

The laryngeal sound, modified by the resonance phenomenon during its course
through the vocal tract, can undergo momentary obstructions in its free flow due to the

contact established between structures such as the lips, tongue, soft palate, uvula, teeth,



gingiva, hard palate and posterior pharyngeal wall. Among these, the lips, tongue, soft
palate, and uvula are active mobile structures that promote articulatory contact with
each other or with other fixed structures. The relationship between active and passive
articulators is defined as the point of articulation and defines the characterization of
the different consonants.

Depending on the type of occlusive contact obtained (total or partial), complete
or partial airflow obstructions may occur. As a result, with the Brazilian Portuguese
language as reference, consonants are classified as occlusive or plosive, such as, /p/,
/ol, It/, 1d/, Ig/, and fricative, such as /f/, Iv/, Isl, Iz/, [jl. Even among plosive consonants,
depending on the lowering of the palate, which releases air through nasal cavities,
nasal consonants such as /m/ and /n/ are produced (Seara, Nunes & Volcéo, 2011).
Differences in spoken language as well as regional and environmental influences can
have a major impact on individual articulatory dynamics and promote significant vocal

differences between pairs of twins, albeit monozygotic.

Concluding remarks

The human phonatory apparatus, a highly complex system that requires perfect
synchronization, is coordinated by the central nervous system, and several organic
structures such as the lungs, larynx, pharynx, tongue, and others. The characteristics
of the fundamental sound produced in the larynx, as well as the resonance of this sound
through the vocal tract, are related to the dimensions, anatomical profiles and dynamic
response of the structures involved. Consequently, we can consider that it is almost
impossible for identical voices to occur between different individuals, even if they are
monozygotic twins. Using various acoustic analysis parameters, San Segundo et al.
compared the differences in the voices found between pairs of distinct individuals with
those between pairs of voices from the same individual, observing significant
differences between the two groups. When confronted with the differences in the
voices of pairs of identical twins, she observed that the vocal differences in this group
were situated between the differences observed in the other two groups (San Segundo,
Tsanas & Gomez-Vilda, 2017). In another study, the same authors demonstrated that
the coefficient of similarity of voices decreases when the kinship relationship between
pairs of voices declines. This means that the similarity classification, from highest to

lowest, was observed in the following scale of values: monozygotic twins, dizygotic



twins, siblings, and reference population (San Segundo & Kiinzel, 2015). We can
therefore infer that, although the pairs of voices of monozygotic twins may be quite
similar, there will still be detectable differences in a more detailed vocal analysis.

References

Gongalves, M. I. R., Pontes, P. A. D. L., Vieira, V. P., Pontes, A. A. D. L., Curcio, D.,
& Biase, N. G. D. (2009). Transfer function of Brazilian Portuguese oral vowels:
a comparative acoustic analysis. Brazilian journal of otorhinolaryngology,
75(5), 680-684. https://doi.org/10.1016/s1808-8694(15)30518-8

Hansen, J. T. (2019). Netter's Clinical Anatomy. 4™ ed. (pp.93-155). Philadelphia, PA:
Elsevier.

Hirano, M. (1975). Phonosurgery: basic and clinical investigations. Otol (Fukuoka),
21(suppl 1), 239-440.
Imamura, R., Tsuji, D. H., & Sennes, L. U. (2002). Fisiologia da laringe. In C.
A. H. Campos & C. A. H; H. O. Costa H. O. (Eds.) Tratado de
otorrinolaringologia. (pp. 743-750). Sdo Paulo: Roca., 743-50.
Isshiki, N. (1989). Surgery to elevate vocal pitch. In N. Isshiki (Ed.), N.
Phonosurgery: Theory and Practice (pp. 141-155). Tokyo: Springer., Tokyo.
p.5-21.

San Segundo, E., & Kiinzel, H. (2015). Automatic speaker recognition of Spanish
siblings: (monozygotic and dizygotic) twins and non-twin brothers. Loquens,
2(2), e021. https://doi.org/10.3989/loquens.2015.021

San Segundo, E., Tsanas, A., & GOmez-Vilda, P. (2017). Euclidean distances as
measures of speaker similarity including identical twin pairs: a forensic
investigation using source and filter voice characteristics. Forensic Science
International, 270, 25-38. https://doi.org/10.1016/].forsciint.2016.11.020

Seara, I. C., Nunes, V. G. & Volcéo, C. L. (2011). Fonética e fonologia do portugués
brasileiro: 2° periodo. Floriandpolis: LLV/CCE/UFSC.

Tsuji D. H., Watanabe L. M. N., Imamura R., & Sennes, L. U. Anatomia Aplicada a
La Funcién Laringea. In Kume M, Sulica L. Patologia vocal y Fonocirugia — El
Libro de Los Maters. Mexico: Springer Healthcare. In print.



https://doi.org/10.1016/s1808-8694(15)30518-8
https://doi.org/10.3989/loquens.2015.021
https://doi.org/10.1016/j.forsciint.2016.11.020
https://doi.org/10.1016/j.forsciint.2016.11.020

Peer Commentary

By Lilian C. Luchesi®

Professor Domingos Tsuji wrote about anatomic structures, physical
movements, and events involved in sound production. There is a relation between
vocal tract anatomy and voice production that can explain the individuality of voice.
It is unique for each person, with some exceptions on monozygotic twins. What do we
know about genetic effects and external influences, like culture, on monozygotic
twins’ voices and speech?

Professor Tsuji explains that anatomy and genetics affect the form and
function of cartilages and muscle on the vocal apparatus. Genetics is an important
determinant of each person's anatomical characteristics, and if you have two persons
with similar genomes, their vocal apparatus will probably be very similar. Voice
production is a mechanical phenomenon in which sound waves go through the vocal
tract. The size and extension of our vocal tracts is a mechanical phenomenon too. So
if the instrument (our vocal apparatus) producing this mechanical phenomenon is the
same, the result will probably be the same.

When comparing a twin pair with the same vocal fold, the same vocal
structures, or vocal tract, their sound will probably be very similar. For example, the
vocal folds have distinct characteristics. If two vocal folds are exactly equal, the
extension or the voice frequency range will probably be equal or very similar. This
similarity means they will be similar from the lowest frequency, or lowest pitch, to the
highest pitch. Similarly, the intensity range from the lowest intensity to the highest
intensity emission will be very alike. These two parameters (pitch and intensity) can
be controlled by training, and if you compare, the performance will probably be better
in the person more trained. However, basically emission of, for example, /e/ or /a/ or
/il probably will be very, very similar among twins.

On the other hand, Tsuji reports the uniqueness of the voice: each person, even

twin siblings, will have something that differs her from the others. Tsuji compares this
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individuality with electronic gadgets and says the software inside the brain that
controls everything will be different between two persons. To illustrate Tsuji’s
explanation, Jonsson and colleagues (Jonsson et al., 2021), analyzing genome
sequences of monozygotic twins from Iceland, found specific mutations in only one of
the siblings in 15% of them, reinforcing that monozygotic is not equal. Two recent
studies showing the distinction between monozygotic twins are on vowel formants of
Brazilian male pairs (Cavalcanti et al., 2021) and in the vowel filler [e:] in hesitating
responses of Spanish pairs (San Segundo et al., 2017). In these two examples above,
the twins were raised together.

Otta’s research team conducts a case study with twins raised apart in Brazil.
The study focuses on a pair of twins separated when they are newborns. One twin was
raised in the Northeast of Brazil, and the other in the Southeast. They remained apart
during twenty-three years of their life, and now they are together again. In this study,
we could see both similarities and differences between them. Although, we are still
looking at their voices. Additional information on twin’s voice analysis is presented in
chapter 12 of this book.

Tsuji says the significant differences among people probably lie in the
resonance and not in the phonation of the laryngeal sound. The environment where
they were raised, the nationality, or country region significantly influences speech,
changing the articulation, intonation, and vowel characteristics. Thus, the environment
in which they were raised will be essential, and we expected that siblings would have
a high similarity score when they are raised in a very similar environment. If we
compare dizygotic twins to non-twins’ siblings, dizygotic twins have more similar
voices than non-twins’ siblings. However, dizygotic twins have lower similar scores
than monozygotic twins. Even though they were born on the same day and shared the
same environment during their development, they do not share the same genome. Few
studies compare MZ twins, DZ twins, and non-twin siblings’ voice parameters.
Forensic studies using automatic speaker recognition found a decreasing scale in
similarity coefficients among MZ > DZ > non-twins > Unrelated Speakers (San
Segundo & Kiinzel, 2015). Although even observing this relation, non-twin siblings
can also affect automatic recognition system performance by deteriorating forensic
comparison of voice, pointing to the necessity of more investigations on similar-

sounding speakers beyond MZ (San Segundo & Yang, 2019).



Comments on the voice production mechanism by humans: robotic voice and

singer’s voice adjustment

When we are silent during respiration, vocal folds are always opened (Fig
6.4a). The PCA muscle (Posterior cricoarytenoid muscle; see Fig 6.6), which is the
only muscle that keeps vocal folds in a lateral position, remains all the time contracted
to keep the folds opened, or the glottis opened, for respiration.

The first form of phonation on humans is the sound emission while inspiring.
In this phenomenon, instead of the vocal folds vibrating from down to up (from a
horizontal to upwards vertical position), movement is downwards from horizontal to
vertical down (Figure 6.8). Anyone can produce this kind of sound, but we must
remember that vocal folds are not the only sound producer but also the palate, lips, and
tongue. All these structures, when constricted, may vibrate during the airflow passage
and produce sounds. The main structures in voice production are the vocal folds, but

other structures may be involved too in this robotic voice emission.

Figure 6.8. Vocal folds movements during silent respiration (A) and respiration with
phonation (B). Arrows indicate the fold movement directions. In the silent respiration
vocal fold, lateral movement is horizontal upwards oriented, while respiration with
phonation is horizontal to down movement in relation to the head position. Created

with BioRender.com



Professional singers move the head, shaping the vocal emissions. It is possible
that by changing the neck or the head positions, one can stimulate some other muscles
around the larynx or even on the neck that can help to give more precision in the voice
emission. For example, the format of the vocal tract can be a little bit changed during
movements, and probably those highly technically developed singers would have a
very sensitive perception of their voice production. So, they use those movements to
help them reach the sound they want to produce to that specific interpretation.
Sometimes moving the chin-up is better for single high notes. They feel more
comfortable producing notes, and the resonance is better for reaching that note with
this kind of movement.

To illustrate the relation between postural alignment, vocal resonance, and pitch
control, imagine the ears being placed forward the shoulders (the neck thrusting head
posture). The anterior neck muscles will be stretched, narrowing the pharynx and
negatively impacting the vocal resonance (Wilson Arboleda & Frederick, 2008). When
shoulders are rounded forward, inspiration’s lung volume decreases and may cause
vocal fatigue and difficulty projecting the voice (Wilson Arboleda & Frederick, 2008).
Trained singers can control the increase in neck-muscle tension while singing or
speaking, preventing the shortening distance between the occiput and seventh cervical
vertebra, obtaining a greater resonance, and better breath control (Jones, 1972). The
singer’s voice emission is boosted in overall aspects, increasing FO and low-frequency
amplitudes when keeping the head extended upward at 15° and 30° positions. In a
contrary direction, speaking with the head lowered will affect the low-frequency
energy and the gain in Singing Power Ratio (Knight & Austin, 2020) these results were
compared to the comfortable habitual head position adopted by each singer.

One more of Tsuji’ s comments about the words “vocal cords” and “vocal
folds”. Indeed, the correct words from the anatomical point of view, the medical point
of view, are vocal folds. Because instead of being a chord, a simple chord, it is more
like a fold or Portuguese “prega” (pleat), like those on clothes. That is why they are
called vocal folds. However, I use “vocal cords” because of some terms used in the
medical area. For example, we never say, in Portuguese, “Foldite,” we say “cordite”
when we want to refer to the vocal fold inflammation, and we never say “preguite.”
So even in the medical area, in the anatomical scientific papers, we say “Cordite”
instead of “Foldite.” So, we can keep using this term, in Portuguese, “cordas vocais”

(vocal cords), because this term is popular and people can understand it very well. So,



| keep using it, especially with my patients. However, when writing, please write vocal
folds.
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Chapter 7

Larynx evolution: comparative research with
primates and carnivores'?

By Aline D. Carneiro Gasco and Rogeério Grassetto T. Cunha

Bioacousticians have been comparing the anatomy of the larynx and related
structures across species for some time already. However, Daniel Bowling paved the
way to a novel and more systematic approach including specific measurements and
phylogenetic signal analyses. Since plausible arguments have been put forward on the
influence of social systems and body sizes on larynx evolution, Daniel Bowling and
colleagues focused on comparing larynges of terrestrial and arboreal primates and
carnivores, living either alone or in large groups (Bowling et al., 2020). Moreover, the
authors assumed that carnivores constitute a special group similar to primates in their
diverse social systems, body sizes, and habitats. Furthermore, investigations will
continue with Bowling’s systematic approach being applied to other taxa.

Their results were quite interesting, with primate larynges proven not only to be
larger (relative to body size) but also with larger residual variation. Also, their data
points that they have also evolved at a faster rate. Last, changes in larynx size were
related to a larger variation in the mean FO among primates when compare to
carnivores, something they suggest is related to a larger prominence of vocal
communication among primates. Then, they went on to explore some possible ideas
behind these patterns.

Regarding body size, they hypothesize that primate and carnivore larynx sizes
would vary according to habitat occupancy. Bowling’s social system hypothesis is that
group size would proxy social complexity with large-group primates requiring a more
robust larynx. So far, both hypotheses have been proved wrong. The differences in

group size seemed not to be related to the variety of larynx sizes. Additionally, large-

10 Daniel Bowling delivered the talk “Rapid evolution of the primate larynx and the Source-
Filter Theory”, based on the paper Bowling et al. (2020) Rapid evolution of the primate larynx.
PLoS Biol 18(8): €3000764. This chapter consists of the main ideas of the talk and the
following discussion. To see the illustrations, please access
https://doi.org/10.1371/journal.pbio.3000764.
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group primates varied more than carnivores in terms of larynx size. As sound
examples, they point out that the howler monkeys have the largest larynges within
primates and do not live in the largest groups, whereas baboons have tiny larynges and
live in huge groups. We could add that hylobatids also have very large larynges (both
in absolute and relative terms), and also do the Callicebinae, but species from both
groups form some of the smaller groups among primates. In short, there are clear
differences between primate and carnivore larynx sizes, but there is no simple
explanation for the variation, at least based on the chosen index of sociality, as
Bowling and colleagues have already learned. He suggested that we could look at
relationship quality, for example, or at some of the several indexes of sociality
available. In this whole sociality issue, an interesting group to look at are the coatis, a
carnivore with large groups, complex sociality and flexible habitat and diet.

Bowling noticed that Panthera’s larynx models were some of the largest sized
ones in relation to body size, and they also correspond to the roaring feline clade,
probably functioning as a body exaggerating message, which might bear some
relevance to a sexual selection function. Moving to our species, they did not measure
the human larynx in the study, but he expected to position it above the regression line,
around the chimpanzee and gorilla larynges on the graph. However, he reminded that
since men and women are different from puberty, we must consider that sexual
dimorphism affects the larynx size. Thus, men would probably be further above the
regression line graph of larynx sizes than women.

Regarding the specific measurements taken in Bowling’s systematic approach,
they first reduced the data set of ten measurements through a principal component
analysis. Their measure was a first approach and roughly indicates how the voice was
affected with variable vocal fold lengths, which is reflected in their measurements.
Overall, as the larynx becomes larger, the vocal folds lengthen to the extent that they
increase the frequency range that can be produced. Perhaps, it sounded like a basic
explanation, but those changes are the main blocks to build the understanding around
anatomy and voice production. Later on, he suggests that further, steps must be taken
in the direction of more sophisticated approaches, for example looking at cartilage
morphology. By doing so, he claims we will get some insight on the relation between
such finer anatomical differences and the variations in the amplitude of the voice or

the shape of the glottal pulse, to cite just some of the possible ways forward.



Conducting Bowling’s comparative and systematic approach to vertebrate
larynges required a CT scan (computed tomography scan; Figure 7.1) to model the
vertebrate larynges. Once vocal tract length measurements would require access to the
whole torso, that focused only on excising larynges. The CT scan used the National
Museum of Scotland’s massive collection of larynges excised from animals that died
in European zoos. Before running CT scans, the larynges were blown to moisten the

air, thus allowing phonation and vibration.
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Figure 7.1. The computed tomography scan (CT) creates irﬁagé up to the level of the
thoracic and the limb up of the standing and conscious horses. Font:
https://vetgrad.com/.

Reaching out to the end, Bowling briefly tackled the auditory and vocal
systems alignment issue across species. What we hear is fine-tuned into the range of
what the animals are vocalizing. If one had some proxy for evolution in the auditory
and vocal systems, one could look at the different rates at which they evolved. Maybe
one of those evolved faster, and then someone could say which system is more likely
to be the driver. In terms of brain matters, a growing amount of work on morphology,
vocal morphology, and acoustics shows that animals can make complicated use of their
vocal systems. Bowling explained that animals could have fine control of laryngeal
movement and vocal tract and move their tongue around and make vowel sounds. In
short, we do not completely understand what is going on with animal brains. In
contrast, the current story about humans is directed to the primary cortical motor
descending control that allows us to learn and make different sounds.


https://vetgrad.com/

Future directions

Future work on the phylogeny of the vertebrate larynx will need to broaden the
current National Museum of Scotland’s collection to include more mammalian clades.
Up to this point, Bowling and collaborators have only looked at primates and
carnivores, demonstrating the rapid evolution of primate larynges when compared to
their carnivorous counterparts. Furthermore, ongoing collaborative work with Dr.
Jacob C. Dunn, director of the Behavioural Ecology Research Group of Anglia Ruskin
University (UK), aims to investigate larynx phylogeny to shed light on the evolution

of language.

