

Turbulent transport and reactions of plant-emitted hydrocarbons in an Amazonian rain forest

Jose D Fuentes^{a,*}, Tobias Gerken^a, Marcelo Chamecki^b, Paul Stoy¹, Livia Freire^a, Jesus Ruiz-Plancarte^a

^aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA

^bDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA

Abstract

The processes governing the temporal and spatial patterns of isoprene and monoterpenes emitted by a rainforest in the central Amazon region of Brazil is investigated using a combination of field experiments and numerical simulations. Specifically, Large Eddy Simulations (LES) are used to resolve emissions of isoprene and monoterpenes, turbulent transport, and air chemistry. The coupled chemistry-transport LES included the effects of isoprene and monoterpenes reactivity due to reactions with hydroxyl radical and ozone. The LES results are used to compute vertically resolved budgets of isoprene and monoterpenes in the rainforest canopy in response to emissions, turbulent transport, surface deposition, and air chemistry. Results indicated that emission and dispersion dominated the isoprene budget as the gases were transported out of the canopy space. In a region limited by nitrogen oxides (with prevailing nitric oxide levels of < 0.5 parts per billion), the in-canopy chemical destruction removed approximately 10% of locally emitted monoterpenes. Hydroxyl radical production rates from the ozonolysis of monoterpenes amounted to $\approx 2 \times 10^6$ radicals $\text{cm}^{-3} \text{ s}^{-1}$ and had similar magnitude to the light-dependent hydroxyl radical formation. One key conclusion was that the Amazonia rainforest abundantly emitted monoterpenes whose in-canopy ozonolysis yielded hydroxyl radicals in amounts similar to the magnitude of light-dependent formation. Reactions of monoterpenes and isoprene with hydroxyl radical and ozone were necessary for the maintenance of the Amazon rainforest canopy as a photochemically active environment suitable to generate oxidants and secondary organic aerosols.

*Corresponding author

Email address: jdfuentes@psu.edu (Jose D Fuentes)

¹ **1. Introduction**

² The Amazon rainforest represents the most expansive and contiguous region of the world with
³ the largest and the most diverse emissions of biogenic volatile organic compounds (BVOCs) (Jardine et al., 2011, 2015a,b). Due to the suitable environmental conditions to promote productive
⁴ biosynthesis and emissions – namely high air temperature ($> 20^{\circ}\text{C}$) and sunlight – the rainforest
⁵ releases isoprenoid molecules year round (Arneth et al., 2011; Sindelarova et al., 2014). Plants in
⁶ the Amazon emit rich blends of BVOCs that are mostly comprised of isoprene (C_5H_8), monoterpenes
⁷ ($\text{C}_{10}\text{H}_{16}$), sesquiterpenes ($\text{C}_{15}\text{H}_{24}$), and oxygenated compounds such as methanol (CH_3OH)
⁸ (Jardine et al., 2011, 2015a). Because of strong sources, isoprene and monoterpenes can reach
⁹ maximum ambient mixing ratios of 20 and 2 parts per billion (ppb) on a volume basis, respectively,
¹⁰ with some seasonality in emissions due to foliage ontogeny (Alves et al., 2016; Wei et al., 2018;
¹¹ Yáñez-Serrano et al., 2018).

¹² In the tropical atmospheric boundary layer (ABL) overlying the rainforest, the observed large
¹³ hydroxyl radical (HO) reactivities arise from the abundant emissions of BVOCs (Edwards et al.,
¹⁴ 2013; Nölscher et al., 2016; Pfannerstill et al., 2021). In response to the plethora of emitted reactive
¹⁵ chemical species, the HO budget in the ABL is adjusted by BVOC levels (Liu et al., 2016, 2018).
¹⁶ This influence occurs because the principal sink of isoprene is its reaction with HO. The oxidation
¹⁷ of isoprene generates hydroperoxy aldehydes (HPALD) whose rapid photolysis results in a first-
¹⁸ generation of hydroperoxyl radical (HO_2) and HO (Taraborrelli et al., 2012; Fuchs et al., 2013;
¹⁹ Rohrer et al., 2014; Bates and Jacob, 2019; Schwantes et al., 2020). In addition, ozonolysis of
²⁰ monoterpenes (Atkinson et al., 1992; Aschmann et al., 2002; Herrmann et al., 2010) produces
²¹ relatively high yields of HO, thereby contributing to the oxidation capacity of the tropical ABL
²² (Lelieveld et al., 2008; Whalley et al., 2011). In general, the reactions of BVOCs with ozone (O_3),
²³ HO, and nitrate radical (NO_3) contribute to the formation of additional oxidants (e.g., organic
²⁴ peroxide radicals) and secondary organic aerosols (SOAs) (Fuentes et al., 2000; Pöschl et al., 2000,
²⁵ 2010). Therefore, BVOCs can indirectly play critical roles in cloud formation processes (Pöschl
²⁶ et al., 2010) and regional climate (Barr et al., 2003). Despite the recent progress in discerning
²⁷ the chemical cycles of BVOCs, additional investigations are still required to determine (i) the
²⁸ mechanisms governing their turbulent transport from the biosphere to the ABL and (ii) the ensuing
²⁹ chemistry under the influences of varying levels of nitrogen oxides (NOx).

31 Turbulence is the primary agent transporting BVOCs and associated chemical processes occurring within and above the rainforest canopy. During the daytime, only the upper half of the rainforest canopy is well mixed whereas its lower region is either partially or poorly mixed due to the effective momentum sink in the forest crown (Fitzjarrald et al., 1990; Kruijt et al., 2000; Gerken et al., 2017). For the most part, the rainforest canopy remains poorly mixed at night due to buoyancy destruction of mechanically produced turbulence (Fitzjarrald and Moore, 1990; Santos et al., 2016; Freire et al., 2017). Turbulence characteristics give rise to median canopy residence times that can approach 30 minutes in the lower canopy layers under statically neutral conditions (Gerken et al., 2017). Because such air parcel residence times are comparable to lifetimes of many BVOCs (Fuentes et al., 2000), appreciable amounts can undergo reactions before they are vented out of the forest environment. Furthermore, the transport of BVOCs is impacted by sweeps and ejections from coherent mixing-layer eddies (Raupach et al., 1996; Finnigan, 2000) whose penetration depth into the canopy is limited by the dense Amazon plant canopy (Fitzjarrald et al., 1990; Kruijt et al., 2000). The need to explore turbulent transport and chemistry in concert is further highlighted as air parcels emanating from the canopy are enriched with plant-emitted hydrocarbons as descending air motions transport O₃ and other atmospheric oxidants into the canopy airspace (Fuentes et al., 2007; Gerken et al., 2016; Freire et al., 2017).

48 Large Eddy Simulations (LES) can provide realistic estimates of the links between the turbulence features in both the plant canopy and the atmospheric boundary layer, and the chemistry of isoprene and monoterpenes, which are ordinarily under resolved in most regional models. Early LES studies involving plant canopies applied to passive scalars (Shaw and Schumann, 1992; Edburg et al., 2011) and treated reactive gases (Patton et al., 2001) based on their exponential decays due to chemical reactions. Recent LES investigations coupled condensed (Vilà-Guerau de Arellano et al., 2011; Ouwersloot et al., 2013) and detailed (Su et al., 2016; Khan et al., 2021) photochemical mechanisms with atmospheric turbulence to determine the oxidation of isoprene in convective boundary layers, but did not include in-canopy chemical reactions. Patton et al. (2016) integrated canopy and convective boundary-layer processes to link turbulence and scalars, emphasizing the potential to extend the LES approach to include photochemical mechanisms necessary for studying detailed chemical reactions of BVOCs in forest canopies. In addition, stochastic Lagrangian transport models (Strong et al., 2004; Rinne et al., 2012) have been applied to determine the reactions

61 isoprene and monoterpenes with oxidants as first order decay in and above forest canopies.

62 Building on these earlier studies, this investigation was framed around three objectives. First, we
63 determined the processes governing temporal and spatial patterns of isoprene and monoterpenes in
64 response to emissions, turbulent transport, surface dry deposition, and chemical reactions. Second,
65 we estimated the fraction of locally emitted isoprene and monoterpenes destroyed in the rainforest
66 canopy due to surface deposition and chemical reactions occurring under the influences of observed
67 O_3 and nitric oxide (NO) levels. Third, given the substantial daytime concomitant emissions
68 of isoprene and monoterpenes in the rainforest, we ascertained the feedback generated between
69 ozonolysis of monoterpenes and chemical destruction of isoprene via its reaction with HO. To
70 achieve these objectives, we included in an updated LES the algorithm for the explicit treatment
71 of chemical reactions to resolve turbulent transport of mass, energy, and momentum in and above
72 a rainforest canopy.

73 **2. Methodology**

74 *2.1. Study site description and field measurements*

75 Field data used here were collected during April 2014 to January 2015 (Fuentes et al., 2016).
76 The study site is located approximately 60 km north-northwest of Manaus, Amazonas, Brazil. The
77 site consists of dense primary rainforest with a canopy height (h_c) of approximately 35 m. The leaf
78 area index (LAI) ranged from 5.7 to $7.3 \text{ m}^2 \text{ m}^{-2}$ (McWilliam et al., 1993; Marques Filho et al.,
79 2005; Tota et al., 2012), depending on the location of measurements. Terrain consists of gentle
80 valleys and hills. A 50-m meteorological tower is located on an approximately 60-m high plateau.
81 Located in the middle of the forest, the tower served as the platform to mount nine triaxial sonic
82 anemometers (CSAT-3, Campbell Scientific Inc, Logan, UT) to measure the three wind components
83 (u , v , and w), their turbulent fluctuations, and the sonic temperature at 20 Hz. Measurement
84 heights were $z h_c^{-1} = 1.38, 1.15, 1.0, 0.90, 0.70, 0.63, 0.52, 0.39$, and 0.20. One additional sonic
85 anemometer was placed near the tower at $z h_c^{-1} = 0.04$. Mean air relative humidity and temperature
86 (HMP-155, Vaisala, Vantaa, Finland) were measured at the 32-m height. Ambient O_3 mixing
87 ratios (49i, Thermo Fisher Scientific, Waltham, MA) were measured at a frequency of 1 Hz. A
88 Proton Transfer Reaction Mass Spectrometer (PT-RMS, Ionicon Analytik, Innsbruck, Austria)
89 measured isoprene, aggregated monoterpane, and the sum of methyl-vinyl ketone and methacrolein

90 (MVK+MACR) mixing ratios. Both instruments shared a common gas sampling inlet equipped
 91 with a rain-shield and placed at $z h_c^{-1} = 1.14$ and were housed in a temperature-controlled shed,
 92 located 5 m from the tower. Air samples were drawn at a rate of 12 L min^{-1} through a $1-\mu\text{m}$ pore
 93 size Teflon filter and through a 3/8-inch outer diameter Teflon tube that was shielded from sunlight.
 94 Photosynthetically active radiation (PAR) was measured at $z h_c^{-1} = 1.46$, and air temperature was
 95 recorded at $z h_c^{-1} = 1.46, 1.21, 0.8, 0.44, 0.15$. Ambient air pressure as well as turbulent fluxes of
 96 sensible and latent heat ($z h_c^{-1} = 1.46$) were averaged in 30-minute intervals. Additional details on
 97 the study site, measurements, and postprocessing of data are provided elsewhere (Fuentes et al.,
 98 2016).

99 2.2. Large Eddy Simulation

A description of the governing equations and the main features of the LES are provided here
 and additional details are reported elsewhere (Chamecki et al., 2008, 2009; Pan et al., 2014). For
 incompressible flows ($\nabla \cdot \tilde{\mathbf{u}} = 0$), the filtered momentum and air mass conservation equations were
 solved to obtain the three dimensional wind field ($\tilde{\mathbf{u}}$):

$$\frac{\partial \tilde{\mathbf{u}}}{\partial t} + (\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}} = -\frac{1}{\rho} \nabla (\tilde{p} + P) - \mathbf{g} \left(\frac{\tilde{\theta}_v - \langle \tilde{\theta}_v \rangle}{\langle \tilde{\theta}_v \rangle} \right) - \nabla \cdot \tau_{sgs} - \mathbf{d}. \quad (1)$$

Terms on the right hand side of Equation (1) represent the resolved pressure gradient force, buoyancy force, subgrid-scale (SGS) force, and the drag force exerted by the forest canopy (represented as a porous medium with negligible fractional solid volume). Hereafter, ρ is air density, \tilde{p} is resolved modified pressure (as it also includes the SGS turbulent kinetic energy), P is the mean pressure used to impose a mean pressure gradient to drive the flow, $\tilde{\theta}_v$ is virtual potential temperature, \mathbf{g} is the gravitational acceleration, τ_{sgs} is the SGS stress tensor, and angle brackets indicate average over horizontal planes. Following Shaw and Schumann (1992), the canopy drag (\mathbf{d}) was determined as

$$\mathbf{d} = C_d (\mathbf{P} a(z)) \cdot (|\tilde{\mathbf{u}}| \tilde{\mathbf{u}}), \quad (2)$$

where C_d is a constant drag coefficient (form drag), \mathbf{P} is a diagonal tensor that projects the total leaf area density onto planes perpendicular to each of the three spatial dimensions (Pan et al., 2014), and $a(z)$ is the plant area density assumed to be reasonably approximated by the leaf area density. This study assumed a random orientation of leaves ($P_x = P_y = P_z = 1/2$) and a horizontally

homogeneous distribution of LAI for each layer with $C_d = 0.4$. The temporal change of virtual potential temperature $\tilde{\theta}_v$ was expressed as a filtered advection-diffusion equation

$$\frac{\partial \tilde{\theta}_v}{\partial t} + \nabla \cdot (\tilde{\mathbf{u}} \tilde{\theta}_v) = -\nabla \cdot \pi_{\theta_v} + H, \quad (3)$$

where π_{θ_v} is the SGS buoyancy flux, and H is a source term representing the total buoyancy flux from the forest canopy to overlying air layers. Similarly, filtered advection-diffusion-reaction equations were solved for each gaseous chemical species, $\tilde{\chi}_i$

$$\frac{\partial \tilde{\chi}_i}{\partial t} + \nabla \cdot (\tilde{\mathbf{u}} \tilde{\chi}_i) = -\nabla \cdot \pi_{\chi_i} + C_i + E_i - D_i, \quad (4)$$

where π_{χ_i} is the SGS flux for the chemical species, C_i represents the gas net loss or gain due to chemical reactions, and E_i and D_i represent gas emission and deposition, respectively. The filtered equations were closed through SGS momentum fluxes that were determined using the scale dependent Lagrangian dynamic Smagorinsky model (Bou-Zeid et al., 2004). Scalar SGS-fluxes were estimated based on the SGS eddy viscosity and a constant SGS Schmidt number ($Sc_\tau = 0.8$). Equations (1) and (3) were discretized using a pseudo-spectral approach in the horizontal directions and a second-order centered finite-difference scheme in the vertical. Equations for the gases were discretized using the finite volume method with the third-order upwind advection scheme SMART (Gaskell and Lau, 1988). The time integration of the LES was advanced through the second-order Adam-Bashforth scheme (Peyret and Taylor, 2012). Lateral boundary conditions were periodic for momentum and all scalars. The upper boundary condition was no-stress/no-flux while a wall model based on Monin-Obukhov similarity (Foken, 2006) was used for the lower boundary condition situated at the forest floor.

2.2.1. Emissions of biogenic hydrocarbons

The Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012) was used to estimate emissions of isoprene and monoterpane as a function of leaf area density, temperature, and PAR in the canopy. Vertically resolved emissions ($E_i(z)$) for a given gas species (i) were estimated for each plant functional type using (Guenther et al., 2006):

$$E_i(z) = C_{ce} \epsilon_i \gamma_P(z) \gamma_T(z) \gamma_A \gamma_{SM} \gamma_{CO_2} a(z). \quad (5)$$

In Equation (5), C_{ce} is a canopy environment model dependent factor (here $C_{ce} = 0.17$ is adopted to adjust emissions to observed ambient gas levels (Kuhn et al., 2007; Karl et al., 2007)), ϵ_i is

120 a plant species specific emission factor. The $\gamma_P(z)$ and $\gamma_T(z)$ functions consider the influences of
121 PAR and temperature on emissions of isoprene and monoterpenes. As documented by previous field
122 studies (Rinne et al., 2002; Kuhn et al., 2002; Jardine et al., 2015a), in the Amazon emissions of
123 monoterpenes also depend on PAR levels. The activity factors of leaf age (γ_A), soil moisture (γ_{SM}),
124 and carbon dioxide inhibition on hydrocarbon emissions(γ_{CO_2}) were assumed to equate unity as
125 done by Alves et al. (2016). The vertically resolved temperature and PAR functions, $\gamma_T(z)$ and
126 $\gamma_P(z)$, modulating basal emissions were calculated following Equations (3–11) in Guenther et al.
127 (2012). A two-stream radiative transfer module (Sellers, 1985; Gu, 1999; Moon et al., 2020) was
128 used to estimate PAR for shaded and sunlit leaves. Fractions of sunlit leaves were determined
129 assuming exponential decreases in such foliage with cumulative leaf area as in Dai et al. (2004).
130 Basal emission of isoprene was based on $\epsilon_{Iso} = 7.0 \text{ mg m}^{-2} \text{ h}^{-1}$ and emissions of monoterpenes were
131 calculated as the sum of eight monoterpenes listed in the MEGAN formulation (Guenther et al.,
132 2012) and identified in the studied forest canopy (Jardine et al., 2015a). Emission profiles (Figures
133 1) were calculated using Equation (5) every 30 minutes during the day and linearly interpolated
134 for times in between. To avoid the repeated execution of the canopy radiative transfer algorithm
135 within the LES, the BVOC emissions were computed offline and externally imposed on the LES.

136 2.2.2. Summary of reactions involving isoprene and monoterpenes

137 The third research objective was achieved by estimating the oxidation of isoprene and monoter-
138 penes in and above the rainforest canopy, utilizing a condensed photochemical mechanism (Table
139 S1). Based on the initial gas concentrations, the mechanism calculates formation and destruc-
140 tion of HO, NO₃, and O₃ due to photooxidation of BVOCs. The HO initiates the oxidation of
141 isoprene (ISOP) and monoterpenes (MON), resulting in the formation of peroxy radicals (RO₂,
142 TPO₂), R9 and R28. As done in previous studies (Van Stratum et al., 2012), the reaction of ISOP
143 with O₃ is not included in the chemical mechanism due to the extremely low reaction coefficient
144 ($k_{O_3,Iso} = 1.30 \times 10^{-17} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$). Monoterpenes also react with NO₃ to form free radicals
145 (TPO₂), R30. The ozonolysis of monoterpenes generates HO, methyl vinyl ketone (MVK), and
146 hydroperoxy radicals (HO₂), see R29 in Table S1. The RO₂ and TPO₂ are short-lived and in
147 the presence of NO can produce NO₂, HO₂, MVK, HO, and formaldehyde (CH₂O), R15 and R31.
148 Additional reactions involving MVK with HO generate HO₂ and CH₂O, R10, which can undergo
149 photolysis to generate HO₂, R6. Also, the reaction of CH₂O with HO produces HO₂, R16, which

subsequently combines with NO to generate HO plus NO₂. In low-NO environments (i.e., [NO] < 30 parts per trillion (ppt)), the HO₂ can react with O₃ to form HO whereas the reaction of HO₂ with NO dominates and produces HO and NO₂ in NO-laden air masses (Atkinson, 2000). The photolysis of NO₂ generates NO and ground-triplet state atomic oxygen (O(³P)), which readily combines with O₂ to produce O₃, R5. Therefore, this summary of reactions (R9 to R34) indicates that one key role of BVOCs is to convert NO to NO₂, which is the key precursor of O₃. The condensed photochemical mechanism (Table S1) is an enhanced version of the one described in Heus et al. (2010) and tested for isoprene chemistry in numerical simulations applied above the Amazon rainforest (Vilà-Guerau de Arellano et al., 2011). The isoprene mechanism is based on the one reported by Geiger et al. (2003) and Ouwersloot et al. (2013). Monoterpenes are represented as a single chemical species as implemented in the Model for Ozone and Related chemical Tracers (MOZART) version 4 (Emmons et al., 2010) and used by Su et al. (2016). An implicit two-step chemical solver is applied to estimate rates of reactions (Verwer, 1994; Verwer and Simpson, 1995). Vilà-Guerau de Arellano et al. (2011) and Su et al. (2016) reported that equilibrium HO concentrations in the current chemical mechanism are 30–50% higher than in the more complete chemical mechanisms due to the unaccounted NO_x sinks in species such organic nitrates (RONO₂).