Concluding remarks

We learned that larynx size is strongly related to body length and vocal
frequency up to the point, but that the differential flexibility of primate larynx size can
potentially affect their vocal communication. Primate larynges are larger, more
variable, and evolved more rapidly than their carnivorous counterparts. Primates have
turned into a more diverse clade in that matter and display more complex systems than
carnivores. Although it seems that primate larynges are less constrained by body size
and increase in diversity due, we cannot be sure of the selective pressures responsible
for such pattern. Despite adaptations to phonation, which might bear relation to habitat
(via the acoustic adaptation hypothesis), social complexity or sexual selection
pressures, there are still other major functions for the larynges: the protection of the

airway during feeding and the regulation of air supply to the lungs.



Chapter 8

Identifying emotions from voice

Bruna Campos Paula®!

Abstract

Expression of emotion in vocalizations occurs via modifications of acoustic structure.
Vocal expression can be used to infer the emotional state. During speech
communication, listeners pay attention to changes in pitch, loudness, rhythm, and
voice quality (emotional prosody) to form an impression about the speaker's emotional
state in conjunction with linguistic decoding. With respect to acoustic characteristics
of vocal expressions in emotion studies, Fo, voice intensity, energy distribution in the
spectrum frequency, formant location, and speech rate are frequently used to access
the emotional voice.

Keywords: Acoustic characteristics; Human voice; Affective science; Human
emotion; Discrete emotions; dimensional approach of emotion.

The emotional expression theory suggests that emotions evolved at different
times as an adaptive trait, following the theory of evolution (Hess & Thibault, 2009).
Emotional expression can be separated into modules such as anger, fear, happiness,
and sadness (Darwin, 1872; Panksepp & Watt, 2011). These modules are the
foundation of the theoretical approach of the “basic emotions” concept, which
proposes that some aspects of the body and face evolved as an adaptation to mediate
specific contexts (lzard, 1992, 2007).

Another perspective is the dimensional approach, which concentrates primarily
on one component of emotion, the subjective feeling state, and focuses on identifying
emotions based on their placement in a small number of underlying dimensions, such
as valence, activation and potency (Laukka, 2004; Laukka, Juslin, & Bresin, 2005).
From an evolutionary perspective, emotions can be understood according to the
functions they serve (Keltner & Gross, 1999; Cosmides & Tooby, 2000). They evolved

11 Acoustics and Environment Lab, Mechanical Engineering Department (POLI), University
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to deal with goal-relevant changes in our environment and can be described as
relatively brief and intense reactions to these changes (Laukka, 2004).

Psychological theories of human emotion have highlighted the
multicomponent nature of emotions, typically including subjective experience and
neurophysiological processes, as well as their somatic and endocrine counterparts
(Barrett et al., 2007). In the discrete emotion theory, emotion is thought to represent a
unique interaction with the environment and its adaptational significance for the
individual (Laukka, 2004). A unique cognitive appraisal pattern, physiological
activity, action tendency, and expression are related to each discrete emotion (Ekman,
1992; lIzard, 1992). Discrete emotion theories explain a limited number of “basic”
emotions that have evolved to deal with particularly pertinent life problems:
competition and anger; danger and fear; cooperation and happiness; loss and sadness.
Studies on the communication of emotions suggest that facial expressions are
universally expressed and recognized, and these studies have been the backbone of

discrete emotion theories (Ekman, 1992).
Vocal expression of emotions

Emotions are also expressed via the vocal channel through modification of the
sound's acoustic structure or specific vocal types (Morton, 1977; Izard, 1977; Anikin
et al., 2018). Vocal expression can be used to infer the sender’s emotional state
(Scherer 2005). The human voice is a diverse and nuanced source of emotional
signaling, (e.g., laughter, Bachorowski et al., 2001; teasing, Keltner et al., 2001,
motherese, Fernald, 1992; vocal bursts, Simon-Thomas et al, 2009). During speech
communication, listeners pay attention to changes in pitch, loudness, rhythm, and
voice quality (emotional prosody) to form an impression about the speaker's emotional
state in conjunction with linguistic decoding (Wilson & Wharton, 2006).

Most vocal expression studies have used some variant of the “standard content
paradigm” to detect emotional speech from real conversations. First, an actor is
instructed to read some verbal material aloud while simultaneously portraying
particular emotions chosen by the investigator. The emotion portrayals are first
recorded and then evaluated in listening experiments to determine whether listeners
can decode the intended emotions. The same verbal material is used in portrayals of
different emotions, and most typically consist of single words or short phrases. The

assumption is that because the verbal material remains the same in the different



portrayals, whatever effects appear in listeners' judgments it should result mainly from
the speaker's voice cues.

On the other hand, in the emotional speech method from real conversations,
emotions are induced in the speaker using various methods and speech synthesis to
create emotional speech stimuli. Both methods have advantages and drawbacks:
despite the fact that standard content paradigm ensures control of the verbal material
and encoders intention, there are doubts about the validation between posed and
natural occurring expressions; using real emotional speech ensures high ecological

validity but renders the control of verbal material and encoder intention more difficult.
Acoustic cues of emotions

Linguistic and nonlinguistic information is coded simultaneously in human
speech acoustic signals, communicated by the same acoustic voice cues. Furthermore,
the voice contains other types of information about the speaker, such as identity, age,
sex, and body size (Sell et al., 2010; Smith & Patterson, 2005; Gonzélez, 2004;
Pisanski et al., 2014). Human speech is produced by the speech articulators’
continuous movement, such as the tongue, lips, and larynx, which modulate airflow so
that speech sounds reach the ears. According to the source-filter model of speech
production, vocal acoustics is a combination of an underlying energy source and
filtering effects due to pharyngeal, oral, and nasal cavities resonance of the
supralaryngeal vocal tract (Fant, 1960). Vibration occurs in the vocal folds, that
vibrates the air in the supraglottal vocal tract (pharynx, mouth, and nasal cavity), vocal
tract resonances (called formants) are acoustically excited, passing the frequencies in
the source waveform that are near the dampened or strengthened energy, but do not
totally represent the vocal tract resonances.

With respect to the acoustic characteristics of vocal expressions in emotion
studies, FO (the frequency with which vocal folds open and close across the glottis
during phonation), voice intensity, energy distribution in the frequency spectrum (high
and low frequencies), formant location, and speech rate are frequently used to access
the emotion in voice (Borden & Harris, 1984; Scherer, 1989; Banse & Scherer, 1996;
Laukka 2004). Taken together, these aspects constitute prosody. Pittam and Scherer
(1993) summarized some of the research evidence, selecting acoustic parameters

related to specific emotions:



e Anger, characterized by an increase in mean FO, FO variability and
range, and mean energy;

e Fear, characterized by an increase in mean FO, FO range, and high-
frequency energy;

e Sadness, characterized by a decrease in mean FO, FO range, downward-
directed FO contours, and mean energy;

e Joy, characterized by increases in mean FO, FO range and variability,
and mean energy.

FO is subjectively heard as voice pitch, and mainly reflects the differential
innervation of the laryngeal muscles and the extent of subglottal pressure (Barbosa and
Madureira, 2015). Voice intensity is subjectively heard as vocal loudness and
determined by respiratory and phonatory action. VVoice quality is subjectively heard as
the timbre of the voice, determined by supralaryngeal vocal tract settings and the
phonatory mechanisms of the larynx (Barbosa and Madureira op cit.). Finally, the
temporal aspects of voice concern the temporal sequence of sound production and
silence (speech rate).

The basic assumption underlying most work on vocal emotion expression is
that there is a set of objectively measurable voice cues that reflect human emotion
states. Thus, some researchers have argued that voice cues may reflect only the so-
called activation dimension of emotions (Davitz, 1964) or a combination of arousal
and valence (Bachorowski, 1999). However, recent research suggests a great deal of
acoustic differentiation of emotions in vocal expression (Juslin & Laukka, 2001,
Shigeno, 2004; Laukka et al., 2005; Goudbeek & Scherer, 2010; Silva et al., 2016).

Concluding remarks

The literature has shown that combinations of acoustic parameters, such as
speech rate and fundamental frequency (F0), cue different emotions. The mean FO and
speech rate are generally higher for emotions associated with high sympathetic arousal
such as anger, fear, happiness and feelings of anxiety. However, one of the critical
questions about detecting emotion from voice is that a theoretical approach in research
is still missing. Studies are needed. The most important aspect in conducting a study
on the expression of emotion from voice is choosing which emotional states should be
investigated, the quality of speech samples, a multiparameter measure of voice, and

physiological and phonatory-articulatory analysis.
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Peer Commentary

By Plinio A. Barbosa®?

In her chapter, Bruna Campos Paula guides us to think about the difference
between feelings and emotions. She describes feelings as related to thoughts and other
cognitive processes and emotions as quick responses to events. Emotions are also
expressed in our speech, and this is Paula's interest.

Different emotions are evaluated from voice parameters depending on the
researcher's theoretical framework. Two of these are categorical (basic emotions
concept) and dimensional theories (valence, activation, and potency). Therefore, when
conducting a study on the expression of emotion from voice, Paula suggests that the
researcher have that in mind and define the emotional states to be investigated; the
quality of the speech samples, a multiparameter measure of voice, and the
physiological phonatory-articulatory analysis must also be planned.

In studies on monozygotic twin voices, we expect to find greater similarity in
the ways of emotional expression than in dizygotic twin or ordinary siblings' voices.
In terms of forensic research, for instance, parameters such as high formant
frequencies, as F3 and F4, and temporal variables such as articulation rate and pausing
help distinguish speech within twin pairs. Parameters like shimmer and jitter are also
important in studying human voice, especially when subject to an emotional charge.
Both are aspects of voice quality, where the former is a measure of glottal pulse
intensity variation and the latter of glottal pulse period variation. Shimmer and jitter
are used to analyze individual vocal differences or the impact of some event on the
vocal behavior of a person in a particular situation.

We could also speculate on the impact the study of animal emotions could have
on our everyday lives. For example, the results obtained by studying human emotions
could be adapted to non-human animal emotions. Probably, the study of facial

expressions in animals could be useful for the study of animal communication.

12 plinio A. Barbosa is Associate Professor at the Department of Linguistics of the Instituto de
Estudos da Linguagem at UNICAMP (Brazil), and responsible for the Speech Prosody Studies
Group.



In her work, Elodie Briefer illustrated this by using the dimensional approach
and focusing on evolutionary aspects (Chapter 4). Her work revealed different kinds
of impact. Both emotional arousal and valence can be detected from facial and vocal
expressions, and fear inferred from the behavior of animals. Animal welfare can be

measured and promoted.



Part C Methods used in bioacoustical research

Chapter 9

The use of PRAAT software in acoustic analysis

Plinio A. Barbosa®®

Abstract

This paper introduces the main features of Praat software for acoustic analyses, going
beyond what is suggested by the program association with the phrase "doing phonetics
by computer”. In fact, annotation, spectral, duration, intensity, and fundamental
frequency analyses, mostly used for speech, can be easily adapted to extract parameters
from non-human animal vocalizations. In addition to illustrating the Praat features with
examples from speech and non-human animal vocalizations, the advantage of scripting
is also discussed.

Keywords: acoustic phonetics; acoustic analysis; software

The free Praat software developed by Paul Boersma and David Weenink
(2020) is by far the most widely used program for acoustic analysis by phoneticians
and speech scientists around the globe. In addition to allowing the user to perform
well-known tasks directly related to sound file handling, such as annotation, editing,
filtering, and ordinary spectral, durational and intensive analyses, it also allows
scripting, enabling the user to perform all tasks automatically through high-level

programming. Praat can be downloaded for free at <http://www.praat.org> and is

available for most operating systems. The Praat webpage has introductory instructional
material for both beginners and advanced users, as well as a list of Frequently-Asked-
Questions (FAQSs).

13 Department of Linguistics, Institute for Language Studies, University of Campinas, SP,
Brazil. pabarbosa.unicampbr@gmail.com
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Provided files are coded in formats such as WAV, AIFF, AIFC, MP3, among
others, and any type of signal can be analyzed in Praat. Common examples of non-
sound files are speech-related signals such as breath and electroglottographic signals.

When running Praat, two windows open: the Praat objects and Praat picture
window. The Praat objects window allows the user to perform numerous tasks and
analyses by using a set of dynamic buttons, which makes it possible for the user to
conduct all analyses related to a particular object. For example, the button for spectral
analysis is available when a sound object is selected, but not when an annotation object
is selected (TextGrid in Praat). On the other hand, several tasks can be performed with
a TextGrid object, which is not available for a sound object. The concept of dynamic
buttons helps users go directly to the relevant analyses they can carry out. In the
following sections, some examples of acoustic analyses in Praat will be shown as

illustrations of its main features.
Annotation

Figure 9.1 illustrates how speech signals annotation can be performed in Praat
by using TextGrid objects that allow several levels of segmentation. In this example,
four user-defined interval tiers are shown: phrase tier ("Em seguida, apareceu um
papagaio real™, "Next, a royal parrot appeared”). Another type of tier, the point tier,
provides a way to fix a position where some types of analyses can be conducted for
further verification, such as a Fourier spectrum and LPC analysis for formant value

computing, among others.

TextGrid objects can be saved independently from sound files and exported to
formats such as XML. Because the user defines the number and nature of the tiers, the
Praat annotation system can be easily used to segment non-human animal

vocalizations by delimiting intervals of sentences, notes, and phrases, among others.
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Figure 9.1. Broadband spectrogram (above) and annotation tiers (from top to bottom: phrase, word, syllable, and segment tiers) in Praat.




Spectral analyses

In addition to spectrographic analysis, illustrated in Figure 9.1 above, other
types of spectral analyses in Praat are: Linear Predictive Coding (LPC), for computing
formant frequencies and bandwidths; Fourier spectrum, for computing the amplitude
or phase values of all component frequencies in the signal; and cepstrum, for
separating source and filter characteristics and estimating formant frequencies when
LPC cannot be used (e.g., when the signal has significant noise or there are bifurcations
in the vocal tract). Figure 9.2 illustrates the use of Fourier amplitude spectra for

revealing differences in capybara barks in the contexts of feeding behavior (black) and

danger (red).
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Figure 9.2. The Fourier spectra of two capybara barks from the same individual as an
alert for feeding (black) and danger (red).

Quantitative analysis with a number of capybara individuals revealed that when
in danger, their barks have a stronger relative amplitude component in the 10-to-15-

kHz band compared with the feeding bark.



Duration analysis

In speech, syllable duration is the main parameter for signaling stress in a
number of languages, including Brazilian Portuguese, European Spanish and Italian.
Based on the study of the variation of normalized syllable duration (Barbosa, 2019) in
annotated data, such as those shown in Figure 9.1, it is possible to detect the positions
in an utterance where a particular speaker signals stress.

In addition to local measures such as duration, global measures, including
speech rate, help understand human behavior in different communicative situations.
The same can be applied in non-human animal vocalizations, as illustrated in Figure

9.3.
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Figure 9.3. Broadband spectrograms of the courtship vocalizations of two guinea pigs
with FO contours superimposed in blue. The vocalization to the left is slower, more
intense and has lower FO than the one on the right.

The broadband spectrograms of the courtship vocalizations of two guinea pigs
differ in speech rate (from left to right: 15.1 vs. 15.7 pulses/second), and main-energy

chord (note, for some authors: 28 vs. 20 ms). Fundamental frequency is lower for the



2’ guinea pig vocalizations, as discussed below, associated with higher relative
intensity (1.5 vs. 0.7 dB). These figures, associated with inferential statistics,

contribute to differentiating the two guinea pigs.
Intensity analysis

Praat makes it possible to compute global intensity, but the actual meaning of
intensity depends strongly on controlling the distance of the microphone from the
sound source. A decibel meter can be used to address this issue and obtain a reliable
measure of intensity. As an alternative, relative intensity, a measure of the difference
in energy between two band frequencies of a long-term spectrum, is simple to
determine in Praat, providing the user with a measure that is not affected by
microphone position. It can be computed after the user selects a spectrum object and
uses the Query menu to determine the limits of the two frequency bands to be
subtracted one from the other. For instance, by subtracting the energy of a low
frequency band from that of the total spectrum, a measure correlated to vocal effort
can be obtained (Traunmuller & Eriksson, 2000). This also works in vocalizations to
detect the strength of a call, as illustrated in the previous section, where the
vocalization on the left of the figure is around twice as strong as the one on the right,
calculated by computing the difference in energy between the spectrum up to 11 kHz
and the band between 0 and 400 Hz.

Fundamental frequency analysis

In speech, fundamental frequency (FO0), the acoustic correlate of vocal folds
vibration, is the main parameter for signaling pitch and intonation. It plays an
important role in the study of prosody, by demonstrating differences in the manner of
speaking, which helps distinguish broadcasting from political discourse, for instance.
The Praat FO tracking algorithm is very robust, even in the case of relatively low
signal-to-noise ratios, as depicted in Figure 9.4, which shows the FO contours of the
same utterance for the same speaker, with two different levels of additive Gaussian

noise expressing approximate signal-to-noise ratios (SNRs) of 16 dB (left) and 8 dB
(right).
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Figure 9.4. FO contours (blue) in broadband spectrograms for the same utterance from
the same speaker for two SNRs: 16 dB (left) and 8 dB (right). See text for details.

There are only a few differences in the traces shown in the figure for the two
SNR conditions, which do not produce relevant changes in FO means and standard
deviations. FO can also be tracked for non-human animal vocalizations, which may
help in individual recognition from voice, if combined with relative intensity, duration

and spectral analysis, as in the case of Forensic Phonetics (Barbosa et al., 2020).
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Figure 9.5. Differently colored FO traces in Hertz for the courtship vocalizations of
four different guinea pigs.

Figure 9.5 illustrates clearly differentiated FO traces of the courtship
vocalizations of four different guinea pigs. Despite differences in FO tracking due to
low intensity and noise in the case of the call, whose FO is in red, the high-pitched
individuals are clearly distinguishable from each other and from their low-pitched
counterparts. The two high-pitched guinea pigs exhibit FO medians (and standard
deviations) of 369 (33) Hz and 443 (16) Hz against 275 (15) Hz for the low-pitched
guinea pigs. This could be used not only for individual recognition purposes, but also
to explain female preferences in the case of successful individuals with particular FO

medians and ranges.
Scripting

By far, the main advantage of Praat is the possibility of programming, using

the Praat language, which allows any type of algorithm to be implemented, including



perception tests. Communication with the user during execution of a script is also
possible in Praat language, which has the advantage of allowing manual corrections
for some analyses, when necessary.

Several acoustic analyses can be made completely automatic for sound corpora
and are widely used by the speech research community. This is evidenced by the
availability of remote repositories with free Praat scripts accompanied by manuals and
examples for different types of tasks and experimental situations. Ours can be found

at: <https://github.com/pabarbosa/prosody-scripts>.

One of these scripts, the Prosody Descriptor extractor, computes a large set of
prosodic parameters, including relative intensity, FO statistical descriptors, local and
global measures of duration for segments and pauses, and voice quality measures,
among others. Some of these measures could be adapted to non-human animal
vocalizations, making it possible to consider the prosodic features, which are highly
relevant for analyzing animal communication because they signal affective states such

as emotion and stress.
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Peer Commentary

By Patricia Ferreira Monticelli*

The chapter of Professor Plinio Barbosa is fascinating. He delighted us when
accepted the invitation to write the book foreword and did it wholeheartedly. | was
pleased to chair his session and learn that he is a zoologist at heart. Barbosa
collaborates actively for years with the EBAC lab with enthusiasm for non-human
animal’s vocal production. Now, Barbosa and I gladly share the outcomes of our
collaborative work towards advancing animal communication studies with you.

This chapter briefly comments about tools and resources for improving
acoustic analyses, such as dealing with compressed audio recordings. For example, the
MP3 and OPUS codecs compact speech signals to save space, but acousticians
normally avoid these audio recording formats on sound analysis. Barbosa’s orientation
is that compressed audio can be safely used in sound analysis when we set predefined
goals with sound data collection. To illustrate, Barbosa uses the fundamental
frequency (FO0): the difference between measurements taken on PCM-codified signals
and the compressed ones will be only about 4 to 5%. Therefore, the concern should be
around sampling rate and signal-to-noise relation.

About the Praat software, it offers broad application in sound analysis either
for human and non-human animals. We can easily run basic acoustic analysis in Praat
when there is no need to include phonetic analysis. Barbosa wrote Praat scripts
(https://github.com/pabarbosa/prosody-scripts) and created a series of short lessons

freely accessed on the web at  https://youtube.com/playlist?list=PL0d036y-
KYM5075JCD5-RaqUHezbr4gf\WO. Thus, Praat tutorial is available on Paul Boersma

& David Weenink’s website (https://www.fon.hum.uva.nl/praat/manual/Intro.html).

Praat is traditionally used by phoneticians who are not used to the well-known
software in  the bioacoustics’ community, such as Raven Pro

(https://ravensoundsoftware.com/software/raven-pro/) and Avisoft SAS Pro

(https://www.avisoft.com). Up to date, we cannot find review papers that offer a

comparison between Praat and other software for acoustic analysis of animal sounds.

14 professor head of the Ethology and Bioacoustics Research Laboratory at the University of
Sao Paulo in Ribeirdo Preto.
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Barbosa and | compared that three software to test whether Praat delivers as fine results
as the others. We usually run basic analysis including time-, formant- and FO-related
measurements. Praat exceptionally offers jitter and shimmer measurements and speech
synthesis that run through scripts commonly available by online users (similarly to the
R platform community).

Bioacousticians invest a ton of effort to refine methodologies for acoustic
analysis of animal sounds. The terrestrial mammals offer a challenge with their
variable non-linear effects and the overlap with background noise below 1kHz. I asked
Barbosa to help us with the formants’ identification and description. He compared our
issue with human babies’ cries he studied. Formants are displayed as spectral distances
between harmonics on the spectrogram. The lower the frequency, the closer they are,
and it will be harder to detect formants between them; it may be impossible if there is
background noise. To illustrate, a 500Hz fundamental frequency (FO0) will produce a
harmonic in 1000Hz; the spectral range between them is only 500Hz. We can use some
filtering process, but it will not completely remove noise without harming frequencies
of interest.

Barbosa again contributed inspiring ideas to examine prosody in twin cries we
are interested in. We should investigate its rhythm and melody if we were to find a
difference in twins. Nevertheless, he advises always considering the whole individual,
considering unexpected variations among twin pairs, and massively increasing the
sound collection.

Lastly, I will briefly describe Barbosa as a detective bringing Forensic
Phonetics to police intelligence by comparing two pieces of speech collected from
targeted people during criminal investigations. To match convicted people’s speech
with the speech collected in the crime scene, Barbosa usually prefers searching for
acoustic parameters varying more inter- than intra-individuals, like third formant
frequency, FO minimum and mean values. In short, it is possible to catch a person on
a lie once the confounding factors of age are gotten rid of; for example, supralaryngeal
and laryngeal parameters change substantially until someone reaches adulthood, which

influences voice quality.



Chapter 10

Detecting events in acoustic signals

Paulo do Canto Hubert Junior®

Abstract

Acoustic event detection is a broad area that is undergoing a new wave of interest due
to data availability, the appearance of new methods and algorithms and potential new
applications. In this chapter, we analyze the definition of an event and what is meant
by event detection; we also propose dividing the problem into three classes:
unsupervised, semi-supervised and supervised event detection. We discuss the main
challenges of each problem class, and briefly discuss possible approaches for each one.

Keywords: event detection, MFCC, supervised-detection

If you listen to a recording of Johann Sebastian Bach’s Cello Suite no. 1 in G
Major, you might notice a number of different things. You will perceive every stroke
that the cellist makes, every new note emitted, then the sound stops. You might
perceive patterns composed of several notes that repeat during the composition,
sometimes with slight modifications. You might sense the instant where the mood of
the music changes, rising to a climax just before it ends. And, of course, you will most
probably perceive when the music begins and ends.

All of these possible perceptions can be broadly described as events that are
present in this particular acoustic signal. They differ in nature: some of these events
are linked to changes in the frequency distribution of the signal, others in rhythm or
intention. In every case, however, there is something that had a distinct, identifiable
pattern or form, and then changed, became something else, to change back to what was
before, or to something newer still.

This is how we propose to define an acoustic event: some modification in one
or many of a signal’s features that has a well-defined duration. We are usually

interested in events that arise as a result or consequence of a physical phenomenon,

15 Fundagdo Getulio Vargas, Escola de Administracdo de Empresas de S&o Paulo (EAESP),
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which would be what we really want to detect. However, in terms of signal processing,
an event is a modification in one or many of the signal’s features with a well-defined
duration, and by event detection we mean the estimation of two instants: the beginning
and end of the event.

This definition is not without its shortcomings. For example, we implicitly
assume that an event is something that starts abruptly: at time t0 it is absent, at time tO
+ epsilon it is present. This is not always the case, however, and we will later discuss
how this affects our modelling. We also adopt the name of event detection rather than
the more well-known signal detection to highlight an important difference: the signal
detection problem, as understood in the engineering sciences, means distinguishing a
signal from background noise. Event detection, on the other hand, involves
distinguishing a signal among many possible signals and background noise. In this
respect, event detection encompasses traditional signal detection problems.

Next, we will focus primarily on the analysis of underwater acoustic signals;
in these signals, events are caused by several phenomena: the chanting of fish, the
clicking and snapping of claws, the rain, breaking waves, and the presence or passage
of vessels driven by humans. These events often overlap, both in time and type of
modification they induce to the acoustic signal. This frequent overlapping makes event
detection very difficult.

According to our definition of an event, it is clear that to detect an event one
must understand what features of the signal are altered, and in what way. This can be
determined in a number of ways leading us to a classification of event detection
methods, which we will introduce in the next section.

And finally, a disclaimer: in this text, we do not aim to provide a
comprehensive theory of event detection. Our goal is to provide the reader with a broad

landscape of the types of problems and possible solutions that have emerged.

Classes of event detection problems

We have divided the event detection problem into three classes, depending on
what information is available to the analyst. We adopted the nomenclature that is now
standard in the field of machine learning, and defined the following three classes of

event detection problems:



1. Supervised event detection: in this case, the analyst has access to examples of
the signal corresponding to the event of interest. In this situation, algorithms
such as neural networks can be used to learn from the examples and determine
the main features of the event. This knowledge can be applied to the analysis
of new data.

2. Semi-supervised event detection: in this case, the analyst has a mathematical
model for the signal corresponding to the presence of the event. This model is
usually obtained from theoretical principles and algebraic manipulation. The
event detection algorithm in this case usually involves the statistical testing of
hypotheses.

3. Unsupervised event detection: in this case, the analyst has no examples or
explicit models for the event. The algorithm must then start by segmenting the
signal, that is, finding contiguous sections that have stable features different

from those of other sections.

Supervised event detection

The current literature on event detection and signal processing (Xia et al, 2019;
Dang et al, 2017; Xia et al 2017) shows that this type of problem has raised
considerable interest recently. This is partly due to the significant success that
algorithms such as neural networks and random forests are experiencing in other fields.

There are numerous challenges involved when applying these algorithms to the
problem of acoustic event detection. First and foremost is the database problem: it is
well known that for any supervised machine learning algorithm to work efficiently, it
must be fed with many examples that are good representations of the event it must
learn to detect. In the case of acoustic event detection, it also must incorporate different
background noise conditions, distance from the sensors, etc. In addition, all these
examples must be annotated, that is, it must be known whether the event is present or
absent in each example fed to the algorithm. This means that one must either produce
examples in the laboratory (which means that the background conditions might be very
different from the real situation in which we want to apply the detection algorithm), or
search, listen to and categorize instances of the signal under many different conditions.

Apart from these challenges, there is also the problem of feature engineering

and extraction, which involves determining the best way to represent a signal, such



that the presence or absence of the event is readily distinguishable (Kiktova, 2013).
One example that illustrates this problem is the use of deep learning methods for
acoustic event detection. These methods are highly effective in detecting events on
images; here, an event is a given pattern (a dog, cat, house, car) that can appear in
different ways and in different positions inside an image. Thus, when applying deep
learning methods to acoustic event detection, it is tempting to transform the problem
into an image processing problem, for example by first transforming the signal into a
spectrogram or an MFCC (Mel Frequency Cepstral Coefficients), two dimensional
structures that can be understood as images.

However, standard deep learning architectures are invariable with respect to
the position of the event inside the picture; a dog is a dog, whether it appears lying on
the floor (bottom of the image) or on top of a closet (top of the image). In a spectrogram
or MFCC, however, the same pictorial pattern can have very different meanings if it
appears in the low (low frequency events) or top section (high frequency events) of the
spectrogram. Currently, the Laborat6rio de Acustica e Meio Ambiente - LACMAM,
at EP-USP [Environment and Acoustics Laboratory at Polytechnic School of the
University of Sdo Paulo EP-USP] is conducting research on how to break that
symmetry so that the machine learning algorithms can learn that a pattern on a
spectrogram can have different meanings depending on their position on the frequency
axis.

There are also other difficulties with the choice and extraction of acoustic
signal features. Spectrograms and MFCC, for instance, depend on many parameters,
such as the time window, time and frequency resolution, windowing, etc. This makes
the problem of optimal feature selection very intensive in a computational sense, since
a grid search must be performed for all the combinations of these parameters,
combined with the network architecture and hyperparameters separately, in order to
determine the most accurate detection algorithm.

Semi-supervised event detection

In some situations, the phenomenon that gives rise to the acoustic event we
want to detect is well understood in the theoretical sense, and a mathematical model is
available that describes what a signal must be like when the event is present. Let’s

assume for a moment that we have a model f(t) for the acoustic signal of the event in
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the time domain. We define the signal obtained from the sensor as y(t). Now, assume
that at any given instant t the event f might or might not be present. Assume also that
the sensor is imperfect, such that there will always be a background noise component,

r(t). One can then think of a model with the following form:

y(®) = x()*z(t) + r(t)

Here z is a binary function, which takes the value 1 when the event is occurring
at time t, and O otherwise. By restricting z to a binary function, we are assuming that
the event is either present or not; it can be absent at tO and present at tO+eps, where eps
represents the time resolution of the signal. In principle, this model can be generalized
to adopt a nonnegative function z that would allow the event to be present at different,
continuous intensities (we could call this z a gain function for the event). The simplest
instance of this problem consists of taking a fixed duration section of the signal,
assuming that z(t) is constant (either 0 or 1) throughout this entire range, and using
some statistical testing procedure to test against.

In Hubert et al (2018) we proposed an algorithm that follows this strategy. The
goal of the analysis was to build a boat detection algorithm for underwater acoustic
signal data. The model f(t) is obtained from the literature on irradiated ship noise, and
the Full Bayesian Significance Test of Pereira and Stern (1999) is the hypothesis
testing method adopted. The following has been learned from this study, in terms of
semi-supervised event detection: first, the model must be as accurate as possible. A
model that is too generic (such as a harmonic model with k harmonics) will inevitably
lead to many false positives. There is also a computational challenge, since the
statistical testing procedure must be applied ideally to every t during the entire signal
duration. Given the typical duration of the event of interest, this problem can be
attenuated; nevertheless, the computational cost of the testing procedure cannot be too
high, or it will render the detector useless (unless there is no hurry in pointing out that
the event was present at some time in the past).

In addition, there is the problem of defining the alternative model, that is, the
model for noise term r(t). If detection is performed in a silent environment, where it is
very unlikely that an event, different from the one we are trying to detect and from
simple noise (for instance Gaussian white noise), will be present, this method will
work well. This is the case of traditional signal detection problems that are dealt with

in standard signal processing textbooks. However, in more complex environments



such as the sea, the captured signal y(t) will often be formed by the background noise
emitted with some other event. For instance, fish choruses, whales chanting, and many
other animal vocalizations, but also rain, breaking waves with varying intensity, or
other natural or anthropogenic phenomena that can occur in the sea. In this situation,
any statistical testing procedure will tend to reject the null hypothesis (signal is noise
only), even if f(t) does not accurately describe what is occurring in the signal.

The solutions for the above problems involve obtaining a more accurate or
restricted f(t) (in the paper, for example, we chose to adopt a chirp model that would
only detect accelerating ships), and collect many different models for other possible
events that might be present. From a statistical standpoint, the problem becomes one
of model selection (Bretthorst, 1990).

Unsupervised event detection

This type of problem typically appears when a long duration signal is available,
with little or no information about the events that may or may not be present at given
times. The goals of the analysis are many: to find and extract examples of a specific
event; organize the information to allow efficient direct inspection by specialists;
discover new or interesting events that were not expected; and describe the
environment in terms of what types of events are taking place and when.

It is in this scenario that our definition of an event becomes critical. In
unsupervised event detection we must estimate the beginning and end of events about
which we have little or no information. Our definition says that an event implies a
change in some characteristics of the underlying signal, but if we do not know what
characteristics will change, how can we begin to build a detector?

The Acoustics and Environment Laboratory (LACMAM, from the Portuguese
acronym) has been developing acoustic sensors and collecting data from many
environments for the past 8 years. One of these datasets consists of 10 months of
continuous underwater acoustic signals from Parque da Laje, a marine conservation
unit off the coast of Brazil. This dataset was built without any particular event in mind.
The idea was to explore the underwater soundscape, and later use the data for different
purposes (such as extracting examples with the presence of boats, and feeding these

examples into a supervised learning algorithm).



Direct inspection of this dataset, however, is costly; spectrograms can be
obtained to guide the analyst to potentially interesting sections of the signal that can
then be listened to. Adopting this strategy to analyze this many spectrograms visually
is not a very efficient way to process the data.

With this problem in mind, in Hubert et al (2019) we propose a signal
segmentation algorithm that searches for changes in total signal power. From a
statistical standpoint, this means we break the signals into sections with different
variances. Given our definition of an event and the discussion above, a change in
variance is the most general way in which we believe a signal can change. Of course,
this is not necessarily the case; the signal power frequency distribution may change,
for instance, without changing the total power. However, for transient events that are
taking place in a noisy and rich environment, we believe this will seldom, if ever, be
the case. In addition, whenever an animal starts vocalizing, or a boat’s engine is turned
on, as with many other possible events found in the underwater soundscape, the total
power of the signal will change because these events involve a new source, with a
power source of its own.

Thus, our model assumes that a sudden change in signal variance occurs at time
t0. By using Bayesian (probabilistic) methods, we derive a posterior model for t0 and
obtain the maximum posterior (MAP) estimate for t0 in a given signal. Next, we apply
a statistical testing procedure (again the Full Bayesian Significance Test) to test the
hypothesis that the variances of the two sections are indeed different. If the testing
procedure rejects the null hypothesis of equality of variances, the algorithm then
proceeds recursively to each of the segments: obtaining the MAP estimate for the
variance changepoint, breaking the section into two segments, and then testing the
equality of variances hypothesis. The algorithm stops when there are no two
contiguous segments with different variances.

This segmentation algorithm can be used as a first step for the unsupervised
event detection problem. Given its generality (searching for changepoints for signal
variance), it is able to efficiently detect segments of the signal where something new
started to take place. In a second step, the segments can be processed and features that
are believed to be useful representations extracted.

The third step in an unsupervised event detection procedure would then be to
cluster these signals based on the extracted features. Thus, from a continuous long

duration, we end up with a few clusters of similar segments (according to the chosen



features). These clusters can then be inspected and labeled, and used for instance to
feed supervised learning algorithms. The clusters are also interesting in themselves,
since they allow for a concise description of the soundscape depicted in the original,

long-duration signal.

Concluding remarks

In this chapter, we aimed at providing a broad vision of the acoustic event
detection problem. We categorized this problem into three classes: supervised, semi-
supervised, and unsupervised event detection problems. We believe that this division
helps us organize the possible solutions and analysis methods and better understand
their applications and limitations.

It is often the case, however, that one will encounter two, or even all three
forms of the problem in the same research project and using the same data. This is
what occurred in LACMAM, when we were given the problem of building a boat
detector from underwater acoustic data. We wanted to apply a supervised algorithm;
however, we would have needed examples to train the algorithm. We then developed
unsupervised methods that could guide the exploration of our sample data and help us
find sections of the signal that contained examples of boats passing by. These methods
helped us obtain annotated samples for the supervised event detector design.

We also experimented with the semi-supervised setting, obtaining from the
engineering literature a closed form model for the irradiated noise of a ship’s engine,
and applying the traditional solution method of testing the hypothesis of noise only
against the hypothesis of noise plus signal. We found that of the three acoustic event
detection problems, this can be the most challenging, especially when detection must
occur in a rich environment with many concurrent events that might have similar
features to the one we are interested in.