2.3. Numerical simulation setup

The modeling domain was $3584 \times 1792 \times 1120 \text{ m}^3$ and was discretized by $164 \times 82 \times 320$ grid points in the streamwise, crosswise, and vertical direction, respectively. The vertical resolution was set as $\Delta z = 3.5 \text{ m}$, which yielded ten layers in the canopy. The horizontal model resolution was $\Delta x = \Delta y = 21.85 \text{ m}$, which corresponded to an aspect ratio of $\Delta x / \Delta z = 2\pi$. The simulation time step was 0.04 s and the chemical mechanism was called every 8 simulation steps. The Coriolis effect was neglected due to the field site's proximity to the Equator. The LAI was set to 6.0 using the vertical leaf area distribution measurements (Tota et al., 2012). Simulations were forced by imposing time dependent mean pressure gradient and heat sources designed to match observed conditions. Simulations from 6:00 h (sunrise) to 12:00 h (all times are given in local time) on 21 September 2014 are included in this manuscript. After sunrise, the pressure gradient driving the flow increased so that diurnal cycle of the friction velocity (u_*) at the canopy top closely matched observed values. The mean pressure gradient was determined from the mean force balance $dP/dx = \rho u_*^2/Z_i$ (Z_i is the depth of the convective boundary layer). Due to the time lag required for the flow field to respond

180 to changes in the pressure gradient forcing, the time evolution of the forcing had to be adjusted
181 (see Supplement for details). Vertically-resolved kinematic heat fluxes ($\overline{w'\theta_v}$) from eddy covariance
182 measurements were temporally smoothed (using a linear fit) and vertically interpolated to the
183 numerical grid levels to produce buoyancy fluxes, $B_{\text{smooth}}(z, t)$. In the lower half of the canopy
184 ($z/h_c < 0.5$) fluxes were set to zero as observed daytime fluxes were negligible. The heat source,
185 H , in Equation (3) was specified as $H(z, t) = B_{\text{smooth}}(z, t)/dz$. Similarly to H , the in-canopy water
186 vapor source was specified assuming a constant Bowen ratio in the vertical as determined from
187 above-canopy measurements (Fuentes et al., 2016).

188 Upper air sounding data taken at a site 20 km away from the tower were used to initialize
189 the LES. The θ_v profile was constant for the first 50 m above ground and then θ_v increased by
190 the gradient of $\partial\theta_v/\partial z = 0.024 \text{ K m}^{-1}$ between 50 and 150 m and $\partial\theta_v/\partial z = 0.016 \text{ K m}^{-1}$ above
191 150 m. The initial surface temperature was set to 299 K and the specific humidity profile was set
192 to 17.0 g kg^{-1} below 150 m and 13.0 g kg^{-1} above 150 m. Ozone levels were initialized at 8 ppb
193 at the surface and then linearly increased by 0.056 ppb m^{-1} until they reached a constant level
194 above 450 m. Concentrations of chemical species were initialized as constant values within the
195 entire domain (a value of zero was chosen unless indicated in Table 1). Due to the unpolluted
196 conditions at the study site, NO_2 was set to 0.1 ppb with 0.1 ppb of NO near the surface. The soil
197 NO source of $5 \times 10^{-4} \text{ ppb m s}^{-1}$ was considered (Vilà-Guerau de Arellano et al., 2011). Ozone
198 deposition to the canopy was modeled following Wolfe and Thornton (2011). Isoprene deposition
199 to the ground surface was considered through a deposition velocity, $V_{\text{dep}} = 2.7 \text{ mm s}^{-1}$ (Gordon
200 et al., 2014). At the ground, zero flux of monoterpenes was assumed. Three numerical simulations
201 were performed. The first simulation (hereafter labeled as *Iso*) included emissions and chemistry
202 of isoprene only (R1 – R27, Table S1). The *Iso* scenario was done to separate the influences of
203 isoprene sinks associated with HO production from ozonolysis of monoterpenes. There are mono-
204 culture forested ecosystems that only emit isoprene (Fuentes et al., 1999). The second simulation
205 combined isoprene and monoterpenes (*Mon*), R28 – R34. In this simulation, monoterpenes were
206 represented by a single chemical species whose reactivity ($k_{\text{O}_3, \text{Mono}} = 1.82 \times 10^{-16} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$)
207 was calculated as the weighted geometric mean of the composition of monoterpenes observed at the
208 study site (Jardine et al., 2015a). The third simulation (*Pin*) assumed that the emitted monoter-
209 penes had the reactivity of α -pinene ($k_{\text{O}_3, \text{Pin}} = 8.09 \times 10^{-17} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$) as assumed in other

210 atmospheric chemistry models (Emmons et al., 2010). Finally, for the purposes of assessing the
211 importance of chemistry versus transport of monoterpenes, non-reactive tracers were also included
212 in the simulations. These were referred to as passive monoterpenes (Mon_{Pas}), but their emission
213 and deposition were estimated in the same manner as the reactive chemical species.

214 *2.4. Fluxes and budgets of isoprene and monoterpenes*

The LES results were analyzed for the canopy region ($0 \leq z \leq h_c$). Average gas mixing ratios within the canopy volume were obtained from Equation (4) by calculating averages over horizontal planes (temporal averages were also obtained over periods of 10 minutes). Resulting averages were vertically integrated to derive the change of gas mixing ratio with time ($\frac{d\langle\tilde{\chi}_j\rangle_{\text{Can}}}{dt}$), given by

$$\frac{d\langle\tilde{\chi}_j\rangle_{\text{Can}}}{dt} = \frac{1}{h_c} [-F_j(h_c) + E_{j,\text{Can}} - D_{j,\text{Can}} + C_{j,\text{Can}}]. \quad (6)$$

215 Here $\langle\tilde{\chi}_j\rangle_{\text{Can}} \equiv h_c^{-1} \int_0^{h_c} \langle\tilde{\chi}_j\rangle_{xy} dz$ is the mean gas mixing ratio inside the canopy, $\langle\tilde{\chi}_j\rangle_{xy}$ is the
216 horizontally-averaged mixing ratio, $F_j(h_c)$ is the total gas flux at the top of the canopy (including
217 contributions from resolved and SGS fluxes). The hydrocarbon flux at the surface was assumed to
218 be zero. The isoprene surface deposition was prescribed as $V_{\text{dep}} = 2.7 \text{ mm s}^{-1}$ (Gordon et al., 2014;
219 Nguyen et al., 2015) and the deposition of monoterpenes was set to zero.

220 **3. Results and Discussion**

221 *3.1. Canopy emissions of isoprene and monoterpenes*

222 During the rainy season in the central Amazon, prevailing atmospheric conditions from sunrise to
223 local noontime kept recurring day after day. Afternoons became predominantly cloudy and rainfall
224 events mostly occurred during 14:00 to 16:00 local h (Fuentes et al., 2016; Vilà-Guerau de Arellano
225 et al., 2020). Because the principal goal of this study was to estimate the in-canopy oxidation
226 rates of isoprene and monoterpenes, the numerical model simulations focused on a representative
227 day (14 September 2014) during the start of the rainy season. Sunny conditions dominated the
228 period of the numerical simulations, with maximum incoming solar irradiance reaching nearly 1200
229 W m^{-2} around 11:00 h. Clouds appeared around 11:00 h and reduced the incoming sunlight levels
230 during the last hour of simulations (Figure 1a). Air temperature varied from 23 (at 6:30 h) to 32
231 $^{\circ}\text{C}$ (at 12:00 h) while wind speed remained below 3.5 m s^{-1} (Figure 1b, c). Computed emissions
232 of isoprene and monoterpenes increased after sunrise and reached values of 8.0 and 1.5 mg m^{-2}

233 h^{-1} at 12:00 h (Figure 1d), respectively. Emission rates (Figure 1d) were in good agreement
234 with previously reported canopy-scale fluxes in the central Amazonia region (Rinne et al., 2002;
235 Kuhn et al., 2007). Isoprene emission density profiles changed rapidly with canopy depth (Figure
236 1e), reaching maximum values of $0.4 \text{ mg m}^{-3} \text{ h}^{-1}$ around 12:00 h at $z \text{ h}_c^{-1} = 0.6$ where the
237 greatest amount of active biomass was present and most PAR interception occurred. As emissions
238 of monoterpenes were independent of PAR, the bulk of emissions originated from deeper in the
239 forest canopy ($z \text{ h}_c^{-1} > 0.4$), with maximum emission density values of $0.075 \text{ mg m}^{-3} \text{ h}^{-1}$ (Figure
240 1f).

241 The thermodynamic conditions of the convective ABL exerted control on the vertical distribution
242 of isoprene and monoterpenes. The LES-chemistry coupled model provided high-resolution
243 temporal Z_i variations. Under the assumed atmospheric thermodynamic conditions, simulated Z_i
244 rapidly changed over the course of the morning hours and Z_i values ranged from 200 m at 8:00 h
245 to approximately 760 m at 12:00 h (Figure 2a). Simulated Z_i values at 11:00 h and 14:00 h were
246 comparable to mixed layer depths of 491 ± 133 m and 813 ± 128 m, respectively, observed 24
247 km away from the study site during the wet season (Fisch et al., 2004). Additional details on the
248 atmospheric boundary layer thermodynamic evolution as well as turbulence statistics are provided
249 in the the Supplement (Figures S1-S4). Meanwhile, canopy emissions of isoprene and monoterpenes
250 contributed to rapid increases in mixing ratios of the gases in the convective boundary layer. Most
251 of the emitted hydrocarbons remained in the convective boundary layer, with mixing ratios close
252 to zero ppb in the entrainment zone above the mixed layer (Figures 2b, c). Isoprene mixing ratios
253 in the ABL exhibited a high sensitivity to variations in Z_i (Wei et al., 2018), so that even small
254 perturbations in the dynamics of the convective boundary layer considerably impacted the vertical
255 distribution and mixing ratios of isoprene and monoterpenes. While nearly constant θ_v prevailed
256 in the well mixed boundary layer above the canopy (Figure 2a), isoprene (*Iso*, Figure 2b) and
257 monoterpane (*Mon*, Figure 2c) levels revealed strong vertical gradients in response to the source
258 strength of the gases in the canopy, and the ensuing turbulent transport and air chemistry. The
259 cases of *Iso* and *Mon* exhibited greatest gas gradients near the forest canopy and the magnitude
260 of gradients increased with height in the upper ABL in response to the gas transport to the free
261 atmosphere and the downward transfer of air parcels nearly devoid of isoprene and monoterpenes
262 from aloft to the top of the mixed layer. Within the mixed layer, the *Iso* and *Mon* cases showed

263 relatively invariant gas mixing ratios with altitude due to the effective atmospheric turbulent trans-
264 port. The appreciable differences estimated between the vertical distribution of *Mon* and *Mon_{Pas}*
265 (Figure 2d) near the forest canopy resulted due to the higher reactivity associated with the *Mon*
266 case.

267 Simulated ambient levels of isoprene, monoterpenes, and O₃ were contrasted with observations
268 to ascertain the fidelity of LES outputs. At the canopy top (h_c), during 6:00 to 9:00 h temporal
269 patterns of simulated isoprene (Figure 3a) closely matched observations. Thereafter, estimated
270 levels of isoprene progressively diverged from observations and reached maximum discrepancies
271 around 12:00 h, leading to approximately 30% higher isoprene mixing ratios than observations.
272 Modeled monoterpenes mixing ratios overestimated the observations (Figure 3b). Differences
273 between simulated and observed monoterpene levels steadily increased as simulations proceeded,
274 reaching nearly 35% higher monoterpenes mixing ratios than observations (Figures 3b). Previous
275 studies (Alves et al., 2016) also found greater estimated monoterpene mixing ratios than observa-
276 tions, with higher mixing ratios of total monoterpenes estimated during daytime in response to the
277 light-dependent emissions (Rinne et al., 2002; Kuhn et al., 2002; Jardine et al., 2015a), and the
278 likely inadequate representation the actual light-dependent behavior of monoterpene emissions in
279 low light conditions in the morning hours. As demonstrated in previous studies (Kuhn et al., 2007;
280 Alves et al., 2016), emissions of isoprene and monoterpenes were likely overestimated in response
281 to variations in the basal emissions throughout the canopy environment. Also, mixing ratios of iso-
282 prene and monoterpenes were sensitive to variations in the values of Z_i (Wei et al., 2018) so that
283 underestimation of simulated mixing-layer heights in the LES may be responsible for the overesti-
284 mation of above canopy isoprene and monoterpene mixing ration. Simulated temporal variations
285 of O₃ mixing ratio at the canopy top closely matched observations (Figure 3c), with LES results
286 underpredicting O₃ by an average of 5%. At zh_c⁻¹ = 1.14, the O₃ levels varied from 12 to 24 ppb
287 over the course of the simulation period (Figure 3c). Once the influences of chemical reactions
288 were integrated for the full canopy, the *Iso*, *Mon*, and *Pin* scenarios produced similar patterns in
289 ambient gas levels at the canopy top (Figure 3).

290 3.2. Processes controlling canopy budgets of isoprene and monoterpenes

291 Emissions and turbulent transport dominated the processes controlling the isoprene budget in
292 the rainforest canopy. At midday, isoprene emissions contributed to 80 ppbv h⁻¹ whereas turbulent

293 transport carried 75 ppbv h^{-1} out of the canopy. On average, surface deposition and air chemistry
294 accounted for 1–2% and < 5% of the total isoprene budget destroyed in the canopy (Figure 4a),
295 respectively. The condensed photochemical mechanism (Table S1) employed to investigate chemical
296 reactions in the canopy did not consider the influences of HO recycling associated with isoprene
297 oxidation (Taraborrelli et al., 2012; Fuchs et al., 2013). The small chemical loss resulted because
298 most of the isoprene was emitted in the forest crown (Figure 1e) where air turbulence became
299 strongest and median air parcel residence times varied from seconds to ten minutes (Gerken et al.,
300 2017). Such time scales were much shorter than the isoprene lifetime of about 1.0 hour due to the HO
301 reaction. In addition, limited isoprene emissions occurred in the lower region of the forest canopy
302 (Figure 1e) where actinic irradiance (Moon et al., 2020) and oxidant levels (Freire et al., 2017)
303 ordinarily remained low to drive isoprene chemical reactions. Similar patterns in the budget terms
304 prevailed for monoterpenes, with emissions and turbulent transport contributing with 8.5 and 7.5
305 ppbv h^{-1} (Figure 4b), respectively. For the *Mon* case, in-canopy oxidation removed approximately
306 5–10% of emitted monoterpenes. In contrast, for the *Pin* scenario, reactions destroyed 3–5% of
307 emitted gases due to the lower reactivity (for α -pinene) assumed in the photochemical mechanism
308 (see Figure S5 of the Supplement). Compared to isoprene, the greater chemical loss occurred
309 because emissions of monoterpenes prevailed throughout the canopy (Figure 1f) where air parcels
310 remained long enough to allow chemical reactions to occur and generate HO, thereby producing
311 a positive feedback loop to augment chemical reactions involving HO in the full canopy volume.
312 Previous studies (Makar et al., 1999; Stroud et al., 2005; Fuentes et al., 2007) reported similar
313 results for monoterpenes in temperate forests. Hence, one conclusion is that chemical processing
314 in tropical, dense forests consumes appreciable amounts of monoterpenes (Figure 4b) and needs
315 to be considered in numerical models designed to determine BVOC budgets.

316 Ozone and HO dominated the oxidation of monoterpenes whereas HO controlled the isoprene
317 chemistry in the forest canopy. Based on the individual terms of the mass budget relationship (6),
318 turbulent transport and surface deposition accounted for 38% and 35% of the O_3 budget (Figure 4c),
319 respectively. These results agreed with earlier findings (Freire et al., 2017). On average, the O_3 sink
320 due to chemical reactions in the canopy represented 5% of the canopy budget. The small chemical
321 O_3 sink (Figure 4c) resulted largely in response to the low NO levels (< 0.5 ppb) and relatively slow
322 rate of O_3 reaction with isoprene ($k_{\text{O}_3,\text{Iso}} = 1.30 \times 10^{-17} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$), which was the dominant

323 hydrocarbon in the forest canopy (Fuentes et al., 2016). The O_3 plus NO reaction only consumed
324 0.5 ppb h^{-1} whereas reactions with monoterpenes removed O_3 molecules at the rate of 0.4 ppb h^{-1}
325 (Figure 4d). Trace NO_2 levels (< 0.1 ppb) prevailed in the forest canopy. As a result, the sink
326 for O_3 due to reaction with NO_2 reached nearly 0 ppb h^{-1} (Figure 4d). Sesquiterpenes were not
327 considered in the photochemical mechanism, but such gases could represent a significant sink for O_3
328 within the canopy due to their rapid ozonolysis (Jardine et al., 2011, 2015a) whose reactivity value
329 could be as high as $k_{O_3, Caryo} = 1.16 \times 10^{-14} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ for the β -caryophyllene ($C_{15}H_{24}$)
330 molecule.

331 In the case of HO, chemical reaction rates nearly balanced the net turbulent (upward and down-
332 ward) transport, each budget term amounting to absolute values of approximately 350 radicals $\text{cm}^{-3} \text{ s}^{-1}$.
333 As expected, the storage term remained close to zero radicals $\text{cm}^{-3} \text{ s}^{-1}$ in response to the rapid
334 formation and destruction of HO (Figure 4e). Individual reactions revealed the salient HO sinks
335 and sources (contributions of select individual reactions were estimated indirectly from the reac-
336 tion constants and modeled concentrations). For example, the reaction rate of monoterpenes with
337 HO (R28) produced 1.8×10^6 radicals $\text{cm}^{-3} \text{ s}^{-1}$ whereas the reaction rate of isoprene with HO
338 (R9) consumed 3.0×10^6 radicals $\text{cm}^{-3} \text{ s}^{-1}$ (Figure 4f). The HO source from the ozonolysis
339 of monoterpenes in the rainforest closely agreed with previous estimates of 10^6 radicals $\text{cm}^{-3} \text{ s}^{-1}$
340 (Gerken et al., 2016). The HO formation or consumption rates occurred while averaged mixing
341 ratios of monoterpenes and isoprene reached 1 and 10 ppb, respectively, with prevailing NO levels
342 of < 0.5 ppb in the forest canopy. The abundance of isoprene dominated the HO sink in the upper
343 canopy. Due to the high reactivity of monoterpenes with O_3 , the HO source from the reaction of
344 monoterpenes with O_3 (R29) greatly exceeded the HO sink from the reaction of monoterpenes with
345 HO (R28). In the forest canopy, O_3 and monoterpenes had much greater mixing ratios than HO
346 levels and also had greater lifetimes. Therefore, the magnitude of the estimated HO source became
347 less affected by competing reactions than the HO sink from isoprene reactions. This finding high-
348 lights the crucial role of monoterpenes in maintaining a photochemically active forest environment
349 through the generation of HO.

350 *3.3. Vertical variability of HO source and sinks in the forest canopy*

351 Source and sink of HO resulting from the oxidation of isoprene and monoterpenes exhibited
352 strong vertical variations in the forest canopy. The LES results showed that HO concentrations

353 associated with isoprene reaction (R9) increased (i.e., became more negative) with time of day and
354 decreased with canopy depth (Figure 5a). Maximum HO consumption occurred around 12:00 h
355 when the destruction rate reached -4.0×10^6 radicals $\text{cm}^{-3}\text{s}^{-1}$ in the upper ($z/h_c > 0.85$) canopy.
356 At the canopy depth of $z/h_c = 0.25$, the HO destruction rate was 50% lower than the values deter-
357 mined in the forest crown in response to the reduced actinic irradiance flux due to canopy shading,
358 which reduced photochemical production of HO (R1 + R2), and limited isoprene emissions. In con-
359 trast, the HO formation rate resulting from oxidation of monoterpenes (*Mon*, *Pin*) increased with
360 time of day and canopy depth (Figure 5 b). Despite the comparatively low ambient O_3 levels in Ama-
361 zonia ($[\text{O}_3] \sim 10$ ppb) during the wet season (Dias-Junior et al., 2017), the ozonolysis of monoter-
362 penes (R29) yielded maximum HO formation rates ranging from $+2.0 \times 10^6$ radicals $\text{cm}^{-3}\text{s}^{-1}$ in
363 the lower canopy to $+1.3 \times 10^6$ radicals $\text{cm}^{-3}\text{s}^{-1}$ in the forest crown around 12:00 h. Compared
364 to the *Pin* scenario, the *Mon* case contributed to greater HO yield (see the Supplement) due to
365 the higher O_3 reactivity for the assumed average monoterpene ($k_{\text{O}_3,\text{Mon}} = 1.82 \times 10^{-16}$ versus
366 $k_{\text{O}_3,\text{Pin}} = 8.09 \times 10^{-17}$ $\text{cm}^3 \text{molec}^{-1} \text{s}^{-1}$). The HO formation rates (Figures 5 a, b) were computed
367 while the range of NO levels prevailed < 0.5 ppb. However, as confirmed by previous studies (Rohrer
368 et al., 2014; Vilà-Guerau de Arellano et al., 2011; Wei et al., 2018), HO yields strongly depend on
369 NOx concentrations. As revealed by the fraction of HO production from oxidation of monoterpenes
370 (R28, R29) to HO consumption by isoprene (R9), sources and sinks of HO remained closely in bal-
371 ance at canopy depths $z/h_c < 0.25$ (Figure 5c). In addition, the absolute ratio of HO destruction
372 rate (involving the isoprene reaction) to the simulated HO concentration ($|\text{Sink}_{\text{HO}_{\text{Iso}}}|/[\text{HO}]$), which
373 was a measure of HO reactivity in the canopy, exhibited minor variations with canopy depth. The
374 LES-derived HO reactivity values for isoprene varied from 10 s^{-1} at 08:00 h to 40 s^{-1} at 12:00 h.
375 The computed reactivity values were similar to the daytime quantities of $10\text{--}30 \text{ s}^{-1}$ observed in
376 an Amazonian rainforest during the dry season (Nölscher et al., 2016). Overall, the oxidation of
377 monoterpenes in the lower forest canopy ($z/h_c < 0.25$) generated enough HO to balance the HO
378 needed to drive the isoprene reaction (Figure 5). Because the Amazon rainforest emits a plethora of
379 reactive sesquiterpenes (not considered in this study) and monoterpenes (Jardine et al., 2015a), the
380 HO production from oxidation of emitted hydrocarbons can be greater than the values (Figures 5)
381 reported in this study. Additionally, HO yields from ozonolysis of monoterpenes and sesquiterpenes
382 can be expected to greatly vary in response to increases in NOx levels associated with biomass burn-

383 ing and/or regional air pollution (Wei et al., 2019). In the central Amazon, sesquiterpenes (such
384 as β -caryophyllene, α -humulene, α -copaene) can reach mixing ratios of 0.5 ppb in the crown of the
385 rainforest (Jardine et al., 2011).