Further research on these problems includes modifying machine learning
methods to the acoustic event detection problem; investigation of efficient and
informative features to be extracted from the signal to facilitate event detection; design
of novel segmentation and clustering methods to use in the unsupervised event

detection problem.
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Peer Commentary

By Arnaldo Candido Junior®

The chapter of Herbert Jr. focused on Machine Learning techniques, including
supervised, semi-supervised, and unsupervised methods for detecting sound events in
maritime environments. Maritime sounds were captured by a submerged hydrophone
created by their research group. An event could be, as he exemplified in his text, a ship
passing by.

The main purpose of the research was to detect illegal fishing based on the
sounds made by the vessels. The proposed methods make it possible to distinguish
between two different events occurring concurrently, as long as the two events do not
start simultaneously.

Supervised learning is not recommended in small and variable sample data
studies. For this reason, the proposed methods are hybrid and not purely supervised. It
is also challenging to separate two different events occurring concurrently. It will work
only if the amplitudes and frequencies from these events differ. Alternatively,
alternatively, if the sounds caused by these events do not follow the same statistical
distribution. It is also recommended, in this case, that a larger time window be used
with this type of analysis.

The main purpose of the research was to detect the signal in time and not space.
However, the method can be improved to detect location. Furthermore, the presented
techniques are useful for working with automatic accounting monitoring in
biodiversity-rich environments like tropical forests. Thus, acoustic tomography can
also work as a possibility for detecting the origin of signals.

16 professor of the Federal Technological University of Parana, Brazil.



Chapter 11

Automated classification of cry melody in infants

Silvia Orlandi, Claudia Manfredi, Andrea Bandini'’

Abstract

Melodic features characterize infant crying. To date, several studies have extracted
melodic parameters using qualitative and quantitative methods to investigate the
significance of cry melody as an instrument to obtain information related to the health
conditions of infants. The development of automated techniques based on artificial
intelligence algorithms is necessary to classify the melodic contour and understand if
cry analysis can be used as a marker of neurological and neurodevelopmental
conditions in infancy. Here, we describe the state of the art of melody classification
approaches in infant crying. Barriers and facilitators of artificial intelligence
techniques for the analysis of melodic features are discussed. In addition, an example
of deep learning architecture to categorize melodic features based on a synthetic
dataset of infant cries is presented. The optimization of automated cry melody
techniques can be performed only with a huge amount of data that are not always
available. Additional studies conducted in ambulatory and home environments are
needed to evaluate the applicability of cry analysis software tools for early diagnosis
and assessment of health status and pathological conditions. Furthermore, the
automated melody classification can be the key to describing linguistic precursors for
early diagnosis of speech and language disorders.

Keywords: Infant cry, Cry melody, FQ contour, Automated recognition, Acoustical
analysis

Infant cry analysis is a non-invasive technique that can support clinicians in the
early detection of neurodevelopmental disorders in children (Orlandi et al., 2012,
2017; Esposito et al., 2017). Although acoustic features of cry can be perceptually
identified by parents and clinicians, it is not easy to detect the cause and assess the
health conditions by only listening to a cry sound. Listening to an audio signal and

visually inspecting its spectrogram to identify acoustic characteristics and categorizing
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the cry units (CRUs) can be a challenging task without an automatic method.
Moreover, the perceptual analysis requires highly trained clinicians (Manfredi et al.,
2018, 2019).

Automated analysis of infant cry has made great strides in recent years arousing
the interest of a growing number of researchers working in clinical, engineering, and
computer science fields (Jeyaraman et al., 2018). For example, automated cry analysis
may facilitate the detection and assessment of neurological conditions, such as autism
spectrum disorders (Orlandi et al., 2012) and hearing conditions (Varallyay, 2004).
Moreover, several research studies identified differences between preterm and term
infants using cry detection methods based on signal processing and artificial
intelligence techniques (Orlandi et al., 2012, 2015; Shinya et al., 2017; Oller et al.,
2019).

There are several metrics and parameters that can be extracted from a cry
recording. Besides the number and the duration of a CRU, energy and spectrographic
features, such as fundamental frequency (FO) and resonance frequencies have been
used to detect differences among the types of cry sounds. In the past twenty-five years,
several studies analyzed the melodic contour of CRUs (Schonweiler et al., 1996;
Vaérallyay, 2004, 2007; Varallyay et al., 2007; Mampe et al., 2009; Orlandi et al., 2017;
Wermke et al., 2017; Manfredi et al., 2018, 2019; Prochnow et al., 2019; Armbruster
et al., 2020). It has been demonstrated that melody plays an important role in the
diagnosis of respiratory distress syndrome (Matikolaie et al., 2020) and neurologic
disorders (Varallyay et al., 2007). The melodic contour or cry melody is represented
by the FO waveform in the time domain, which was introduced for the first time by
Schonweiler et al. (1996) who identified four melody shapes as falling, rising, rising-
falling, and flat or plateau. However, later studies identified additional melodic shapes.
Vaérallyay et al. (2007) categorized up to 77 different shapes but only 20 shapes
represented 95% of the CRUs analyzed.

A recent study by Armbrister et al. (2020) showed how regular melodic
intervals seem to characterize the cry of typically developing infants, suggesting that
melody contour analysis may be a potential marker of voice control in infancy.
Moreover, the melodic analysis of neonatal cry represents an effective instrument to
discriminate language characteristics (Wermke et al., 2017; Manfredi et al., 2019;
Prochnow et al., 2019). Furthermore, the melody of spontaneous crying increases in

its complexity over the first months of life (Wermke & Mende, 2016) from a single-



arc structure towards its complex-arc counterparts. As such, cry melody analysis can
be used to understand the stages of vocal development towards language. For this
reason, several research studies suggested that cry melody may be an indicative
parameter of delays in early language development (Wermke et al. 2007, 2011; Shinya
etal. 2017).

This chapter discusses the application of automated detection methods to
identify the melody contour of infant crying. An overview of the current state of the
art based on artificial intelligence techniques is provided to support researchers in the
development of novel approaches for the detection of melodic shapes of infant crying.
Lastly, we present the first results of deep learning approaches applied on a synthetic
dataset of infant cries to classify CRUs based on their melodic shapes.

Materials and Methods

Although several studies have been conducted to identify cry characteristics
and melodic features to facilitate non-invasive screening and assessment in newborns
and infants, there is a lack of information related to barriers and limitations of
automated approaches that can support the use of cry analysis as a neonatal screening
technique. In the following paragraphs, we summarize the different ways artificial
intelligence techniques have been used for the detection and classification of melodic
patterns of infant cry. We also discuss the main challenges that must be overcome in
order to develop efficient and accurate methods based on machine/deep learning

techniques.
Melodic patterns

A cry recording usually contains several CRUs. Each CRU has a well-defined
FO trend defined by its values in the time domain. The time variation of the FO values
in each CRU represents the cry melody and can be characterized by sharp melodic
patterns that can be clustered into different groups. However, consensus on the
terminology used to define different aspects of crying and its melody has yet to be
reached. Melodic features analyzed in previous articles were referred to as FO
fluctuations (Asthana et al., 2015) or prosodic features (Rodriguez & Caluya, 2019; Ji
et al., 2019, 2020) in infant crying. Qualitative studies based on the visual inspection

of spectrograms allowed identifying the representative melodic shapes of crying.
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Figure 11.1. Example of melody contours of real (left column) and synthetic (right
column) cry units: falling shapes (a and b); rising shapes (c and d); plateau shapes (e
and f); symmetric shapes (g and h); and complex shapes (i and j).



Four typical melodic contours have been observed in newborns (Wermke et
al., 2009, 2011), namely the symmetrical pattern (i.e., single-arch melody shape almost
symmetric with respect to its midpoint), the rising pattern (i.e., single-arch melody
shape with a slow FO increase followed by a rapid decrease, and asymmetric shape
skewed to the right), the falling pattern (i.e., single-arch melody shape with a rapid FO
increase followed by a slow decrease, and asymmetric shape skewed to the left), and
the plateau (i.e., melody profile with an almost constant frequency). A fifth shape was
also identified and denominated as complex (double-arch melody shape) (Wermke et
al., 2007; Diaz et al., 2012). Melodic patterns of synthetic and real CRUs are shown in
Figure 11.1.

Automated detection of melodic and prosodic features

The first study on the automatic detection of cry melody contour was published
in 2009 by Vérallyay and colleagues (Varallyay et al., 2009). They identified 39
melodic shape categories using an automated implementation of the Five Line Method
(Vaérallyay, 2004, 2007) based on the representation of the melodic contour as a line
on sheet music. Rising, falling, plateau, symmetric, and complex shapes were
identified using a threshold applied to the signal energy (Diaz et al., 2012). Then in
2016, three of the basic melodic shapes (i.e., rising, falling, and plateau) were detected
using derivatives of the FO contour (Oren et al., 2016). Automated methods for melody
detection have been tested on synthetic and real cry datasets (Orlandi et al., 2017,
Manfredi et al., 2018, 2019) identifying falling, rising, plateau, symmetric, and
complex shapes using BioVoice software (Morelli et al., in press).

To date, this free software tool is the only one available for performing a fully
automated analysis of cry audio recordings extracting information about melody
shapes. BioVoice can also support the perceptual analysis of the cry melody, providing
the representation of the FO in the time domain for each cry unit of an audio recording.
BioVoice can identify 12 melodic shapes, namely: Falling, Rising, Symmetric,
Plateau, Low-Up, Up-Low, Frequency Step, Double, Complex, Undefined, Not-a-Cry,
and Other. These shapes are a subset of the shapes presented by Varallyay (2004,
2007). A metric to measure the complexity of cry melody has been defined as the
melody complexity index (MCI) by Wermke and colleagues (Wermke et al., 2007).
The MCI is the ratio between the number of cries consisting of multiple-arc melodies

(MA) and the sum of MA and the number of cries characterized by single-arc melodies.



The MCI is usually applied for intergroup statistical comparisons (e.g., preterm and
term comparison, types of crying, health conditions, etc.). Cry melody has also been
described using “tilt features”, which were used to parameterize the melody features
capturing the FO contour variations. The amplitudes of the FO contour are classified as
descending and ascending and, along with the lengths of the descending and ascending
portions of the contour, are used to determine the tilt features as described in
Matikolaie et al. (2020).

Artificial intelligence for melody detection

Most of the research studies on cry melody conducted to date detected melodic
features applying signal processing techniques and visual inspection of the
spectrograms. The spectrogram and FO are usually estimated using software tools
(Shinya et al., 2017; Prochnow et al., 2019) or in-house scripts (Asthana et al., 2015;
Sharma & Mittal, 2017). Six articles described automated signal processing techniques
that allow classifying melodic shapes using signal processing techniques and statistical
metrics (Varallyay, 2009; Diaz et al., 2012; Oren et al., 2016; Orlandi et al., 2017;
Manfredi et al., 2018, 2019). Three studies applied machine learning techniques to
distinguish infant crying (i.e., sleep, feeding, pain, discomfort cries) based on FO
fluctuations and melodic/ prosodic features (Osmani et al., 2017; Rodriguez et al.
2019; Matikolaie et al. 2020). Support Vector Machine (SVM), Bagging and Boosted
Trees, as well as Decision Tree classifiers, were applied by Osmani et al. (2017) to
evaluate infant physiological states such as hunger pain or discomfort. Rodriguez et
al. (2019) focused on similar objectives using different algorithms, such as Decision
Tree (J48), Neural Network, and Support Vector Machine achieving classification
accuracies of up to 83.87%. Matikolaie and colleagues (2020) applied SVM classifiers
based on frequency features along with tilt features to detect infants with respiratory
distress syndrome obtaining an accuracy rate of 73.80%. Lastly, only one study
recently applied deep learning approaches using deep neural networks to detect
asphyxia from prosodic features, achieving classification accuracies of up to 96.74%
(Ji et al. 2019).



New horizons in artificial intelligence: barriers and facilitators of the automated

analysis of infant cry melody

The detection and classification of cry melody through artificial intelligence
approaches requires large amounts of data, as well as a uniform and standardized
categorization of the cry samples into specific clusters (i.e., falling, raising, etc.).
Unfortunately, only one cry recording dataset is available upon request, the Baby
Chillanto Database. This database was collected by the National Institute of
Astrophysics and Optical Electronics, CONACYT Mexico (Reyes-Galaviz & Reyes-
Garcia, 2004; Rosales-Prez, 2015).

Most of the articles reported in the previous paragraphs used the Baby
Chillanto Database for algorithm performance evaluation. Moreover, there are no cry
datasets with melody ground truth, such as with melody annotation performed with
perceptual analysis. Only a very small dataset of 20 synthetic cries with melody
annotation is available upon request (Orlandi et al., 2017), but its size is insufficient
for training machine and deep learning models. To date, the paucity of infant cry
datasets available online, and the lack of guidelines and protocols to conduct
perceptual analysis and visual inspection make the application of artificial intelligence
techniques based on melodic features a challenging field. In fact, considering the
avant-garde of the current machine learning and deep learning algorithms, a rigorous
categorization of the melodic shapes would allow not only to identify the different
melodic patterns automatically, but also to study the prosodic sequence of a series of
cries, providing information on the linguistic characteristics or health conditions of
infants. For this reason, neonatal cry and sound experts should work together to build
multidisciplinary collaborations to categorize and generate guidelines for visual
inspection of melody cry. Rigorous protocols for melody shape categorization will
allow researchers to label their datasets using standardized guidelines, in order to unify
the efforts towards improving the automated analysis of cry melody via machine and
deep learning algorithms. These methods have the advantage of being fast and very
efficient if fed with accurate training data, but they require large datasets. Future
research studies should focus on building annotated cry corpora available online or
upon request.

Another limitation of the automated methods is related to the quality of the

audio recordings, which should be collected in quiet environments. Recording infant



cries with good sound quality can be challenging. In cases of a limited amount of good
cry samples, a valid alternative is the generation of synthesized cry data (Orlandi et
al., 2017; Manfredi et al., 2018) that can be combined with real cry samples for
expanding existing datasets or used as a standardized reference to test the performance

of novel automated cry melody algorithms.
Deep learning classification of synthetically generated cry units

To illustrate the potential of deep learning techniques in the automated
classification of newborn cry melody shapes, we implemented two types of deep
neural network architectures on synthetically generated cry units: Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. CNNs are
a class of deep neural networks developed for image recognition and classification
tasks that base their functioning on convolutional kernels for extracting spatial features
from an image in a hierarchical manner (i.e., simpler patterns of image features are
combined together to obtain more complex patterns) (LeCun et al., 2015; Krizhevsky
etal., 2017). LSTMs fall within the class of recurrent neural networks (RNNs) that are
capable of learning long-term dependencies in sequences of data (Hochreiter &
Schmidhuber, 1997). LSTMs have been used in speech and language applications such
as speech recognition and machine translations (Graves et al., 2013; Bahdanau et al.,
2014), although combinations of CNN and LSTM architectures have also been
implemented for video recognition tasks (Donahue et al. 2015).

After generating the synthetic data (see next paragraph for further details),
three approaches were compared. A rule-based approach (called “Baseline approach"
here) was implemented using BioVoice, as proposed by Manfredi et al. (2018), which
determines the melodic shape according to the best fit with pre-defined curves. A
CNN-based architecture with two convolutional layers (with 8 and 16 filters,
respectively) and two fully-connected layers (with 256 and 5 units, respectively) was
implemented to classify the 5 melodic shapes from the spectrogram generated with the
Short-Time Fourier Transform. Lastly, an RNN-based model composed of an LSTM
layer with 256 units followed by two fully-connected layers (with 256 and 5 units,
respectively) was implemented to recognize the 5 melodic shapes based on the
temporal FO values of the cry unit. The FO was estimated using BioVoice FO estimation

(Morelli et al. in press).



Synthetic dataset

A dataset of 10,000 synthesized cry units was generated. This dataset included
2,000 cry units for each one of the 5 basic melodic shapes: complex, falling, plateau,
rising, and symmetric. The dataset was generated using the Newborn Cry Synthesizer
proposed in Orlandi et al. (2017). This tool synthesizes newborn cry signals with
different melody shapes. Given that the FO of typical development newborns usually
varies between 200 Hz and 800 Hz, we synthesized the cry units with FO values within
this range. Moreover, each cry unit was generated by randomly varying the parameters
reported in Table 11.1 within predefined ranges, so that each synthesized cry unit had

a unique combination of these parameters.

Table 11.1. Parameters and ranges of values used to generate 10,000 synthetic cry
units.

i . Noise
Duratio * F1 F2 FO noise .
n [s] FO* [Hz] [Hz] [Hz] F3 [Hz] Std [Hz] amgltl;ude
Lower
. 0.5 500 1100 2500 5400 1 0
limit
Lljifrﬁ’ﬁr 25 700 1300 2800 5600 8 0.0005

*Measured in its max limit (FO max)

Results and Discussion

The dataset was randomly split into training-set (6000 cry units, 1200 per
class), validation-set (2000 cry units, 400 per class), and test-set (2000 cry units, 400
per class). Performance of the three methods was compared based on the results
obtained on the test-set and were evaluated using the following metrics: accuracy (i.e.,
the number of correctly classified CRUs divided by the total number of CRUS),
precision (for each shape is the number of true positives divided by the sum of true

positives and false positives), recall (for each shape is the number of true positives



divided by the sum of true positives and false negatives) and f1-score (harmonic mean
of precision and recall).

CNN- and LSTM-based methods outperformed the baseline approach, whereas
the LSTM-based performed slightly better than its CNN-based counterpart.

Classification performance is reported in Table 11.2.

Table 11.2. Cry melody recognition performance on a synthetic dataset.

Accuracy Precision Recall F1-Score
Baseline approach 0.8955 0.9151 0.8955 0.8998
CNN-based 0.9895 0.9896 0.9895 0.9895
LSTM-based 0.9915 0.9915 0.9915 0.9915

This chapter describes the state of the art of melody classification approaches
in infant crying. A brief state-of-the-art review was presented identifying barriers and
facilitators of artificial techniques for melodic feature detection and classification.
Artificial intelligence approaches can be performed only with a huge amount of data,
which are not always available. Due to the current limitations in data availability,
future studies could use synthetically generated cry datasets for training and testing
artificial intelligence algorithms. Our preliminary results show that deep learning
approaches can be used to recognize melodic shapes in synthetic data with 99%
accuracy. Synthesized datasets may also be used in combination with real data for
building approaches able to recognize the cry melody from audio recordings
automatically. The proposed architecture should be tested on real infant cry datasets
to prove the ability of these techniques to recognize different melodic shapes. Our
findings pave the way to building cry melody models that can be used to describe
linguistic precursors for early diagnosis of speech and language disorders. In fact, deep
learning algorithms will be able to classify the melodic patterns of crying faster,



providing information on the sequences of different CUs describing cry prosodic
features.