386 **4. Summary and conclusions**

387 Based on the three posed research questions, several conclusions were derived. First, emissions,
388 turbulent transport, surface deposition, and chemical reactions governed temporal and spatial pat-
389 terns of isoprene and monoterpenes in and above the rainforest. Despite sufficient active biomass
390 distributed throughout the canopy volume, approximately 85% of isoprene emissions came from
391 the upper ($z/h_c > 0.40$) canopy. Maximum isoprene emission density reached $400 \mu\text{g m}^{-3} \text{h}^{-1}$ at
392 $z/h_c \approx 0.60$ around noontime. In part, the greater emissions in the forest crown occurred because
393 the high leaf area density in the upper canopy intercepted most of the incoming photosynthetically
394 active radiation needed to promote isoprene emissions. In contrast, emissions of monoterpenes
395 occurred throughout the forest canopy in response to the suitable conditions (e.g., temperature) to
396 drive emissions. The greatest emission density of monoterpenes was $75 \mu\text{g m}^{-3} \text{h}^{-1}$ at $z/h_c \approx 0.60$
397 around noontime. The unusually high emission densities gave rise to maximum ambient levels of
398 isoprene and monoterpenes of 8 and 0.8 ppb, respectively, at $z/h_c = 1.14$. Mixing ratios of iso-
399 prene and monoterpenes remained effectively dispersed in the mixed layer but rapidly decreased
400 with altitude in the upper region of the convective boundary layer, attaining mixing ratio values
401 close to zero ppb just above the entrainment zone.

402 Second, chemical reactions and surface deposition destroyed some isoprene and monoterpenes
403 in the forest canopy. Under the influences of observed ozone (< 25 ppb) and nitric oxide (< 0.5 ppb)
404 levels, isoprene destruction due to the chemical reactions amounted to < 5% of the canopy emis-
405 sions. The reaction with the hydroxyl radical dominated the chemical sink of isoprene in the canopy.
406 The small chemical loss resulted because most of the emitted isoprene occurred in the upper canopy
407 where air parcel residence times were substantially shorter than the isoprene lifetime. In addition,
408 while substantial isoprene levels persisted in the forest canopy, the low ozone (directly) and nitric
409 oxide (indirectly) levels limited the isoprene chemical sink. In the case of monoterpenes, chemical
410 reactions destroyed approximately 10% of the total canopy emissions. The ozonolysis of monoter-
411 penes became the dominant chemical sink in the canopy. Because emissions of monoterpenes took

412 place throughout the canopy and air parcels in the lower canopy had longer residence times, the
413 molecules had greater likelihood to partake in chemical reactions before the gases were exported
414 out of the forest canopy.

415 Third, concomitant and copious emissions of isoprene and monoterpenes within the tropical
416 forest canopy mixed and interacted with ozone and hydroxyl radical to create a unique chemical
417 environment. While both ozone and hydroxyl radical contributed to the oxidation of isoprene and
418 monoterpenes, their role for in-canopy air chemistry was fundamentally different. Ozone was prin-
419 cipally carried from aloft into the canopy through turbulent transport whereas hydroxyl radical was
420 continuously produced, destroyed, and recycled in the rainforest canopy. Decreasing actinic fluxes
421 due to shading in the dense canopy reduced light-dependent hydroxyl radical formation rates in
422 the lower air canopy layers. At the same time, the ozonolysis became the most important chemical
423 sink of monoterpenes and contributed to the formation of hydroxyl radical whose yield reached
424 $\approx 2 \times 10^6$ radicals $\text{cm}^{-3} \text{ s}^{-1}$. Therefore, in dense forest canopies with co-located emissions of iso-
425 prene and monoterpenes, the oxidation of hydrocarbon molecules can produce sufficient hydroxyl
426 radical levels to maintain a photochemically active environment. The degree of photochemical ac-
427 tivity in the canopy would substantially depend on the levels of both ozone and nitrogen oxides,
428 and reactivity of emitted hydrocarbon molecules.

429

430 **Acknowledgments**

431 The authors thank G. Katul for comments and suggestions. The U.S. Department of Energy sup-
432 ported the field studies as part of the GoAmazon 2014/5 project (grant SC0011075). Fundação de
433 Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Fundação de Amparo à Pesquisa do
434 Estado do Amazonas (FAPEAM) funded the Brazilian component of the field studies. The Large
435 scale Biosphere-Atmosphere Experiment in Amazonia (LBA) provided logistic support and made
436 the flux tower and housing unit available to complete the field studies. We thank the support from
437 the LBA central office that operated at INPA. We acknowledge logistical support from the ARM
438 Climate Research Facility. JDF acknowledges support from the National Oceanic and Atmospheric
439 Administration, Educational Partnership Program, U.S. Department of Commerce, under Agree-
440 ment No. NA16SEC4810006-NCAS-M and the National Science Foundation (Award 2000403). The
441 data needed for reproducing the figures are available from the authors upon request. We thank an
442 anonymous reviewer who provided excellent comments to improve the original manuscript.

443 **References**

444 Alves, E.G., Jardine, K., Tota, J., Jardine, A., Yáñez-Serrano, A.M., Karl, T., Tavares, J., Nelson,
445 B., Gu, D., Stavrakou, T., et al., 2016. Seasonality of isoprenoid emissions from a primary
446 rainforest in central Amazonia. *Atmospheric Chemistry and Physics* 16, 3903–3925.

447 Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D., Hewitt, C., Martin, M., Guenther,
448 A., 2011. Global terrestrial isoprene emission models: Sensitivity to variability in climate and
449 vegetation. *Atmospheric Chemistry and Physics* 11, 8037–8052.

450 Aschmann, S.M., Arey, J., Atkinson, R., 2002. OH radical formation from the gas-phase reactions
451 of O₃ with a series of terpenes. *Atmospheric Environment* 36, 4347–4355.

452 Atkinson, R., 2000. Atmospheric chemistry of VOCs and NO_x. *Atmospheric environment* 34,
453 2063–2101.

454 Atkinson, R., Aschmann, S.M., Arey, J., Shorees, B., 1992. Formation of OH radicals in the gas
455 phase reactions of O₃ with a series of terpenes. *Journal of Geophysical Research: Atmospheres*
456 97, 6065–6073.

457 Barr, J., Fuentes, J., Bottenheim, J., 2003. Radiative forcing of phytogenic aerosols. *Journal of*
458 *Geophysical Research: Atmospheres* 108.

459 Bates, K.H., Jacob, D.J., 2019. A new model mechanism for atmospheric oxidation of isoprene:
460 global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol.
461 *Atmospheric Chemistry and Physics* 19, 9613–9640.

462 Bou-Zeid, E., Meneveau, C., Parlange, M.B., 2004. Large-eddy simulation of neutral atmospheric
463 boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness.
464 *Water Resour. Res.* 40, W02505. doi:[10.1029/2003WR002475](https://doi.org/10.1029/2003WR002475).

465 Chamecki, M., Meneveau, C., Parlange, M.B., 2008. A hybrid spectral/finite-volume algorithm for
466 Large-Eddy Simulation of scalars in the atmospheric boundary layer. *Boundary Layer Meteorol.*
467 128, 473–484. doi:[10.1007/s10546-008-9302-1](https://doi.org/10.1007/s10546-008-9302-1).

468 Chamecki, M., Meneveau, C., Parlange, M.B., 2009. Large eddy simulation of pollen transport in
469 the atmospheric boundary layer. *J. Aerosol Sci.* 40, 241–255. URL: <http://www.sciencedirect.com/science/article/pii/S0021850208002024>, doi:10.1016/j.jaerosci.2008.11.004.

470

471 Dai, Y., Dickinson, R.E., Wang, Y.P., 2004. A two-big-leaf model for canopy temperature, photo-
472 synthesis, and stomatal conductance. *J. Climate* 17, 2281–2299. doi:10.1175/1520-0442(2004)
473 017<2281:ATMFCT>2.0.CO;2.

474 Dias-Junior, C.Q., Dias, N.L., Fuentes, J.D., Chamecki, M., 2017. Convective storms and
475 non-classical low-level jets during high ozone level episodes in the Amazon region: An
476 ARM/GOAMAZON case study. *Atmospheric environment* 155, 199–209.

477 Edburg, S.L., Stock, D., Lamb, B.K., Patton, E.G., 2011. The effect of the vertical source dis-
478 tribution on scalar statistics within and above a forest canopy. *Boundary Layer Meteorol.* 142,
479 365–382. doi:10.1007/s10546-011-9686-1.

480 Edwards, P., Evans, M., Furneaux, K., Hopkins, J., Ingham, T., Jones, C., Lee, J., Lewis, A.,
481 Moller, S., Stone, D., et al., 2013. OH reactivity in a South East Asian tropical rainforest during
482 the Oxidant and Particle Photochemical Processes (OP3) project. *Atmospheric Chemistry and*
483 *Physics* 13, 9497–9514.

484 Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier,
485 C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer,
486 C., Baugcum, S.L., Kloster, S., 2010. Description and evaluation of the Model for Ozone
487 and Related chemical Tracers, version 4 (MOZART-4). *Geosci. Model Dev.* 3, 43–67. URL:
488 <http://www.geosci-model-dev.net/3/43/2010/>, doi:10.5194/gmd-3-43-2010.

489 Finnigan, J., 2000. Turbulence in plant canopies. *Annual Review of Fluid Mechanics* 32, 519–571.

490 Fisch, G., Tota, J., Machado, L.a.T., Dias, M.A.F.S., Lyra, R.F.d.F., Nobre, C.A., Dolman, A.J.,
491 Gash, J.H.C., 2004. The convective boundary layer over pasture and forest in Amazonia. *Theor
492 Appl Climatol* 78, 47–59. doi:10.1007/s00704-004-0043-x.

493 Fitzjarrald, D.R., Moore, K.E., 1990. Mechanisms of nocturnal exchange between the rain forest
494 and the atmosphere. *Journal of Geophysical Research: Atmospheres* 95, 16839–16850.

495 Fitzjarrald, D.R., Moore, K.E., Cabral, O.M., Scolar, J., Manzi, A.O., de Abreu Sá, L.D., 1990.
496 Daytime turbulent exchange between the Amazon forest and the atmosphere. *Journal of Geo-*
497 *physical Research: Atmospheres* 95, 16825–16838.

498 Foken, T., 2006. 50 years of the Monin–Obukhov similarity theory. *Boundary-Layer Meteorology*
499 119, 431–447.

500 Freire, L., Gerken, T., Ruiz-Plancarte, J., Wei, D., Fuentes, J., Katul, G., Dias, N., Acevedo,
501 O., Chamecki, M., 2017. Turbulent mixing and removal of ozone within an Amazon rainforest
502 canopy. *Journal of Geophysical Research: Atmospheres* 122, 2791–2811.

503 Fuchs, H., Hofzumahaus, A., Rohrer, F., Bohn, B., Brauers, T., Dorn, H., Häseler, R., Holland,
504 F., Kaminski, M., Li, X., et al., 2013. Experimental evidence for efficient hydroxyl radical
505 regeneration in isoprene oxidation. *Nature Geoscience* 6, 1023–1026.

506 Fuentes, J., Wang, D., Gu, L., 1999. Seasonal variations in isoprene emissions from a boreal aspen
507 forest. *Journal of Applied Meteorology* 38, 855–869.

508 Fuentes, J.D., Chamecki, M., Nascimento dos Santos, R.M., Von Randow, C., Stoy, P.C., Katul,
509 G., Fitzjarrald, D., Manzi, A., Gerken, T., Trowbridge, A., et al., 2016. Linking meteorology,
510 turbulence, and air chemistry in the Amazon rain forest. *Bulletin of the American Meteorological
511 Society* 97, 2329–2342.

512 Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J., Ciccioli, P., Lamb, B.,
513 Geron, C., Gu, L., Guenther, A., et al., 2000. Biogenic hydrocarbons in the atmospheric boundary
514 layer: a review. *Bulletin of the American Meteorological Society* 81, 1537–1575.

515 Fuentes, J.D., Wang, D., Bowling, D.R., Potosnak, M., Monson, R.K., Goliff, W.S., Stockwell,
516 W.R., 2007. Biogenic hydrocarbon chemistry within and above a mixed deciduous forest. *Journal
517 of Atmospheric Chemistry* 56, 165–185.

518 Gaskell, P.H., Lau, A.K.C., 1988. Curvature-compensated convective transport: SMART, A new
519 boundedness-preserving transport algorithm. *Int. J. Numer. Methods Fluids* 8, 617–641. doi:[10.1002/fld.1650080602](https://doi.org/10.1002/fld.1650080602).

521 Geiger, H., Barnes, I., Bejan, I., Benter, T., Spittler, M., 2003. The tropospheric degrada-
522 tion of isoprene: An updated module for the regional atmospheric chemistry mechanism. At-
523 mos. Environ. 37, 1503–1519. URL: <http://www.sciencedirect.com/science/article/pii/S1352231002010476>, doi:10.1016/S1352-2310(02)01047-6.

525 Gerken, T., Chamecki, M., Fuentes, J.D., 2017. Air-parcel residence times within forest canopies.
526 Boundary-Layer Meteorology 165, 29–54.

527 Gerken, T., Wei, D., Chase, R.J., Fuentes, J.D., Schumacher, C., Machado, L.A., Andreoli, R.V.,
528 Chamecki, M., de Souza, R.A.F., Freire, L.S., et al., 2016. Downward transport of ozone rich air
529 and implications for atmospheric chemistry in the Amazon rainforest. Atmospheric Environment
530 124, 64–76.

531 Gordon, M., Vlasenko, A., Staebler, R.M., Stroud, C., Makar, P.A., Liggio, J., Li, S.M., Brown, S.,
532 2014. Uptake and emission of VOCs near ground level below a mixed forest at Borden, Ontario.
533 Atmos. Chem. Phys. 14, 9087–9097. URL: <http://www.atmos-chem-phys.net/14/9087/2014/>,
534 doi:10.5194/acp-14-9087-2014.

535 Gu, L., 1999. Modeling biophysical exchanges and micro-meteorology in soil-vegetation-atmosphere
536 continuum: Results from a two-story boreal aspen forest. PhD Dissertation. University of Vir-
537 ginia. Charlottesville, Virginia, United States.

538 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006. Estimates of
539 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols
540 from Nature). Atmos. Chem. Phys. 6, 3181–3210. URL: <http://www.atmos-chem-phys.net/6/3181/2006/>, doi:10.5194/acp-6-3181-2006.

542 Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang,
543 X., 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1):
544 An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5,
545 1471–1492. URL: <http://www.geosci-model-dev.net/5/1471/2012/gmd-5-1471-2012.html>,
546 doi:10.5194/gmd-5-1471-2012.

547 Herrmann, F., Winterhalter, R., Moortgat, G.K., Williams, J., 2010. Hydroxyl radical (OH) yields

548 from the ozonolysis of both double bonds for five monoterpenes. *Atmospheric Environment* 44,
549 3458–3464.

550 Heus, T., van Heerwaarden, C.C., Jonker, H.J.J., Pier Siebesma, A., Axelsen, S., van den Dries,
551 K., Geoffroy, O., Moene, A.F., Pino, D., de Roode, S.R., Vilà-Guerau de Arellano, J., 2010.
552 Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its
553 applications. *Geosci. Model Dev.* 3, 415–444. URL: <http://www.geosci-model-dev.net/3/415/2010/>, doi:10.5194/gmd-3-415-2010.

555 Jardine, A.B., Jardine, K.J., Fuentes, J.D., Martin, S.T., Martins, G., Durgante, F., Carneiro, V.,
556 Higuchi, N., Manzi, A.O., Chambers, J.Q., 2015a. Highly reactive light-dependent monoterpenes
557 in the Amazon. *Geophysical Research Letters* 42, 1576–1583.

558 Jardine, K.J., Chambers, J.Q., Holm, J., Jardine, A.B., Fontes, C.G., Zorzanelli, R.F., Meyers,
559 K.T., De Souza, V.F., Garcia, S., Gimenez, B.O., et al., 2015b. Green leaf volatile emissions
560 during high temperature and drought stress in a central Amazon rainforest. *Plants* 4, 678–690.

561 Jardine, K.J., Yañez Serrano, A., Arneth, A., Abrell, L., Jardine, A., Van Haren, J., Artaxo,
562 P., Rizzo, L.V., Ishida, F.Y., Karl, T., et al., 2011. Within-canopy sesquiterpene ozonolysis in
563 Amazonia. *Journal of Geophysical Research: Atmospheres* 116.

564 Karl, T., Guenther, A., Yokelson, R.J., Greenberg, J., Potosnak, M., Blake, D.R., Artaxo, P., 2007.
565 The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic
566 volatile organic compounds in the lower atmosphere over Amazonia. *Journal of Geophysical
567 Research: Atmospheres* 112, D18302. doi:10.1029/2007JD008539.

568 Khan, B., Banzhaf, S., Chan, E.C., Forkel, R., Kanani-Sühring, F., Ketelsen, K., Kurppa, M.,
569 Maronga, B., Mauder, M., Raasch, S., et al., 2021. Development of an atmospheric chemistry
570 model coupled to the PALM model system 6.0: Implementation and first applications. *Geosci-
571 entific Model Development* 14, 1171–1193.

572 Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A., Miranda, A., Pereira, M.G., Culf, A., Grace, J.,
573 2000. Turbulence statistics above and within two Amazon rain forest canopies. *Boundary-Layer
574 Meteorology* 94, 297–331.

575 Kuhn, U., Andreae, M.O., Ammann, C., Araújo, A., Brancaleoni, E., Ciccioli, P., Dindorf, T.,
576 Frattoni, M., Gatti, L.V., Ganzeveld, L., et al., 2007. Isoprene and monoterpene fluxes from
577 central Amazonian rainforest inferred from tower-based and airborne measurements, and impli-
578 cations on the atmospheric chemistry and the local carbon budget. *Atmospheric Chemistry and*
579 *Physics* 7, 2855–2879.

580 Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., Brancaleoni,
581 E., Frattoni, M., Tavares, T., Kesselmeier, J., 2002. Isoprene and monoterpene emissions of
582 amazonian tree species during the wet season: Direct and indirect investigations on controlling
583 environmental functions. *Journal of Geophysical Research: Atmospheres* 107, LBA–38.

584 Lelieveld, J., Butler, T., Crowley, J., Dillon, T., Fischer, H., Ganzeveld, L., Harder, H., Lawrence,
585 M., Martinez, M., Taraborrelli, D., et al., 2008. Atmospheric oxidation capacity sustained by a
586 tropical forest. *Nature* 452, 737–740.

587 Liu, Y., Brito, J., Dorris, M.R., Rivera-Rios, J.C., Seco, R., Bates, K.H., Artaxo, P., Duvoisin,
588 S., Keutsch, F.N., Kim, S., et al., 2016. Isoprene photochemistry over the Amazon rainforest.
589 *Proceedings of the National Academy of Sciences* 113, 6125–6130.

590 Liu, Y., Seco, R., Kim, S., Guenther, A.B., Goldstein, A.H., Keutsch, F.N., Springston, S.R.,
591 Watson, T.B., Artaxo, P., Souza, R.A., et al., 2018. Isoprene photo-oxidation products quantify
592 the effect of pollution on hydroxyl radicals over Amazonia. *Science Advances* 4, eaar2547.

593 Makar, P.A., Fuentes, J.D., Wang, D., Staebler, R.M., Wiebe, H.A., 1999. Chemical processing of
594 biogenic hydrocarbons within and above a temperate deciduous forest. *Journal of Geophysical*
595 *Research: Atmospheres* 104, 3581–3603.