Furthermore, future studies performed in ambulatory and home environments
are needed to evaluate the applicability of cry analysis for early diagnosis and
assessment of health conditions. Shareable datasets of synthetic and real cry corpora
should be published to foster the development of novel approaches for cry melody
classification.
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Peer Commentary

By Regis Rossi A. Faria and Bruna Lima Ferreira

Silvia Orlandi has conducted exceptional interdisciplinary research work in
bioacoustics, employing signal processing for sound analysis and accumulating a large
body of knowledge on the characteristics of babies' vocal emissions and the detection
process of different types of cries (pain or feeding) based on their melodies. She is now
with the Bloorview Research Institute (Holland Bloorview Kids Rehabilitation
Hospital) in Toronto, Canada.
Analyzing 100 ten-days-old babies' cries, Orlandi and her team used FO and the
resonance frequencies and obtained contrasting results: FO should increase, according
to the literature, but decrease. Thus, three months old babies have higher frequency
cries, suggesting a developmental delay in their very young babies. She tested herself
to recognize one baby among others on 12 recordings using the cry melody among
other features and suggested that it be considered in future studies. There is also a gap
in the normative ranges for typically developing children.

She has been working on a comparison between preterm and full-term babies. The
preterm (those born before 37 weeks of gestational age) do not have their vocal tract
ready, while the full terms have specific patterns. Therefore, she expects that there are
ontogenetic changes in intonation in the prosodic features. It is like a boy experiencing
voice change during puberty and even at early development. Nevertheless, in the
newborns she studied, cry changes much faster; every week is different.

A distinctive product of Orlandi research supervised by Claudia Manfredi is the

BioVoice software (see at https:/github.com/ClaudiaManfredi/BioVoice). The

software classifies melodic shapes and obtains derivatives, thresholds, and other voice
features. It uses a long-short term memory (LSTM) classifier, explores convolutional
neural nets (CNN), and generates synthetic datasets based on the interesting sound, in
their cases, newborn cry (Orlandi, 2017). The lecture she aired on November 19, 2020,

is available online at https://youtu.be/vyli9s LPpO0.
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Part D Analysis used in bioacoustic research

Chapter 12

Zygosity diagnosis in adult twins based on voice
resemblance

Claudio Possanit®

Abstract

The focus of this chapter is to describe the state of art of the studies on the similarity
of twin voices in different aspects such as phonetic parameters (fundamental
frequencies and others), recognition of speakers by a jury of listeners and forensic
aspects. Studies on the subject of twin voices are new but there is an increasing number
of reports and papers attempting to understand this issue. The methods and goals are
quite different, as we will analyze in this text. We will also describe a collection of
twin voices recorded at the University of Sdo Paulo by the Painel USP de Gémeos
(USP Twin Panel Project) and ask a number of questions about the possibility of
detecting zygosity in an adult pair of twins by voice. This approach seems to be
unprecedented. It is a multidisciplinary project conducted by a group of researchers
from different departments at the University of Sdo Paulo and is based in the Institute
of Psychology.

Keywords: Automatic recognition; Euclidean distance; forensic data; Gaussian
Mixture Models; speech.

Acoustic analysis of twins’ voices

A new area of studies in twins is the acoustic analysis of recorded voices.
Different kinds of recordings and different software have been used to understand
voice similarity in monozygotic (MZ) and dizygotic twins (DZ) as well as non-related
speakers. Fuchs et al. (2000) analyzed seven parameters of vocal performance and
three acoustic features. Thirty-one monozygotic twin pairs were compared with 30
control group pairs of non-related persons. The study found more similarity in the MZ

group than the non-related group in seven of the ten acoustic characteristics (vocal
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range, highest and lowest vocal fundamental frequency, fundamental speaking
frequency, maximum voice intensity, number of partials, vibrato of intensity).

In a case study with a pair of male monozygotic twins and an age and sex-
matched sibling, Whiteside and Rixon (2013) found that the mean fundamental
frequency (FO) and sentence duration were more similar in the MZ pair than with the
matched sibling. The lowest Euclidean distance values were also recorded between the
twin pair, using different phonetic parameters. Significant similarities were observed
in all three siblings for the speech tempo and dynamic FO parameters, suggesting the
importance of environmental factors.

Studies on twin voices in Brazil are scarce. Cielo et al. (2012) conducted two
studies on two pairs of adult monozygotic twins, one of each sex. The conclusions are
similar to those reported in the literature.

All of these studies support the idea that some fundamental voice parameters,
such as mean FO, are under considerable genetic influence, while global variation
patterns such as temporal patterns, reading style and accent, are shaped more by

environmental factors.

Human recognition of identical twins by voice

We will mention here two interesting studies where a jury of selected listeners
were asked to identify twin speakers. In the first (Van Gysel et al, 2001), 20 female
and 10 male voices of MZ twins were randomly assembled with the voice of a non-
related person, creating 30 trios of voices. A jury of ten female Speech and Language
Pathology students were asked to detect the twins in the trios, under two conditions:
two standard sentences read aloud and a 2.5 second section of sustained /a/. The result
was that 82% of the female voices were labelled correctly for the sentences and 63%
for the /a/. For the male voices, the numbers were 74 and 52% respectively. The
authors performed acoustic analysis of the voices and found a higher correlation in the
twin voices.

In another study (Swapna et al, 2013), the sample consisted of 10 monozygotic
pairs of twins, 5 females and 5 males. The voices were mixed in such a way that there
were some pairs of MZ twin voices and pairs with the voice of the same speaker twice.
The sound recorded was a sustained /a/. The jury was composed of 5 Speech Language
Pathology students. The result was that 91.6% of the same speaker recordings and 80%

of the twin pairs were correctly identified. In both studies, correct identification was



far greater than by chance. It is important to underscore that the number of participants

was small.

Automatic recognition of identical twins by voice

The subject of recognition of an individual speaker has been studied for a long
time and has several important applications in many aspects of life. It has been used in
forensic events as well as security systems. In May, 2017, a British man fooled the
security system of one of the world’s largest banks by mimicking his twin’s voice. For
details see Simmons,2017).

An important study in this field was conducted by Kunzel (2011). The author
used the Batvox3.13 forensic SPID system to compare the voices of 9 male and 26
female pairs of identical twins. The result was very promising:

“An automatic system for forensic speaker recognition (Batvox 3.1) was used to
calculate inter-speaker (non-target), (2) intra-twin pair, and (3) intra-speaker (target)
LR distributions. Results show that in certain conditions an automatic Bayesian-based
system is capable of distinguishing even the vast majority of very similar sounding
voices such as those of identical twins. However, the performance of the system used

here was superior for male as compared to female voices.” (Kiinzel, 2011, p. 251)

The author also concluded that “twins cannot generally be considered to be exact
copies in terms of voice and speech.” (Kiinzel, 2011, p. 273).

Another important study was conducted by Akin et al. (2016). The cohort
consisted of 39 pairs of twins. Three voice records and the images of both ears were
obtained from each pair. Two of the voice recordings and the left ear image were used
for training purposes, while the third voice recording and the right ear image were used
in the test. The goal was to separate one twin from the other, that is, decide which one
in the pair the voice and right ear belonged to. The results were good, achieving a 90%

correct identification rate.

The forensic point of view

Forensic Phonetics is the study and application of General Phonetics with the
goal of contributing to the solution of legal conflicts and speaker identification. In an

important paper, Jessen (2008, p. 671) stated that it consists of “the application of the



knowledge, theories and methods of general phonetics to practical tasks that arise out
of a context of police work or the presentation of evidence in court”. Considering that
monozygotic twins share the same genetic material, distinguishing them is a challenge
for forensic methodologies.

In this part we will describe three of Eugenia San Segundo’s studies with
different collaborators. In a 2013 paper, San Segundo and Gomez-Vilda explored
phonation similarities in a group of 40 male native Spanish speakers. The distribution
was as follows: 7 MZ pairs, 5 DZ pairs, 4 non-twin sibling pairs and 4 pairs of non-
related persons. A vector of 65 parameters was created for each speaker, indicated by
xsj; Where s refers to the subject, i the session and j the filler. The parameters of each
pair were matched considering the logarithmic likelihood ratio (LLR), as used in
forensic voice matching. A Reference Speaker’s Model, Iz, was used as reference and
the logarithmic likelihood between two samples Z, = (x4j;) and Z, = (xp;;) was
defined by

p(Zplla)
VP (ZallR)P(Zp|T)

tap =log log

where the conditional probabilities have been evaluated using Gaussian Mixture
Models (Z,, Zy, Zg ) as

p(Io) = I(Zp) , p(IR) = Ix(Zy) and p(IR) = Ix(Zp).

The following conclusions were drawn: The highest LLRs were obtained in intra-
speaker (same person) tests, followed by MZ inter-speaker tests and DZ inter-speaker
tests. Non-twin siblings had low but above baseline LLRs and non-related speakers
showed baseline LLRs. In all categories there were some pairs that had different LLRs
than expected, suggesting that behavioral and environmental conditions can play an
important role in voice patterns.

In a study with 54 male Spanish speakers, San Segundo and Gomez-Vilda
(2014) confirmed the results of the previous work. They analyzed 12 pairs of MZ
twins, 5 pairs of DZ, 4 pairs of non-twin siblings (B) and 12 unrelated speakers (US)
separated into 6 pairs. Likelihood ratios (LRs) were calculated and the working
hypotheses were:

H1) Intra-speaker comparisons would have the highest likelihood ratios.



H2) MZ intra-pair comparisons would yield large LRs, but smaller than in H1).

H3) DZ intra-pairs would have intermediate LRs.

H4) B would have low but above the baseline LRs.

H5) US would yield baseline LRs.
These working hypotheses were expressed by the log-likelihood ratio (LLR)
as follows:

H1) LLR > -1

H2) LLR > -1

H3) LLR > -10

H4) LLR > -10

H5) LLR < -10
The general conclusion is that H1 to H5 are confirmed by the data. As an example, in
24 intra-speaker samples they found that H1 was confirmed in 17 pairs of recordings.
In 12 MZ pairs, H2 was confirmed 10 times. For DZ twins, 7 out of 10 were successful.

San Segundo et al. (2016) used Euclidean distance (ED) to perform forensic
speaker comparisons (FSC) in a set of double sound recordings with the following
distribution: 54 same speakers (SS), 54 different speakers (DS) and 12 pairs of
monozygotic twins (MZ). They collected both high quality and telephone-filtered
recordings. ED was able to identify the SS and DS pairs with no false rejections. Mean
ED in the MZ pairs lies between the average ED for SS and DS comparisons, as
expected. Some of the MZ pairs exhibited large ED, suggesting that environment could

also play an important role in voice characteristics.

USP Twin Panel project

In 2015, Professor Emma Otta from the University of S&o Paulo created the
USP Twin Panel [Painel USP de Gémeos], a research project focused on twins (Otta
et al., 2019). Until then there was no comprehensive study of twins in Brazil. The
Panel’s mission is to contribute to the understanding of twinship and disseminate
information that could be useful to twins and their families. The project involves
different research projects and a scientific dissemination program. These studies
include well-being, emotions, personality, family relationships and other aspects of
interest regarding twins. In this project, a self-report zygosity questionnaire was
validated into Brazilian Portuguese using DNA. It consists of four simple questions
that indicate if the twins are monozygotic or dizygotic with an accuracy rate of 96%.



Among several of its initiatives, we are interested in the twin database that was
collected, especially the voice recordings of 100 pairs of adult twins (around 80%
monozygotic). These high-quality recordings were made in a studio.

The project is currently collecting voice recordings of twin children. It is
important to underscore that the Panel has a wide range of different data, including
images, videos, drawings, and photos of twins that are collaborating with the project.

For more details visit the website: https://www.paineluspdegemeos.com.br/

Detecting zygosity through voice resemblance

As we showed in the previous sections of this chapter, there are a large number
of studies on twin voices. Reviewing the research literature we point that:

1. Most of these studies were conducted with small samples. Sometimes
with fewer than 10 pairs of twins in a group.

2. Many of these studies focused on the resemblance of twin voices. They
were conducted to analyze and compare parameters extracted from
voice recordings and the discussion surrounded the extent to which
monozygotic twin voices are more similar than their dizygotic
counterparts and so on.

3. Other studies aimed to discover if one speaker in a pair of twins could
be correctly distinguished from the other through their voices. Some
studies focused on human detection of voices, although there is an
increasing interest in doing so automatically.

4. Other studies on twin voices have a forensic emphasis. They deal with

an important issue, namely speaker identification.

We are proposing a new framework for the study of twin voices: is it possible
to (automatically) detect zygosity by voice? Let me explain more clearly. Our goal is
to create a software to perform the following test: given two voice recordings and
knowing that the voices belong to twins, we want to decide (more or less
automatically) if the pair of twins are monozygotic or dizygotic.

We are working with two different approaches which are described below?.

19 This project is being conducted by Emma Otta, Patricia Ferreira Monticelli, Sandra
Maria Aluisio, Bruna Campos, Edresson Casanova, Ricardo Prist, Vinicius Frayze
David and the author.
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Artificial intelligence approach: we will use our recordings to program a

speaker recognition software to differentiate MZ from DZ. The program will be
inputted with a number of MZ and DZ voice recordings. It will automatically search
for the adequate voice parameters that will lead to the correct identification. In other
words, it is a type of reverse cluster analysis. Starting with two clusters, the program
will look for the correct parameters.

Voice analysis approach: in this approach, we are trying to create a set of

phonetic parameters that could identify zygosity. The idea is to use Euclidean distance
or the log-likelihood ratio to measure resemblance. For instance, by following San
Segundo’s approach described in her 2014 and 2017 papers, we expect that the LLR
would be useful in identifying if a pair of twins are mono or dizygotic.

It is important to underscore that all the studies we found in the literature
contained a certain number of identification failures. In the traditional zygosity test
with questions, there is a certain number of undecidable cases. One of our purposes is
to combine the traditional test with the Euclidean distance or LLR to increase the
number of correct decisions about zygosity. Another way of addressing this issue is to
create a test that would give an answer about zygosity with a certain probability of

being correct, depending on the ED or LLR values.
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Peer Commentary

by Vinicius Frayze David?®

The presentation of professor Claudio Possani, “Zygosity diagnosis in adult
twins by voice resemblance,” was described in the previous chapter. He argued that
we use too much information to identify a person in real life, not only vision, voices,
or head shape; we use information gestaltically. However, it is not easy to understand
how to include it in an automatic identification system. He cited a very successful
study that used the image of ears to identify a person to talk about his study with twin
siblings’ differentiation; if they include more information than just voices, he expects
to define zygosity easier.

The subject is very new, and they are still not sure exactly what they should be
looking for and how. Voice is more straightforward in Possani’s viewpoint; there is a
long tradition of studying voices and speaker recognition, and the voice analysis
framework is very well established. The novelty is using it with twins.

In his attempt to connect twin studies and voice recognition, he aims to conduct
even sophisticated tests using simple cell phones that people have in their hands almost
all the time. However, most researchers that work with voice recognition prefer using
high-quality recordings. Furthermore, people’s speech can be affected by
environmental noise (Sdersten et al., 2005); according to Lavan et al. (2016, p. 1604),
“identity-related information from familiar and unfamiliar voices is affected by
naturally occurring vocal flexibility and variability, introduced by different types of
vocalizations and levels of volitional control during production.” Therefore, even
when using the voices of very familiar people, it makes much more sense to start with
a more controlled situation.

Going back to 1985, Possani remembered Doddington saying, “Fifteen years
ago when | first became involved in speech technology, | was frankly not very
optimistic about the prospects for commercial application of automatic speech
recognition and speaker recognition technology.” In the same way, Possani found at

least two automatic recognition techniques in his review and assumes that we will also
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use more naturalistic approaches soon. San Segundo et al. (2017) used both controlled
and telephone-filtered recordings when establishing similarities using Euclidean
distances.

Humans are very good at using multiple information to identify objects and
other humans, even if they are partially redundant, which seems to be true for other
species. For example, Adachi et al. (2007) studied dogs using paired (owners face and
voice) and unpaired (owner’s voice and a stranger’s face or the opposite) stimuli and
found that dogs spent more time looking at the faces in the unpaired condition.
According to the authors, it indicates that dogs can produce an internal representation
of the owner’s face and identify when the voice does not belong to their owners while
seeing their faces. It also seems to be true for rhesus monkeys. Sliwa et al. (2011)
showed that monkeys could match the voices and faces of familiar conspecifics and
humans.

Von Kriegstein and Giraud (2006) experimented that associated voices with
faces and other arbitrary sensory inputs. They showed that the association of voices
and faces improved the participants’ capacity to recognize voices in later trials. Thus,
the use of multiple stimuli may also be interesting for automatic voice recognition.
Another intriguing aspect of multimodal perception in humans is that we can use
voices to identify emotions. However, we are much more accurate if we use visual and
auditory cues (Banziger et al., 2009).

According to Ahn and Bae (2018), many experiments prove the similarity
among family members such as parents and children, and even husband and wife.
Feiser and Kleber (2012), for example, showed that listeners could identify the voices
of brothers, discounting by chance. Kushner and Bickley (1995) and San Segundo et
al. (2017) found similar results. Rykova and Werner (2019) showed that the similarity
of parents’ and children’s voices could be identified even when children are as young
as 12 years old. However, this effect seems to be influenced by the language they
speak. Some examples suggest that using previous studies with non-twins may be a
good starting point for studying voice similarity in twins. It is important to underscore
that most of the experiments described above were conducted with human participants,
and Possani intends to use automatic recognition.