596 Marques Filho, A.d.O., Dallarosa, R.G., Pacheco, V.B., 2005. Radiação solar e distribuição vertical
597 de área foliar em floresta – Reserva Biológica do Cuieiras – ZF2, Manaus. *Acta Amazonica* 35,
598 427–436.

599 McWilliam, A.L.C., Roberts, J.M., Cabral, O.M.R., Leitao, M.V.B.R., de Costa, A.C.L., Maitelli,
600 G.T., Zamparoni, C.A.G.P., 1993. Leaf area index and above-ground biomass of terra firme rain
601 forest and adjacent clearings in Amazonia. *Funct. Ecol.* 7, 310–317. doi:10.2307/2390210.

602 Moon, Z., Fuentes, J.D., Staebler, R.M., 2020. Impacts of spectrally resolved irradiance on photo-
603 tolysis frequency calculations within a forest canopy. Agricultural and Forest Meteorology 291,
604 108012.

605 Nguyen, T.B., Crounse, J.D., Teng, A.P., Clair, J.M.S., Paulot, F., Wolfe, G.M., Wennberg, P.O.,
606 2015. Rapid deposition of oxidized biogenic compounds to a temperate forest. Proceedings of
607 the National Academy of Sciences 112, E392–E401.

608 Nölscher, A.C., Yáñez-Serrano, A.M., Wolff, S., de Araujo, A.C., Lavrič, J.V., Kesselmeier, J.,
609 Williams, J., 2016. Unexpected seasonality in quantity and composition of Amazon rainforest
610 air reactivity. Nat. Commun. 7, 10383. URL: <http://www.nature.com/ncomms/2016/160122/ncomms10383/full/ncomms10383.html>, doi:10.1038/ncomms10383.

612 Nölscher, A.C., Yáñez-Serrano, A.M., Wolff, S., De Araujo, A.C., Lavrič, J., Kesselmeier, J.,
613 Williams, J., 2016. Unexpected seasonality in quantity and composition of Amazon rainforest
614 air reactivity. Nature communications 7, 1–12.

615 Ouwersloot, H.G., de Arellano, J.V.G., H. van Stratum, B.J., Krol, M.C., Lelieveld, J., 2013. Quantifying the transport of subcloud layer reactants by shallow cumulus clouds over the Amazon.
616 Journal of Geophysical Research: Atmospheres 118, 13041–13059. doi:10.1002/2013JD020431.

618 Pan, Y., Chamecki, M., Isard, S.A., 2014. Large-eddy simulation of turbulence and particle
619 dispersion inside the canopy roughness sublayer. J. Fluid Mech. 753, 499–534. URL:
620 http://journals.cambridge.org/article_S0022112014003796, doi:10.1017/jfm.2014.379.

621 Patton, E.G., Davis, K.J., Barth, M.C., Sullivan, P.P., 2001. Decaying scalars emitted by a
622 forest canopy: A numerical study. Boundary Layer Meteorol. 100, 91–129. doi:10.1023/A:
623 1019223515444.

624 Patton, E.G., Sullivan, P.P., Shaw, R.H., Finnigan, J.J., Weil, J.C., 2016. Atmospheric stability
625 influences on coupled boundary layer and canopy turbulence. Journal of the Atmospheric Sciences
626 73, 1621–1647.

627 Peyret, R., Taylor, T.D., 2012. Computational methods for fluid flow. Springer Science & Business
628 Media.

629 Pfannerstill, E.Y., Reijrink, N.G., Edtbauer, A., Ringsdorf, A., Zannoni, N., Araújo, A., Ditas, F.,
630 Holanda, B.A., Sá, M.O., Tsokankunku, A., et al., 2021. Total OH reactivity over the Amazon
631 rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall
632 budget closure. *Atmospheric Chemistry and Physics* 21, 6231–6256.

633 Pöschl, U., Martin, S., Sinha, B., Chen, Q., Gunthe, S., Huffman, J., Borrmann, S., Farmer,
634 D., Garland, R., Helas, G., et al., 2010. Rainforest aerosols as biogenic nuclei of clouds and
635 precipitation in the Amazon. *Science* 329, 1513–1516.

636 Pöschl, U., Von Kuhlmann, R., Poisson, N., Crutzen, P.J., 2000. Development and intercompar-
637 ison of condensed isoprene oxidation mechanisms for global atmospheric modeling. *Journal of*
638 *Atmospheric Chemistry* 37, 29–52.

639 Raupach, M.R., Finnigan, J.J., Brunet, Y., 1996. Coherent eddies and turbulence in vegetation
640 canopies: The mixing-layer analogy, in: *Boundary-layer meteorology 25th anniversary volume,*
641 1970–1995. Springer, pp. 351–382.

642 Rinne, H., Guenther, A., Greenberg, J., Harley, P., 2002. Isoprene and monoterpene fluxes mea-
643 sured above amazonian rainforest and their dependence on light and temperature. *Atmospheric*
644 *Environment* 36, 2421–2426.

645 Rinne, J., Markkanen, T., Ruuskanen, T., Petäjä, T., Keronen, P., Tang, M., Crowley, J., Rannik,
646 Ü., Vesala, T., 2012. Effect of chemical degradation on fluxes of reactive compounds—a study
647 with a stochastic lagrangian transport model. *Atmospheric chemistry and physics* 12, 4843–4854.

648 Rohrer, F., Lu, K., Hofzumahaus, A., Bohn, B., Brauers, T., Chang, C.C., Fuchs, H., Häseler, R.,
649 Holland, F., Hu, M., et al., 2014. Maximum efficiency in the hydroxyl-radical-based self-cleansing
650 of the troposphere. *Nature Geoscience* 7, 559–563.

651 Santos, D.M., Acevedo, O.C., Chamecki, M., Fuentes, J.D., Gerken, T., Stoy, P.C., 2016. Temporal
652 scales of the nocturnal flow within and above a forest canopy in Amazonia. *Boundary-layer*
653 *meteorology* 161, 73–98.

654 Schwantes, R.H., Emmons, L.K., Orlando, J.J., Barth, M.C., Tyndall, G.S., Hall, S.R., Ullmann,
655 K., Clair, J.M.S., Blake, D.R., Wisthaler, A., et al., 2020. Comprehensive isoprene and ter-

656 pene gas-phase chemistry improves simulated surface ozone in the southeastern us. *Atmospheric*
657 *Chemistry and Physics* 20, 3739–3776.

658 Sellers, P.J., 1985. Canopy reflectance, photosynthesis and transpiration. *Int. J. Remote Sens.* 6,
659 1335–1372. doi:[10.1080/01431168508948283](https://doi.org/10.1080/01431168508948283).

660 Shaw, R.H., Schumann, U., 1992. Large-eddy simulation of turbulent flow above and within a
661 forest. *Boundary Layer Meteorol.* 61, 47–64. doi:[10.1007/BF02033994](https://doi.org/10.1007/BF02033994).

662 Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.F.,
663 Kuhn, U., Stefani, P., Knorr, W., 2014. Global data set of biogenic VOC emissions calculated by
664 the MEGAN model over the last 30 years. *Atmospheric Chemistry and Physics* 14, 9317–9341.

665 Strong, C., Fuentes, J., Baldocchi, D., 2004. Reactive hydrocarbon flux footprints during canopy
666 senescence. *Agricultural and Forest Meteorology* 127, 159–173.

667 Stroud, C., Makar, P., Guenther, A., Geron, C., Turnipseed, A., Nemitz, E., Baker, B., Potosnak,
668 M., Fuentes, J., 2005. Role of canopy-scale photochemistry in modifying biogenic–atmosphere
669 exchange of reactive terpene species: Results from the CELTIC field study. *Journal of Geophysical*
670 *Research: Atmospheres* 110, 1–14.

671 Su, L., Patton, E.G., Vilà-Guerau de Arellano, J., Guenther, A.B., Kaser, L., Yuan, B., Xiong,
672 F., Shepson, P.B., Zhang, L., Miller, D.O., Brune, W.H., Baumann, K., Edgerton, E., Wein-
673 heimer, A., Misztal, P.K., Park, J.H., Goldstein, A.H., Skog, K.M., Keutsch, F.N., Mak,
674 J.E., 2016. Understanding isoprene photooxidation using observations and modeling over
675 a subtropical forest in the southeastern US. *Atmos. Chem. Phys.* 16, 7725–7741. URL:
676 <http://www.atmos-chem-phys.net/16/7725/2016/>, doi:[10.5194/acp-16-7725-2016](https://doi.org/10.5194/acp-16-7725-2016).

677 Taraborrelli, D., Lawrence, M., Crowley, J., Dillon, T., Gromov, S., Groß, C., Vereecken, L.,
678 Lelieveld, J., 2012. Hydroxyl radical buffered by isoprene oxidation over tropical forests. *Nature*
679 *Geoscience* 5, 190–193.

680 Tota, J., Roy Fitzjarrald, D., da Silva Dias, M.A., 2012. Amazon rainforest exchange of carbon
681 and subcanopy air flow: Manaus LBA site—A complex terrain condition. *The Scientific World*
682 *Journal* 2012.

683 Van Stratum, B., Vilà-Guerau de Arellano, J., Ouwersloot, H., Van Den Dries, K., Van Laar, T.,
684 Martinez, M., Lelieveld, J., Diesch, J.M., Drewnick, F., Fischer, H., et al., 2012. Case study
685 of the diurnal variability of chemically active species with respect to boundary layer dynamics
686 during domino. *Atmospheric Chemistry and Physics* 12, 5329–5341.

687 Verwer, J., Simpson, D., 1995. Explicit methods for stiff ODEs from atmospheric chemistry. *Applied*
688 *Numerical Mathematics* 18, 413–430. URL: <http://linkinghub.elsevier.com/retrieve/pii/0168927495000686>, doi:[10.1016/0168-9274\(95\)00068-6](https://doi.org/10.1016/0168-9274(95)00068-6).

690 Verwer, J.G., 1994. Gauss–Seidel iteration for stiff ODES from chemical kinetics. *SIAM J. Sci.*
691 *Comput.* 15, 1243–1250. doi:[10.1137/0915076](https://doi.org/10.1137/0915076).

692 Vilà-Guerau de Arellano, J., 2015. Atmospheric boundary layer: Integrating air chemistry and
693 land interactions. Cambridge University Press, New York, NY.

694 Vilà-Guerau de Arellano, J., Patton, E.G., Karl, T., van den Dries, K., Barth, M.C., Orlando, J.J.,
695 2011. The role of boundary layer dynamics on the diurnal evolution of isoprene and the hydroxyl
696 radical over tropical forests. *Journal of Geophysical Research: Atmospheres* 116, D07304. doi:[10.1029/2010JD014857](https://doi.org/10.1029/2010JD014857).