There are two directions in voice studies, and that is one of them. Possani is
trying to understand suitable parameters and compare them: the pauses, the accent,

which of these parameters gives us information about the similarity or zygosity of two



people. However, since he is using deep learning, the parameters should be chosen by
machines. He would like to have artificial intelligence machines that could understand
voices and then ask the machine how it did it. However, the machine could probably
not answer. So, he does not want to abandon the idea of choosing different aspects of
the voice and define which one is better to distinguish monozygotic and dizygotic
twins. Nevertheless, as he said before, we do not know the good parameters; we must
combine them to find out. It is a completely new field, and we are starting from scratch.

It is extremely important to be cautious when investigating a new field.
Nevertheless, studies are indicating that using different aspects of speech could be
useful in establishing voice similarity. For example, Kushner and Bickley (1995)
showed that whole sentences are more easily recognized than reiterant syllables or
individual words. The authors also showed that prosody and volume facilitate
identification for the listeners.

Hanani et al. (2013) used computational methods to recognize British English
speakers’ accents. Gumelar et al. (2019) were not interested in voice recognition, but
they used prosodic and spectral feature extraction to identify emotions in recorded
voices based on deep neural networks. Again, he still thinks that approaching the
subject starting with simpler measures is the best strategy, but there is room for many
new designs in the near future.

And what about song learning and ontogenetic changes in voices from
childhood to adulthood, especially in male voices? Possani talks about “probability”
that the speakers’ voices are monozygotic twins “with a very high probability.” He
thinks that even if life histories are very different, we can assume that genetic factors
are more important. However, if there are monozygotic twins with a smaller
probability, it will be possible to establish the importance of the life context. Almost
every DNA test has a probability of being right and can be used in legal issues such as
paternity or crime-solving.

Twin studies are interesting for several reasons, but one of them allows us to
estimate the proportion of a trait produced by genetic and context variations. Using
ACDE models, for example, it is possible to address this question quantitatively. The
most challenging thing is understanding the context variables that can influence our
traits and how they influence them. Thus, context aspects are a challenge for voice
studies as it is for every other subject. Accents have to be investigated, and there is

some evidence that age can play a role in voice (Taylor, 2018). Possani is excited about



this project and uses to say that the most delicious part of working with research is the

process of looking for answers.
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Chapter 13

Detecting Respiratory Insufficiency by Voice
Analysis: The SPIRA Project

Marcelo Finger & Spira project group?

Abstract

This paper describes the initial activities of the SPIRA Project, a COVID-19 motivated
research effort to design a system for the early prediction of respiratory insufficiency
via audio analysis. It describes the research motivation, its organization in research
lines, the initial results obtained in those lines and a preview of the future steps in this

research project.

Keywords: Biomarker; Convolutional Neural Networks; COVID-19; health
monitoring; prosodic; Small Data approach.

The COVID-19 pandemic has forced most of the population of the world’s
major cities to social distance. Large gatherings of people can facilitate the spread of
the virus, especially in hospitals and health centers. Monitoring potential patients
remotely, frequently and automatically is the best way to combine compliance with
social distancing and patient safety.

According to specialists, one of the most important symptoms of COVID-19
that leads to hospitalization is respiratory insufficiency, a condition that is amplified
in the case of the current pandemic due to the frequent occurrence of silent hypoxia,
that is, low blood oxygenation without noticeable shortness of breath (Tobin, Laghi,
& Jubran 2020).
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An automatic system for early detection of respiratory insufficiency via audio
analysis meets both health safety needs and medical triage burden relief. We pursue
two complementary approaches to develop a detection tool. The first collects large
amounts of data from respiratory insufficiency patients and healthy people, and applies
artificial intelligence and machine learning techniques to obtain a speech classification
system. We call this predictive task the Big Data approach. However, data-intensive
approaches are notoriously unclear and do not yield satisfactory explanations of the
underlying phenomena present in the audio signals. The descriptive task of providing
a detailed description of signal properties pertaining to respiratory insufficiency in
voice and speech signals is our second approach, called the Small Data approach.

Our general approach subscribes to the view of speech and voice as biomarkers
(Botelho et al., 2019). In this respect, the goals of the SPIRA Project are as follows:

e Creation of a dataset of audios containing speech records of both respiratory
insufficiency patients and healthy people who do not require hospitalization.
Patient audios initially originated from COVID-19 wards.

e Development of artificial intelligence algorithms and audio processing necessary
for the training and execution of classifiers that will screen patient audios (Big
Data approach).

e Development of a broad acoustic description (sound signal and speech and voice
acoustic) and a linguistic description of respiratory insufficiency by comparing
the audio signals of patients and healthy subjects (Small Data approach).

e Implementation of an automatic audio system based on a support audio classifier
to assist the patient screening system.

The present chapter is organized as follows. Related work is presented in the
first section, dataset construction in the second section, small data description in the
third and fourth sections, and big data analysis in the fifth section 5. Brief conclusions

are presented in the last section.
Related work

COVID-19 is too recent a disease to be widely covered in the speech
processing literature. Even before the outbreak of the pandemic, the literature
contained only a few investigations of speech as a biomarker (Botelho et al., 2019;
Trancoso et al., 2019; Nevler et al., 2019; Giovanni et al., 2021). In particular, a

framework that models speech production subsystems and their neuromotor



coordination as a biomarker of COVID-19 has been proposed (Quatieri, Talkar, &
Palmer, 2020).

With respect to detecting signs of COVID-19 in audio recordings, there are
several research initiatives on the internet??, by startups® or public entities?*, a few of
which have already published initial results. For instance, the COVID-19 Sounds Data
Collection Initiative (Tailor, Chauhan, & Mascolo, 2020) aims to detect the presence
and severity of COVID-19, and the COUGHVID crowdsourcing dataset to develop a
screening tool (Orlandic, Teijeiro, & Atienza, 2020). The following studies aim to
diagnose COVID-19 from speech, breathing or coughing sounds.

Unlike our approach, no study aims specifically at respiratory insufficiency or
patient triage, but propose to apply some form of artificial intelligence processing. It
is not yet known if there is a detectable difference between enacted and spontaneous
coughs, since most recordings are obtained from provoked situations. Positive
identification of asymptomatic only COVID-19 infected patients was recently reported
(Laguarta et al, 2020); identification uses artificial intelligence techniques over
provoked cough-sound cell-phone recordings, and does not perform as well on patients
with symptoms.

With the explicit goal of applying artificial intelligence to hospital triage using
natural language processing, text extraction from radiology reports was developed
(Hassanpour et al., 2017), as well as text processing from patient questionnaires
(Spasic et al., 2019). These studies apply written language processing for patient

screening and treatment selection.

Dataset

The voice samples were collected from two different sources. Initially, we
collected audios from patients infected by SARS-CoV-2, in special COVID-19 wards
at three different hospitals in Sdo Paulo: two public hospitals affiliated with the

22 "A Respiratory Sound Database for the Development of ..." 17 nov. 2017,
https://link.springer.com/chapter/10.1007/978-981-10-7419-6_6. Accessed on 23 October,
2020.

23 [1] "VoiceMed — Save lives and monitor the health of one billion people.”
https://www.voicemed.io/. Accessed on 23 October, 2020.

24 "Respiratory Sound Database | Kaggle." 29 jan. 2019,
https://www.kaggle.com/vbookshelf/respiratory-sound-database. Accessed on 23 October,
2020.
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University of Sdo Paulo (Hospital das Clinicas and Hospital Universitario) and a
private institution (Beneficéncia Portuguesa). VVoice samples were collected only from
patients with blood oxygenation levels (SpO2) below 92%, indicating respiratory
insufficiency. In the hospitals, 536 samples were collected from patients of different
age groups.

The second source consisted of audio recorded via a web-based application. A
system was specifically implemented to collect speech audio donations from healthy
volunteers. It allowed us to form a control group. The system’s URL? was disclosed
through the local news and social networking. After blank samples were eliminated,
the resulting dataset was composed of more than 6000 voice donors.

An “appendix” of special recordings was created to address the fact that a
COVID-19 ward is a noisy environment: we also collected recordings consisting of
pure background noise at the ward, without any voice, typically at the start of a
collection session. It is important information, as ward noise is very different from the
background noise found in the control group, and noise is a data bias that should be
controlled during experiments. Since it is difficult to filter this kind of noise in patient
audios, which risks deleting important low-intensity cues to respiratory insufficiency,
we decided to gather hospital and device sounds and insert this noise in the control
group. It helped address overfitting issues during model training. All collected speech
audios contain three different types of utterances:

e Utterance 1, a moderately long sentence containing 31 syllables and
syntactic/prosodic branching constituents, designed to allow for
possible breathing breaks in major syntactic boundaries (e.g., the
syntactic boundary between the branching subject and the predicate)
while being relatively simple to be spoken, even by low literacy voice
donors: “O amor ao proximo ajuda a enfrentar o coronavirus com a
for¢ca que a gente precisa”’ (“Love of your neighbor helps
strengthening the fight against Coronavirus”),

e Utterance 2, a well-known nursery rhyme for donors with reading
difficulties, due to the lack of reading glasses in hospital, or other types
of reading impediments: “Batatinha quando nasce, espalha a rama

pelo chdo, nenezinho quando dorme pée a mdo ao coragdo” (“When
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small potatoes germinate, branches sprout on the ground; when the
baby sleeps, its hands lay over the heart "),

e Utterance 3, a widely known song, was spoken: “Parabéns a vocé”
("Happy birthday to you"). The melody is the same as the song in
English and the lyrics are: “Parabéns a vocé, nesta data querida,
muitas felicidades, muitos anos de vida” (“Happy birthday to you, on
this cherished date, lots of happiness, many years of life”).

Several issues with the original dataset were identified and addressed: class
imbalance, consisting of fewer positive (COVID-19 patients) than negative cases
(healthy individuals from the control group); sex imbalance, consisting of a greater
number of healthy women than men participating in the process (there were also more
men in COVID-19 wards than women); age imbalance, consisting of a higher number
of older adults in hospital care than young people in our observations; utterance
imbalance, as utterance 1 was more common among patients; healthy people typically
recorded all the proposed utterances.

We addressed most dataset issues by sample balancing, taking advantage of the
greater number of control group samples. Only audios from utterance 1 were selected
and the number of samples used in the experiments was balanced by class and sex, but
not by age, to avoid drastically reducing the available data.

Other issues led to discarding samples collected from the dataset. In some
patient audios, the collector’s voice could be heard, mostly assisting low literacy or
visually-impaired patients when reading the utterance. Some control group recordings
exhibited popping and crackling noise, possibly due to the characteristics of the
recording devices.

The most serious issue for bias removal is the presence of ward background
noise in patient audios; we observed that it is easier to insert ward noise in the control
group than to remove it from the patients' signal. This process will be addressed in the

following section.

Signal Description (small data)

The description of speech and voice has been a challenging task for this
project's scope, since data collection took place in different environments and different

sound capture configurations and equipment. Thus, the aspects selected for the vocal



and phonetic/phonological analysis could produce more reliable measures, which will
be discussed in the section below titled Proposed measures: temporal and spectral.

Respiratory sounds and linguistic utterances are both viewed as important to
the signal described in this study. As described in the previous section, creating a target
sentence to utter was necessary. The length and syntactic/prosodic branching of
constituents were controlled in the creation of this target sentence. A nursery rhyme
and the spoken version of “Parabéns a vocé” were also part of the dataset, but were
not recorded for both groups (patients and control) and therefore not considered for
the analysis.

It is widely known that the human voice is multidimensional, since it involves
a coordinated action of respiration, phonation and resonating systems (Kent, 1997,
Patel et al., 2018; Asiaee et al., 2020). Any clinical or health condition that interferes
with these systems may affect vocal production and vocal quality, voice aspects known
as dysphonia. The literature reports that 28.6% of individuals infected with COVID-
19 showed symptoms of dysphonia (Lechien et al., 2020). Asiaee et al. (2020) explain
that a patient with COVID-19 may exhibit decreased or lack of energy for vocal
production, leading to an interruption or change in speech production.

In order to carry out voice and linguistic analysis, we built a reliable subdataset
(n=200) that would guarantee suitable answers to our questions. In the next
subsections, we present the steps to create our questions, outline the analysis model,

provide some details about measures and exhibit preliminary results.
Analysis: general proposal

At the beginning of this study, we expected that the two different groups of
speakers (patient versus control) would display significant differences, mainly related
to the presence of noisy breathing in the patient’s utterance as opposed to its absence
in control group participants. However, based on the advice of the medical doctors of
our project, we had to rethink our expectations, after we realized that a severe
respiratory condition would not be manifested until a very advanced stage of COVID-
19. However, even before listening to and visualizing the acoustic signals of voice and
speech, we raised two more general hypotheses to explore: (i) presence of more pauses
and (i1) vocal deviation in the patient’s speech.

From these hypotheses, we were able to design a study model that would allow

us to treat and analyze the data to answer the following specific questions: (1) Are



patient utterances longer than those of the control participants? (2) Are there more
pauses and are they longer in patient utterance? (3) Are these pauses in the same
grammatical locations in patient and control group utterances? (4) Is the speech rate
(for example, syllables per second) of patients lower than that of control subjects? (5)
Is the patients’ mean fundamental frequency (FO0) significantly different from that of
the control subjects? (6) Do patients exhibit vocal deviation when compared to the
control subjects?

Analysis model

The following analysis model was outlined:
e Two groups of speakers: control group and patient group.
e One target sentence.
e Measures of voice and speech aspects: duration, FO contour, FO mean
and voice harmonicity.

e Voice aspects will be described by sex.

The target utterance was utterance 1 previously mentioned: “O amor ao
proximo ajuda a enfrentar o coronavirus com a for¢a que a gente precisa” (“Love of
your neighbor helps strengthen the fight against Coronavirus”).

For the proposed model, analyses were carried out in three domains: temporal,
prosodic and spectral. For each of these domains, measures were determined using
Praat software, version 6.1.20 (Boersma & Weenink, 2020). In the temporal domain,
we measured duration to obtain target sentence length and speech rate. In the prosodic
domain, since the target sentence was isolated, we were able to describe the FO contour
and relate it to mean FO. In the spectral domain, in addition to mean FO per participant,
voice harmonicity was determined using the CPPS measure (Cepstral Peak

Prominence Smoothed). For the spectral measures, sex was considered.
Proposed measures: temporal and spectral

Using Praat’s textgrid annotation resource, target sentence boundaries were
obtained and visually isolated from the remaining audio file portions. The criteria used
to mark sentence boundaries were the waveform first pulse of the first vowel and the
last pulse of the last uttered vowel. This boundary labeling was necessary for both

linguistic (phonetic and phonological) and spectral analysis (voice).



Two criteria were used to measure the syllables: (i) a phonological criterion,
taking into account the ideal number of syllables (31 syllables) and absence of pauses
and (ii) a phonetic criterion, marking actually produced syllables and pauses. It is
important to underscore that even for this criterion, in order to avoid infinite detailed
segmentation, we used the expected realization in which there is resyllabification, as
in / aen / of the “a enfrentar” portion (translated: to face). Thus, we proposed at least
two levels of speech rate: one with 31 syllables and the other with around 26. The
speech rate was calculated using the syllable/sentence duration ratio
(sr=syllable/sentence duration).

In order to extract FO and harmonicity voice parameters, the audio recordings
were edited to minimize external interference at the time of recording and consider
only the participants' continuous speech. Thus, we excluded portions of pauses
between one vocalization and another as well as portions with device noises or the
voice of a health professional, given that they could interfere with the extraction of the
acoustic measures of voice. Our choice to obtain a CPPS measure relies on the fact
that it shows the extent to which FO harmonics are individualized and stand out
regarding the noise level present in the acoustic signal (Asiaee et al., 2020). It is worth
highlighting that in relation to vocal parameters (FO and CPPS), the two groups were
divided by sex, since male and female voices are different when it comes to the
mechanics of vocal fold vibration and signal energy.

In order to determine whether the proposed questions and measures were
promising, a very small data subset was analyzed in this initial stage of our study.
Syllable and pause duration have yet to be extracted, implying we still do not have
precise data on speech rate. However, some preliminary results were obtained, since
we were able to use what we call first level speech rate. It consisted of dividing the
fixed number of syllables (31) by the actual sentence duration. With respect to voice
parameters, some initial observations indicated that FO values seem to differentiate the

two male groups and CCP values the two female groups.
Preliminary results

In the temporal domain, results obtained from a data subset (n=100) indicate a
slight difference between groups, in both total duration (1) and speech rate (Il) -
syllables per second. The patient group (PG n=50) has a tendency to produce longer

utterances (average=7.87s) and fewer syllables per second (average = 4.23 syl/s),



which may be related to the duration and number of pauses in patient speech, caused
by respiratory insufficiency. On the other hand, for the control group (CG, n=50), the
average total duration was 5.40s and the speech rate 5.88 syl/s. In addition, the control
group had a smaller standard deviation in both conditions (CGsd I= 0.86, 1I= 0.92;
PGsd | = 2.22; 11=0.92).

In the spectral domain, preliminary results indicate a slight difference between
female groups in FO standard deviation (SD) and CPPS measures. The female patient
group (PG) showed more unstable emission. This might be due to poorer control in
sustaining FO (PG, FO SD=36.66Hz) compared to the control group (CG, FO
SD=22.35Hz). In addition, the female PG emitted more noise in the vocal signal, when
we compared harmonic behavior (PG, CPPS=7.93dB) between groups, considering
the sex variable (CG, CPPS=10.127dB). Females also exhibited more vocal deviation
than their male counterparts. Males in the patient group had a higher FO in relation to
the controls (PG = 116.5 Hz; CG=133.02 Hz).

These results indicate that differences in temporal, prosodic and spectral
domains may be found between groups. For the large dataset to be analyzed, measures
need to be automatically extracted (see the next section of this chapter), which may
account for temporal and spectral analysis. An intense dialogue with signal processing
colleagues is ongoing to solve problems related to the acoustic signal and

corresponding linguistic units.

Signal Processing

The signal processing team at the SPIRA project is involved in two tasks,
namely the extraction of features that are important for linguistic and vocal signal
descriptions (as outlined in the previous section), and the production of alternative
representations that are relevant for machine learning and input signal classification

(as described in the next section).
Segmentation

Audio signal segmentation is a preliminary step for many subsequent signal
processing tasks. The first segmentation level consists of identifying speech utterances
and background noise, which may include sound-producing electrical appliances and

other voices (an occurrence that affects mainly the recordings of hospitalized patients).



A straightforward, albeit not perfect, approach is to use energy thresholding to
identify the segments containing the main speaker. In this method, the level (in dB) of
noise floor is estimated for each audio signal from the minimum values of the energy
curve, and a threshold above this noise floor is used for the binary classification of
each audio frame; subsequent smoothing (e.g., majority vote) can be applied to avoid
rapid alternation between speech and noise segments.

Finer levels of segmentation (e.g., phonetic segmentation) can be obtained
using other classification strategies, such as voiced/unvoiced classification, phoneme

detection, etc.
Noise reduction

Reducing background noise is important for both improving feature extraction
and creating alternative representations for machine learning. Concentrating spectral
information on the parts that most likely belong to the speech utterance improves the
signal-to-noise ratio, stabilizes the estimation of fundamental frequency (FO) and
improves peak-to-valley measurements in both spectrum and cepstrum (e.g., CPP),
among other benefits.

Noise gating is a well-known technique for noise reduction based on a gaussian
representation of the noise spectrum. Using speech/noise segmentation to define a
gaussian model of noise allows the training of an adaptive non-linear filter that
selectively suppresses or attenuates specific time-frequency components within the
signal’s spectrogram, which may then be resynthesized as a new noise-reduced audio

signal.
Feature extraction and augmented representations

Many audio features are easily obtained from the original signal and metadata
such as speech/noise segmentation (Mitrovi¢, Zeppelzauer, & Breiteneder, 2010).
These additional metadata are relevant for linguistic and vocal signal description and
investigation of discriminating parameters that would allow the identification of
speech utterances affected by respiratory insufficiency, as well as for producing
augmented representations in the context of machine learning, since metadata that are
known to facilitate the classification of affected and healthy individuals would also
probably ease the convergence of hyperparameters during training of automatic

learning models.



Speech/noise segmentation provides the first source of many relevant features
that may be useful to both description and classification. From this simple on-off
description of the signal, one can obtain information on the number and duration of
continuous speech utterances and interruptions, such as number of noise segments (a
rough proxy for respiratory rate), the ratio between continuous speech duration and the
signal’s total duration, mean and variance of the duration of both continuous speech
utterances and interruptions, among others.

Pitch and timbre-related descriptions may be easily obtained from FO profiles,
such as using pYIN (Mauch & Dixon, 2014), spectrograms, cepstral representations
including MFCC (Hibare & Vibhute, 2014)) and harmonic representations such as
HPCP (Gomez & Herrera, 2004), among others, obtained for the entire signal or for
segments with continuous speech utterances. Several statistical measures can be
derived from these representations, such as mean/median/std/min/max of FO and
cepstral peak prominence, which are already under investigation, as well as the

characterization of voice formants and voiced/unvoiced segmentation.
Annotation transfer between signals

Automatic labeling of signals according to phonetic information, such as
syllable or phoneme transcription, is a difficult task prone to a number of errors even
with state-of-the-art techniques. An easier alternative is to transfer labels from signals
that already received these manual annotations (which is also difficult and time-
consuming for humans). This can be done by exploiting the fact that several recordings
have the same spoken sentence, and by aligning recordings that receive manual
annotations to those that did not.

Dynamic Time Warping is an algorithm for time-aligning two symbolic
sequences that use dynamic programming to build a map of timestamp
correspondences between the two sequences. It depends heavily on the choice of a
representation that produces similar symbolic sequences for two speech utterances of
the same sentence, regardless of the speaker’s individual timbre characteristics. This
requires representations such as cepstral coefficients, which are less sensitive to pitch
or energy variations (related to prosody and thus varying significantly between
speakers), and more sensitive to the differences between the spectral structure of the

phonemes.



Signal Classification (big data)

For machine learning purposes, the dataset was divided into training (292
audios), validation (292) and tests (108), as is usual in statistical learning. We selected
audios with the best signal-to-noise ratio for the test set, and the second best audios
were used for validation. The aim of this partitioning is to detect training overfitting.
The method chosen to classify the input signal was based on artificial neural networks.
The MFCC representation is extracted from the audio and then presented to a
convolutional neural network. The first step in this process is to preprocess the audios
obtained.

In general, the majority of the audios in the dataset were sampled at 48kHz.
We pre-processed these files using Torch Audio 0.5.0 as follows: First, for
dimensionality reduction reasons, we resampled these audios at 16kHz. Second, we
extracted the MFCCs using a 400ms window employing Fast Fourier Transform (FFT)
(Brigham & Morrow, 1967), with hop length 160 and 1,200 FFT components,
retaining only 40 coefficients. However, before applying the MFCC feature extraction
process, we need to address the duration difference observed in our data.

Ward noise is a serious source of bias. In this scenario, a neural network can
be biased during training by focusing only on background noise. To address this issue,
we injected pure background noise samples obtained from COVID wards into patient
and control group audios. A total of 16 1-minute samples were recorded. To avoid bias
in this process, we decided to inject noise into all training and validating samples for
both patients and the control group. We also injected noise into some testing samples
in order to check for model bias. The test and validation sets were created in such a
way as to allow overfitting detection, since they are composed mostly of audios with

a very limited amount of noise.
Proposed Model

Several models were tested in preliminary experiments and we describe the one
that provided the best results. Regarding topology and model parameters, preliminary
experimental results showed that CNNs (Convolutional Neural Networks) applied to
MFCCs are useful in analyzing this type of problem. Figure 13.1 presents the selected
model’s main features including layers, filters, kernels, number of neurons and

activation functions. The following conventions are adopted in the figure: kernel size



is represented by K; convolutional dilation size (Yu & Koltun, 2015) by D; and fully
connected layers by FC. The input size varies according to the experiment. We
investigated the use of Mish activation function (Misra, 2019) due to its regularization

effects during training, which helps prevent overfitting.

Jonv sl s
Mish FC Mish

Figure 13.1. CNN topology proposed with four convolutional and two fully connected

layers.

We used Binary Cross-Entropy as loss, and Adam optimizer (Kingma &
Jimmy, 2014). The initial learning rate was set at 10, and the Noam's decay scheme
(Vaswani, 2017) was applied every 1,000 steps. For each proposed experiment, we
trained the model for 1,000 epochs using a batch size of 30. With respect to
regularization, overfitting mitigation is a major concern, given our dataset noise
characteristics. As such, several approaches for regularization were applied. In
addition to Mish as an activation function, we used three other strategies. First, a global
weight decay of 0.01 was applied. Second, a dropout of 0.70 was used in all layers,
except the output layer. Finally, after each convolutional layer, we applied group
normalization (Wu & He, 2018) to pairs of convolution filters. Thus, the number of
groups is half the number of filters.

Our models were implemented using PyTorch 1.5.1. We ran the experiments
on a NVIDIA Titan V GPU with 12GB RAM on a server with an Intel Core i7-8700
CPU and 16GB of RAM.



Experiments and Results

Experiments were projected to determine the optimal amount of noise
insertion. Note that better results were sometimes obtained without noise in test
samples and vice versa. In general, bias is greatly reduced by inserting at least one
noise sample into the negative instances. As expected, inserting too much noise
decreases model performance. The best overall accuracy was obtained in 3 noise
samples, which reached 91% accuracy in the task. The accuracy of each experiment is
presented in Figure 13.2, both with and without artificial insertion of ward noise into

the test samples.
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Figure 13.2. Accuracy obtained per number of noise samples inserted in training data

Concluding remarks

The initial results obtained for the SPIRA project seem to validate the original
assumption of the project that respiratory insufficiency can be detected to an
acceptable level of accuracy from audio signals obtained by remote recordings. Thus,
we are encouraged to develop a pre-diagnostic assistance tool to help health
professionals in patient triage.

Future work will involve detailed descriptions of the signal properties of
patients and non-patients, as well as an extension of the current study to address

respiratory insufficiency originating from causes other than COVID-19.
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Peer Commentary

by Claudio Possani

Marcelo Finger presented the talk entitled “Detecting Respiratory
Insufficiency by Voice Analysis: The SPIRA Project” at the Bioacoustic Meeting
Brazil 2020. He is one of the leaders of the Project that involves a large number of
participants and institutions. Marcelo is well known in the computational science
community for his high-level research.

The SPIRA Project intends to develop an early respiratory problem detection
system from human speech recordings. It is hoped that this detection can be established
based on low quality sound recordings, such as those obtained by cell phones. The
connection with the COVID19 pandemic and its application in this context stands out
and confers special importance to all and any advance that the project exhibits in that
direction.

The project has 4 main objectives:

1. Create a large database of the voice recordings of healthy people and those with
respiratory insufficiency.

2. Develop algorithms based on artificial intelligence and deep learning that
classify the recordings and learn to identify the audios of patients with
respiratory problems (Big Data Approach)

3. Create a system that describes sound recordings and voices, as well as a
linguistic description of the signs of respiratory insufficiency by comparing the
recordings of healthy people and those with illnesses, which make it possible
to identify individuals with respiratory problems (Small Data Approach)

4. Create an automatic respiratory problem detection system.

Data collection involved unprecedented challenges. A total of 536 recordings
of patients with COVID-19 hospitalized at 3 different institutions in the city of Sdo
Paulo were initially collected. More than 6000 recordings of healthy people were
donated spontaneously to the project. One unexpected difficulty was the fact that a
hospital setting where samples from COVID-19 patients were collected is full of

background noise from hospital equipment, while the recordings of healthy people



were considered “cleaner”. The best solution was to introduce hospital noise into clean
recordings.

Three different recordings were taken from project participants. A sentence
containing 31 syllables selected in a structured manner, a well-known nursery rhyme
in Brazil (entitled “Batatinha quando nasce’) and the “Happy Birthday to you” song,
sung in Portuguese, were used. The first two were used for technical reasons. The
researchers’ expectation, based on hard science, was that the vocal recordings of
patients would be quite different from those of healthy people. The medical researchers
were the most skeptical in this respect and they were right. Thus, researchers began to
look for more subtle differences between the recordings of the two groups as the basis
for the Small Data Approach strategy. Differences such as the amount and duration of
speech pauses were considered. This approach was much more promising.

The initial results of the project are encouraging. Differentiating respiratory
problems accurately has been achieved, which validates the initial project proposal. In
addition to being very contemporary, this chapter is relevant and illustrates the
plasticity that science demands from researchers to revise strategies and approaches

that lead to the desired results.



Chapter 14

Deep Learning approaches for Speech Synthesis and
Speaker Verification

Edresson Casanova?®, Christopher Shulby?” and Sandra Maria Aluisio?®

Abstract

Speech synthesis is the artificial production of human speech, which can be used in
applications such as text-to-speech, music generation, navigation systems and
accessibility for visually-impaired people. As for the speaker recognition task, we can
define it as the process of recognizing the speaker of a speech segment by processing
speech signals, which can be broadly classified as speaker identification and
verification. This chapter summarizes the Deep Learning practices applied in the field
of speech synthesis and speaker verification. Speech synthesis and speaker verification
have been widely investigated in speech technology applications, especially due to the
popularity of virtual assistants. Considerable research has been conducted and
significant progress has been made in the last 5-6 years. As Deep Learning techniques
advance in most fields of machine learning, older state-of-the-art methods are also
being replaced by Deep Learning methods in both speech synthesis and speaker
verification areas. Thus, Deep Learning has apparently become the next generation
solution for the synthesis and verification of speakers.

Keywords: Speech Technologies; Speech Synthesis; Speaker Verification; Deep
Learning approaches.

Speech synthesis systems, also known as Text-To-Speech (TTS), have
received considerable attention in recent years due to the popularization of virtual
assistants, such as Amazon Echo (Purington et al., 2017), Google Home (Dempsey,
2017) and Apple Siri (Gruber, 2009). However, according to Tachibana et al. (2017),
traditional Speech Synthesis systems are not easy to develop, since they are typically

composed of many specific modules, such as a text analyzer, grapheme-to-phoneme
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converter, duration estimator, FO generator, spectrum generator and vocoder. Figure
14.1 presents the main components of a traditional speech synthesis system. In
summary, given an input text, the text analyzer module converts dates, currency
symbols, abbreviations, acronyms, and numbers into their standard formats to be
pronounced or read by the system, i.e., carries out text normalization and tackles
problems such as homographs, then with the normalized text, the phonetic analyzer
converts the grapheme into phonemes. In turn, the duration estimator estimates the
duration of each phoneme. The acoustic model is used to generate acoustic
characteristics such as FO and a spectral envelope that corresponds to linguistic
characteristics. Finally, the vocoder converts the spectrum into a waveform (Ze et al.,
2013).

Linguistic Features Extraction

ello - Text Analyzer | Phonetic Analyzer - Duration Estimator—‘

Acustic Model

Spectrum -

generator - Vocoder W

Hello

FO generator —»

Figure 14.1. The main components of a traditional speech synthesis system.

The advent of Deep Learning (Goodfellow et al., 2016) has made it possible to
integrate all processing steps into a single model and connect them directly from the
input text to the synthesized audio output, which is known as end-to-end learning.
Although neural models are sometimes criticized as being difficult to interpret, several
end-to-end trained speech synthesis systems (e.g., Sotelo et al., 2017, Wang, Skerry-
Ryan et al., 2017, Shen et al., 2018, Tachibana et al., 2018, Ping et al.,2018, Kim et
al.,2020, and Valle et al., 2020) have been able to estimate spectrograms from text
entries with promising performances.

Due to the sequential characteristic of text and audio data, the recurring units
were the standard building blocks for speech synthesis, as in Tacotron 1 and 2
(Wang,Skerry-Ryan et al., 2017; Shen et al., 2018). In addition, the convolutional



layers showed good performance while reducing computational costs, as observed in
the DeepVoice 3 (Ping et al., 2018) and Deep Convolutional Text To Speech (DCTTYS)
(Tachibana et al., 2018) models. On the other hand, with the recent popularization of
Transformers (Vaswani et al., 2017), some transformer-based synthesis models have
emerged, such as that proposed by Li et al. (2019), which performed similarly to
Tacotron 2 (Shen et al., 2018), and trained 4.25 times faster. Finally, the flow-based
models (Kingma et al., 2016; Hoogeboom et al., 2019; Durkan et al., 2019) attracted
attention in the speech synthesis area, where the Flowtron (Valle et al., 2020) model
surpassed the results reported by Tacotron 2 for enabling the manipulation of the latent
space, allowing a change in characteristics such as speech speed and prosody. On the
other hand, Kim et al. (2020) proposed GlowTTS, whose performance resembled that
of the Tacotron 2, synthesizing speech 15.7 times faster.

The advent of Deep Learning has also enabled significant advances in speaker
recognition. Speaker Recognition can be divided into three different subtasks: Speaker
Verification (SV), Speaker Identification and Speaker Diarization. The objective of
SV is to determine if two distinct audios contain the voice of the same speaker. On the
other hand, speaker identification seeks to ascertain which speaker produced the voice
on the audio file. Finally, Speaker Diarization splits an input audio stream into
homogeneous segments according to the speaker’s identity. In this study, we will only
address Speaker Verification because it can be used in both of the other tasks cited
above (Sztahé et al., 2019).

Currently, state-of-the-art (SOTA) Speaker Verification systems (Wang,
Wang, Law et al., 2019; Deng et al., 2019; Chung, Huh et al., 2020; Casanova, Candido
Junior, Shulby et al., 2020) allow the identification of new speakers without the need
to retrain the model. This feature is very useful for different applications, such as
meeting loggers, telephone-banking systems (Bowater & Porter, 2001) and automatic
question answering (Ferrucci et al., 2010).

The objective of this study was to review the SOTA methods using Deep
Learning that are applied in the speech synthesis area, focusing on Sequence-to-
Sequence (seg2seq) models and speaker verification tasks. This text is subdivided in
Speech datasets (main datasets employed in speech synthesis and speaker verification
tasks); Deep Learning for the speech synthesis task; Deep Learning for the speaker

verification task and conclusions and reflections.



Speech datasets

As with many tasks related to machine learning, the issue of the dataset used is
fundamental. The methods developed can be evaluated and compared only if the same
test circumstances are used. It is difficult to say whether an approach performs better
if it is evaluated on a different dataset (or corpus) (Sztaho et al., 2019). Some datasets
are used for speaker recognition and speech synthesis. Section Speech synthesis
datasets presents the most commonly used datasets for speech synthesis in the English
language, as well as the unique dataset publicly available for Brazilian Portuguese.
Section Speaker verification datasets presents the main datasets used in the training

and evaluation of speaker recognition models.

Speech Synthesis datasets

For the speech synthesis task, high quality datasets recorded in controlled
environments are required. Since the purpose of speech synthesis is to synthesize high
quality voice, if the training dataset contains noise, the model can synthesize it, which
Is not desired. The most widely used for training single-speaker speech synthesis
models is the LJ Speech (Ito, 2017) dataset, which consists of 24 hours of speech by
an English-language speaker. On the other hand, for multi-speaker synthesis, the
LibriTTS (Zen et al., 2019) and VCTK (Veaux et al., 2016) datasets are the most
commonly used. Although the most popular datasets are for English, other languages
also have open datasets. With Portuguese, for example, the only publicly available
dataset is the TTS-Portuguese Corpus (Casanova, Candido Junior, de Oliveira et al.,
2020). Table 14.1 shows the approximate number of hours and total number of
speakers of the main publicly available datasets for speech synthesis in English and
the only dataset available for Portuguese.



Speaker Verification Datasets

For the SV task, the datasets created for the development of Automatic Speech

Recognition (ASR) systems are commonly used due to their characteristics. Unlike

speech synthesis datasets, their ASR counterparts generally have several speakers and

few samples for each speaker; this feature is desired, since for Speaker Verification

we want as many speakers as possible during model training (Sztaho et al., 2019).

Thus, the datasets built for ASR models can be used to train and evaluate SV models.

However, some datasets are made specifically for Speaker Verification. For example,
VoxCeleb 2 (Chung et al., 2018) is currently the largest dataset built for SV. It consists

of samples from more than 6,000 speakers downloaded from YouTube. Table 14.2

shows the approximate number of hours and total number of speakers in the main

publicly available datasets for ASR and provides information about the VoxCeleb 2

dataset.

Table 14.1. Speech Synthesis datasets

Corpus Hours Total Speakers
() )
LibriTTS (Zen et al. 2019) 586 2,456
M-AILAB 75 2
VCTK (Veaux et al. 2016) 44 109
LJ Speech (Ito 2017) 24 1
TTS-Portuguese Corpus 10.5 1
(Casanova, Candido-Jr, de Oliveira, et al. 2020)
Table 14.2. Speaker Verification datasets
Corpus Hours (~) Total Speakers (~)
LibriSpeech (Panayotov et al. 2015) 986 2,848
Common Voice (Ardila et al. 2019) 2,508 58,250
TED-LIUM V3 (Hernandez et al. 2018) 452 2,028
VoxCeleb (J. S. Chung et al. 2018) 2,000 6,112




Sequence-to-Sequence Voice Synthesis Approaches

With the advent of Deep Learning, speech synthesis systems have evolved
considerably and are still being studied intensively. Models based on Recurrent Neural
Networks such as Tacotron Wang, Wang, Skerry-Ryan et al., 2017), Tacotron 2 (Shen
et al., 2018), Deep Voice 1 (Arik, Chrzanowski et al., 2017) and Deep Voice 2 (Arik,
Diamos et al., 2017) have gained prominence, but have high computational costs
because they use recurring layers. This led to the development of fully convolutional
models, such as DCTTS (Tachibana et al., 2018) and Deep Voice 3 (Ping et al., 2018),
which sought to reduce the computational costs while maintaining good synthesis
quality. On the other hand, more recently with the popularization of the Transformers,
new Transformer-based models (Li et al., 2019; Kim et al., 2020) have emerged, and
due to the parallelization of this architecture, the models achieved results similar to
those of recurrent architectures with lower computing costs. Finally, the flow-based
models (Kingma et al., 2016; Hoogeboom et al., 2019; Durkan et al., 2019) attracted
attention in the synthesis area, allowing the training of simpler models with reduced
computing costs. For example, the quality of the GlowTTS (Kim et al., 2020) model
is similar to that of the recurrent Tacotron 2 model, but it can synthesize speech 15.7
times faster. The speech synthesis models are trained by receiving a text as input and
a spectrogram as an expected output that represents the speech of the respective text
input.

The model must learn to generate a spectrogram given the input text; the
spectrogram is then transformed into a waveform using a vocoder. Neural vocoders
have better quality speech synthesis, while phase reconstruction methods such as
Griffin-Lim (GLA) (Griffin & Lim, 1984) and RTISI-LA (Real-Time Iterative
Spectrogram Inversion with Look-Ahead) (Zhu et al., 2007) are based on Short Fast
Fourier Transform (SFFT) redundancy (Sorensen & Burrus, 1988) and have higher
synthesis speed and reduced quality. Figure 14.2 presents a general flow diagram of a
TTS system based on Deep Learning. Briefly, given an input text, it is passed to the
TTS model, which returns a spectrogram. Finally, this spectrogram is converted into a

waveform by the vocoder.
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Figure 14.2. General flow diagram of a TTS system based on Deep Learning.
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The most popular neural vocoders today are Wavenet (Tamamori et al., 2017),
WaveRNN (Kalchbrenner et al., 2018), Waveglow (Prenger et al., 2019), GAN-TTS
(Binkowski et al., 2019), MelGan (Kumar et al., 2019) and more recently WaveGrad
(Chen et al., 2020). Each of these vocoders has its advantages; some focus on higher
quality and others on faster synthesis. In this study, we will not discuss vocoders, but
they play a very important role in speech synthesis, converting a spectrogram into a
waveform. In this chapter, we will only focus on models that convert text into
spectrograms.

As mentioned above, a large amount of data is required to train speech
synthesis models. For the English language, the most popular single speaker dataset
for speech synthesis is called LJ Speech (Ito, 2017) and contains 24 hours of speech.
On the other hand, in Brazilian Portuguese, the only available dataset is TTS-
Portuguese Corpus (Casanova, Candido Junior, de Oliveira, et al., 2020) and contains
10 hours of speech. The speech synthesis models are subjectively evaluated using the
Mean Opinion Score (MOS). Ribeiro et al. (2011) proposed a methodology for
calculating MOS in speech synthesis and the vast majority of studies follow this
technique. To calculate the MOS, the evaluators are asked to assess the naturalness of
the statements generated on a five-point scale (from 1 = Bad to 5 = Excellent). Each
participant evaluates the audio and the average MOS of the participant is calculated.

Tacotron 1 (Wang, Wang, Skerry-Ryan et al., 2017) was one of the first speech
synthesis models to use only neural networks to transform text into a spectrogram. The
authors proposed the use of a single deep neural network trained from end-to-end.
Tacotron 1 includes an encoder, decoder and post-processing module, in addition to
using an attention mechanism (Bahdanau et al., 2014) and convolutional filters,
skipping connections (Srivastava et al., 2015) and Gated Recurrent Unit (GRU)
neurons (Chung, Gulcehre et al., 2014). Tacotron also uses the Griffin-Lim algorithm



to convert the STFT spectrogram into the waveform (Griffin & Lim, 1984).
Simultaneously, the Deep Voice 1 (Arik, Chrzanowski et al., 2017) model also
emerged, which uses several neural submodels to synthesize speech into text. The
Deep Voice 2 (Arik, Diamos et al., 2017) model was then proposed. This model is
based on Deep Voice 1; however, the authors proposed improvements to surpass the
results obtained by Tacotron 1. In addition, the authors proposed improvements in
Tacotron 1 and changed the Griffin-Lim vocoder in favor of the WaveNet neural
vocoder, thereby increasing the quality of the synthesized speech.

On the other hand, Shen et al. (2018) proposed an improvement on the
Tacotron 1 model. They simplified the architecture and combined the new model with
a modified version of the WaveNet (Tamamori et al., 2017) vocoder. Tacotron 2 is
composed of a recurrent network of sequence prediction features that maps the
incorporation of characters to Mel spectrograms, followed by a modified WaveNet
model acting as a vocoder to synthesize waveforms in the time domain from these
spectrograms. They also demonstrated that the use of Mel spectrograms as a
conditioning input for WaveNet, instead of linguistic characteristics, allows for a
significant reduction in the size of the WaveNet architecture, and consequently faster
speech synthesis.

Furthermore, with the popularization of Transformers (Vaswani et al., 2017)
in the Natural Language Processing (NLP) area, and the use of several language
models such as BERT (Devlin et al., 2018), some transformer-based synthesis models
have emerged. We can cite the work proposed by Li et al. (2019) which achieved
quality comparable to that of Tacotron 2 (Shen et al., 2018), but trained 4.25 times
faster.

Finally, more recent flow-based models (Kingma et al., 2016; Hoogeboom et
al., 2019; Durkan et al., 2019) attracted attention in the synthesis area. Valle et al.
(2020) proposed the Flowtron model, which reformulates from Tacotron 2 to provide
high-quality and significant Mel spectrogram synthesis. Flowtron is optimized to
maximize the likelihood of training data, which makes training simple and more stable.
It allows the manipulation of several aspects of speech synthesis, such as pitch, tone,
speech rate, cadence and accent. It achieved MOS scores slightly higher than those of
Tacotron 2 and also allows for speech manipulation. On the other hand, Kim et al.
(2020) proposed GlowTTS, whose quality is similar to that of Tacotron 2, but

synthesizes speech 15.7 times faster. It uses transformers in its architecture and also



allows one to manipulate the velocity of speech. Both Flowtron and GlowTTS use the

Waveglow neural vocoder.

Speaker Verification approaches

In the last decade, the area of speaker recognition has undergone major
changes. In the past, speaker identification models could only identify speakers seen
during training, and required a reasonable amount of speaker data to be able to learn
to identify that speaker. Currently, speaker recognition models are able to identify
speakers not seen in training using just a few seconds of the speaker’s voice; this is
known as the open-set scenario. This advance was possible due to the evolution of the
machine learning area and the introduction of new cost functions applied to the training
of these models.

Current speaker verification methods are trained using acoustic features, such
as Mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1990) or Mel
spectrograms, as inputs and use speaker IDs to calculate the loss. The models aim to
learn a representation (speaker embedding), which is a vector of fixed size, to which
the distance of the vectors of two different speakers is the greatest possible, while the
distance of vectors of two samples of the same speaker are as close as possible. After
training, the distance between these embeddings is usually calculated, allowing
speakers to be identified. The performance of SV systems is commonly evaluated by
the Equal Error Rate (EER) (Cheng & Wang, 2004). EER is a biometric security
system algorithm used to predetermine threshold values due to its false acceptance
index and false rejection rate (Cheng & Wang, 2004). EER indicates that the
proportion of false acceptances is equal to that of false rejections, and the lower the
EER, the more accurate the biometric system (Sztaho et al., 2019).

An SV system can be evaluated in two scenarios. In the closed-set scenario,
where samples of speakers seen in the training of the SV model are used, the model
recognizes these speakers. In the Open-set scenario, where speaker samples never seen
in the training of the model are used, the model does not recognize these speakers. The
models usually report only EER results for the Open-set scenario, since the goal of SV
systems is to learn to differentiate speakers never seen in training, eliminating the need

to retrain the neural model (Casanova, Candido Junior, Shulby et al., 2020).



The first studies to use deep neural networks in speaker recognition in an open-
set scenario used speaker embeddings learned via the Softmax loss. Although the
Softmax classifier can learn different embeddings for different speakers (Snyder et al.
2017, 2018), it is not non-discriminatory enough (Chung et al., 2020). To overcome
this problem, the models trained with Softmax were combined with backends built in
Probabilistic Linear Discriminant Analysis (PLDA) (loffe, 2006) to generate scoring
functions (Ramoji et al., 2020; Snyder et al., 2018). On the other hand, Liu et al. (2017)
proposed Softmax Angular, where the cosine similarity is used as logit input for the
Softmax layer, showing its superiority over Softmax alone. Subsequently, Wang et al.
(2018) proposed the use of Additive Margins in Softmax (AM-Softmax) to increase
inter-class variance by introducing a cosine margin penalty to the target logit.
However, according to Chung, Hu et al. (2020), training with AM-Softmax and AAM-
Softmax (Deng et al., 2019) proved to be a challenge, since they are sensitive to scale
and margin value in the loss function.

The use of contrastive (Chopra et al., 2005) and triple loss (Schroff et al., 2015;
Bredin, 2017) has also achieved promising results in speaker recognition, but these
methods require a careful choice of pairs or triplets, which is time-consuming and can
interfere with performance (Chung, Hu et al., 2020).

Wang, Wang et al. (2019) proposed the use of prototypical networks (Snell et
al., 2017) in speaker recognition. Prototypical networks seek to learn a metric space in
which the classification of open sets of speakers can be performed by calculating
distances for prototypical representations of each class. Generalized end-to-end loss
(GEZ2E) (Wan et al., 2018) and Prototypical Angular (Chung, Hu et al., 2020) follow
the same principle and recently achieved SOTA results in speaker recognition. Chung
et al. (2020) compared the different loss functions mentioned above in the training of
two convolutional models proposed by the authors. They showed that the Prototypical
Angular loss function performs better than the others, demonstrating that it is more
suitable for training SV models.

Finally, Casanova, Candido Junior, Shulby, et al. (2020) proposed a new
training approach consisting of reconstructing the 1-second pronunciation of the
phoneme /a/ in the voice of the speakers. After training, the model is able to
approximate the pronunciation of /a/ in the voice of any speaker and an embedding of
this reconstruction is extracted from an intermediate layer of the neural network. Given

that the reconstruction of /a/ from the same speaker is always closer to their own than



to others, the model is applied in open-set scenarios. In addition, the method surpassed
a model trained in a 500x larger dataset with the GE2E loss function. It also surpassed
the result of the best model proposed by Chung, Hu et al. (2020) and trained with the
Angular Prototypical loss function in one of the four datasets used to compare the
models. Therefore, the method requires fewer data points to achieve competitive

results.

Concluding remarks

In this chapter, we aimed to list the main Deep Learning approaches applied in
the fields of Speech Synthesis and Speaker Verification. In the era of Deep Learning,
as in most tasks involving machine learning, significant improvements in performance
have been achieved when compared to classic/traditional methods. As Deep Learning
techniques advance in most fields of machine learning, older, state-of-the-art methods
are also being replaced by those using Deep Learning in both speech synthesis and
speaker verification. Thus, Deep Learning has apparently become the next generation
solution for speech synthesis and speaker verification (Sztaho et al., 2019). In some
cases, Deep Learning opened up new research fronts, allowing us to meet demands
that were not previously possible. In addition, speaker verification and speech
synthesis systems are still evolving. In the Speech Synthesis field, the current goal is
to reduce the computing cost of the models and improve speech manipulation
mechanisms, with a view to synthesizing more expressive speech (Valle et al., 2020;
Kim et al., 2020). On the other hand, in Speaker Verification, researchers still seek to
advance the current results and focus more on new training methods for modeling
(Chung, Hu et al., 2020; Casanova, Candido Junior, Shulby et al., 2020).
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Peer Commentary

by Claudio Possani

This chapter by Edresson Casanova, Christopher Shulby and Sandra Maria
Aluisio presents the contents of the first author’s lecture at the Bioacoustic Meeting
Brazil 2020. Edresson is a young researcher (doctoral student at ICMC/USP/SC)
trained in Computer Sciences with a focus on Neural Networks and Deep Learning.

In this chapter the focus is on Speech Synthesis and Speaker Verification. This
area has been receiving increasing attention for several years, with the emergence of
so-called virtual assistants. The early 21% century saw the birth of methods known as
Deep Learning. There was a revolution in the scope and possibilities that emerged.

Speech Synthesis techniques obtain good reproductions of human voices. The
voice quality obtained is fundamental. It is important to underscore that the English
language has received the largest number of resources and hours of recording and
therefore, the best results. The chapter presents the primary models used, recording
times and general characteristics of this type of study. The neural network concepts
play an important role in this area.

Under the general name of Speaker Recognition, recent decades have seen
enormous progress in tasks involving: (SV) Speaker Verification, (SI) Speaker
Identification, and (SD) Speaker Diarization. Deep Learning also caused a revolution
in the field of studies.

The specific aim of SV is to decide whether two different audio recordings
were produced by the same person/speaker. Sl attempts to identify the speaker that
produced a certain sound recording from previously collected recordings. This is what
some bank security systems do. SD splits the audio input stream into homogeneous
segments according to the speaker’s identity.

In the present chapter the authors address only questions related to Speaker
Verification. One of the significant recent advances obtained from Deep Learning
techniques are the so-called Open-set scenarios in which the system recognizes a
speaker with even just a few seconds of acoustic recording, even if the speaker’s

recordings were not used by the system in the “learning” phase.



The final part of the chapter includes an original contribution by the first author
and collaborators, which consists of the reconstruction of 1 second of the
pronunciation of the /a/ phoneme, constant in the speaker’s voice and, after a training
period, the model is capable of producing the /a/ sound of any speaker, even from a
very short recording. This makes it possible to identify the speaker or determine
whether two recordings are of the same speaker by comparing the sounds produced.
The present chapter is an introduction to this type of study, which is becoming

increasingly relevant.



In conclusion

We hope that with ACOUSTIC COMMUNICATION: AN
INTERDISCIPLINARY APPROACH we have met the goal of producing research-
based educational material, combining multidimensional approaches to the study of
human sound production with an evolutionary perspective. That was why we started
with sound production in non-human animals: there are anatomic and functional
similarities involved in sound production in mammals, that from the most
parsimonious view represent a continuity between non-human and human animals.
Where there seems to be a novelty in human acoustic communication, it is in fact only
a “relative novelty”, as our mentor César Ades used to say. With respect to human
language, he wrote that “studies on the ability of non-human primates to acquire the
use of symbols in their interactions with humans, if they do not prove (and the intention
is not to prove at all) that these animals can speak as human beings, show that they
have skills that foreshadow the language (Savage-Rumbaugh, Shanker and Taylor,
1998%).” (Ades, 2009°°, p. 12, our free translation).

In addition to the biological overview, several chapters had an instrumental
role, dealing with methodological issues and presenting the state-of-the-art of the
analytical frameworks adopted by the scientific fields that study voice and
vocalizations. In the “About the contributors” section at the beginning of the book, the
reader finds information about the authors and their affiliation. We encourage
interested readers to look for them in databases for academic research, such as the

https://www.researchgate.net/, https://scholar.qgoogle.at/, https://orcid.org and, for

Brazilians, http://lattes.cnpqg.br/

The book was produced after the scientific online event also titled “Acoustic
Communication: An Interdisciplinary Approach”. All the talks and generated
discussions have been video recorded. The videos can be freely accessed on YouTube.

Finally, we hope this digital open-access material provided by the University
of Sdo Paulo (USP) will preserve the exchange of ideas and experiences shared among

29 Savage-Rumbaugh, E. S., Savage-Rumbaugh, S. G. S. S., Taylor, T. J., & Shanker, S.
(1998). Apes, language, and the human mind. Oxford University Press.

30 Ades, C. (2009). Um olhar evolucionista para a psicologia. In Otta, Emma & Maria Emilia
Yamamoto (eds.). Psicologia Evolucionista (pp. 10-21). Rio de Janeiro: Guanabara Koogan
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researchers during the two-days meeting. We gratefully acknowledge the support
given by USP's Pro-Rectory of Research and the S&o Paulo Research Foundation
(FAPESP).

Finally, we invite you to listen to Professor Régis Farias' musical composition,
presented at the closing of the online event ACOUSTIC COMMUNICATION: AN
INTERDISCIPLINARY APPROACH. The participants were delighted to listen to
SAPOS (2014, 6'30"). Regarding this composition, he had written to us: The
performance expands the natural space and reorders the recorded time of a swampy
song, polemicizing the amphibious language with a human examination of its
microvilli and rhythms: a dispatch of technology towards an increased perception of
the music of other beings. Croaks are orchestrated to talk about the place occupied, the
abundance of water and the organized life that exists there. Effects reveal and
transmute an aquatic principality, for the introspection of human fantasy.

The online event gave us the opportunity of coming together, strengthening
existing connections and creating new ones through science. At the closing ceremony,

science met art.

Patricia Ferreira Monticelli & Emma Otta