698 Vilà-Guerau de Arellano, J., Wang, X., Pedruzo-Bagazgoitia, X., Sikma, M., Agustí-Panareda, A.,
699 Boussetta, S., Balsamo, G., Machado, L., Biscaro, T., Gentine, P., et al., 2020. Interactions
700 between the amazonian rainforest and cumuli clouds: A large-eddy simulation, high-resolution
701 ecmwf, and observational intercomparison study. *Journal of Advances in Modeling Earth Systems*
702 12, e2019MS001828.

703 Wei, D., Fuentes, J.D., Gerken, T., Chamecki, M., Trowbridge, A.M., Stoy, P.C., Katul, G.G.,
704 Fisch, G., Acevedo, O., Manzi, A., et al., 2018. Environmental and biological controls on seasonal
705 patterns of isoprene above a rain forest in central Amazonia. *Agricultural and Forest Meteorology*
706 256, 391–406.

707 Wei, D., Fuentes, J.D., Gerken, T., Trowbridge, A.M., Stoy, P.C., Chamecki, M., 2019. Influences
708 of nitrogen oxides and isoprene on ozone-temperature relationships in the Amazon rain forest.
709 *Atmospheric Environment* 206, 280–292.

710 Whalley, L., Edwards, P., Furneaux, K., Goddard, A., Ingham, T., Evans, M., Stone, D., Hopkins,
711 J., Jones, C.E., Karunaharan, A., et al., 2011. Quantifying the magnitude of a missing hydroxyl
712 radical source in a tropical rainforest. *Atmospheric Chemistry and Physics* 11, 7223–7233.

713 Wolfe, G.M., Thornton, J.A., 2011. The Chemistry of Atmosphere-Forest Exchange (CAFE) Model
714 – Part 1: Model description and characterization. *Atmos. Chem. Phys.* 11, 77–101. URL:
715 <http://www.atmos-chem-phys.net/11/77/2011/>, doi:10.5194/acp-11-77-2011.

716 Yáñez-Serrano, A.M., Nölscher, A.C., Bourtsoukidis, E., Gomes Alves, E., Ganzeveld, L., Bonn,
717 B., Wolff, S., Sa, M., Yamasoe, M., Williams, J., et al., 2018. Monoterpene chemical speciation
718 in a tropical rainforest: Variation with season, height, and time of day at the Amazon tall tower
719 observatory (ATTO). *Atmospheric Chemistry and Physics* 18, 3403–3418.

720 **Figure captions**

721

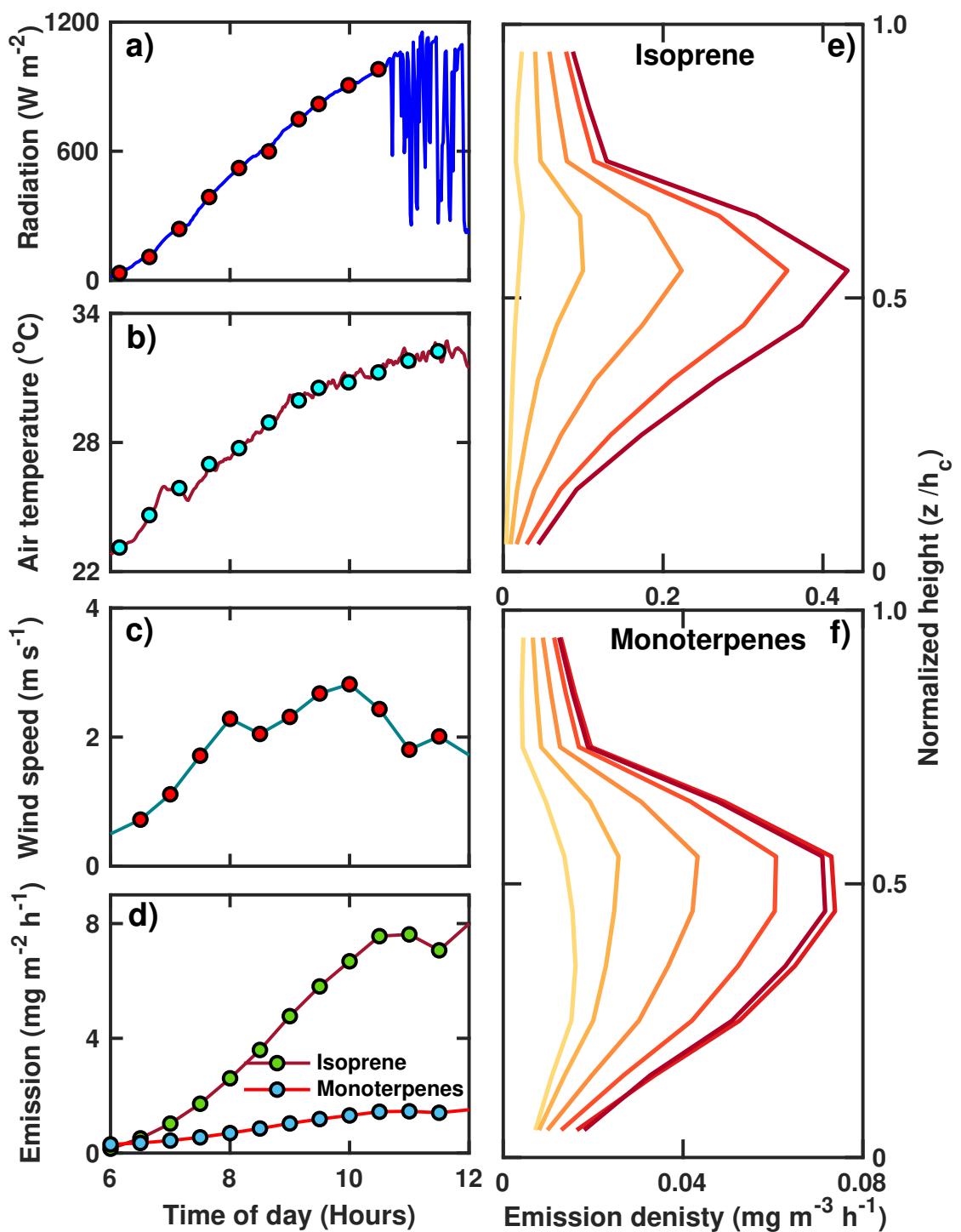
722 **Figure 1.** a) Incoming solar radiation, b) air temperature, c) wind speed, d) integrated emissions
723 of isoprene and monoterpenes, e) isoprene emission density, and f) monoterpene emission density
724 from 6:00 h to 12:00 h (yellow to dark red) on 14 September 2014. Shaded circles represent select
725 times when data are plotted.

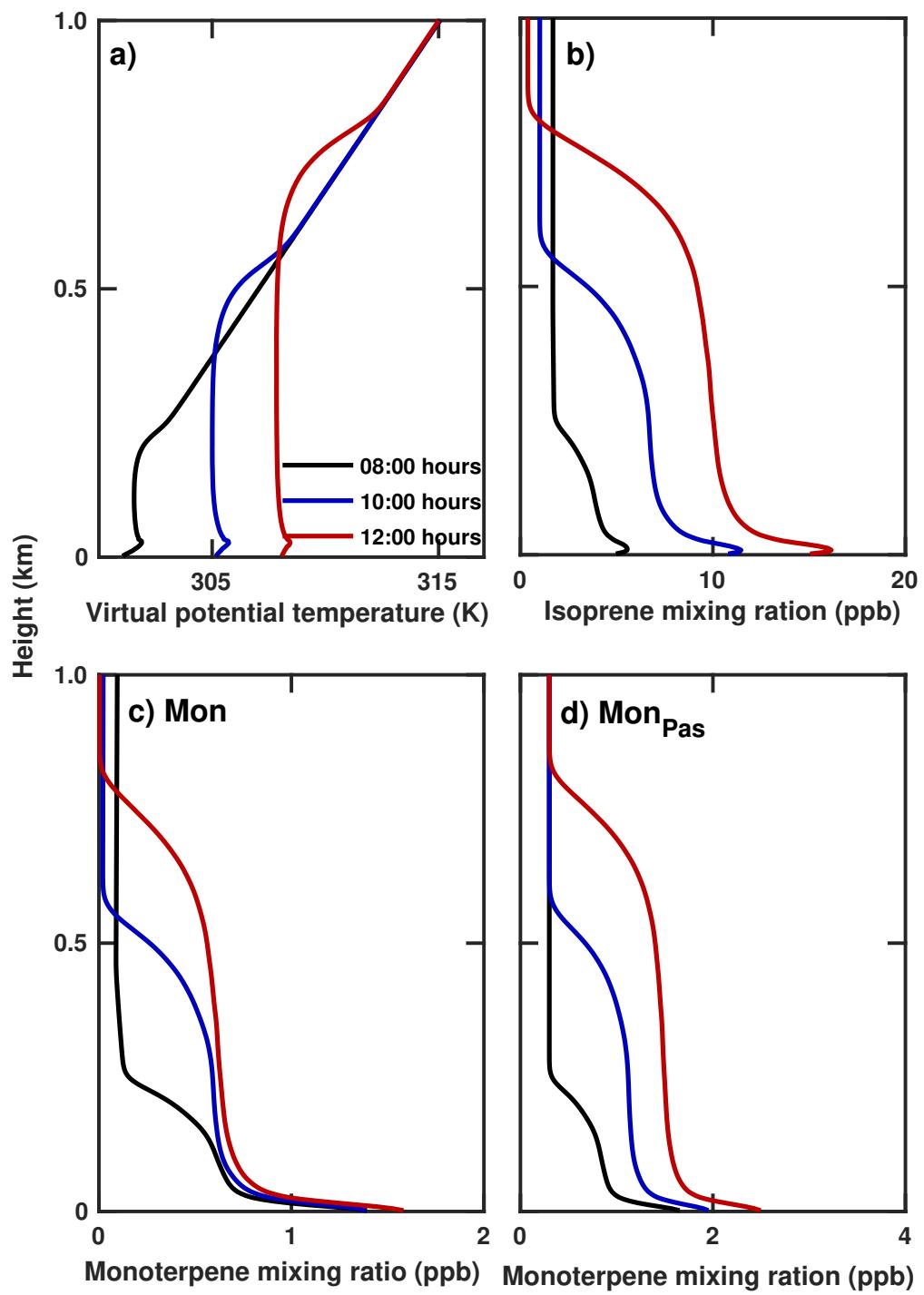
726

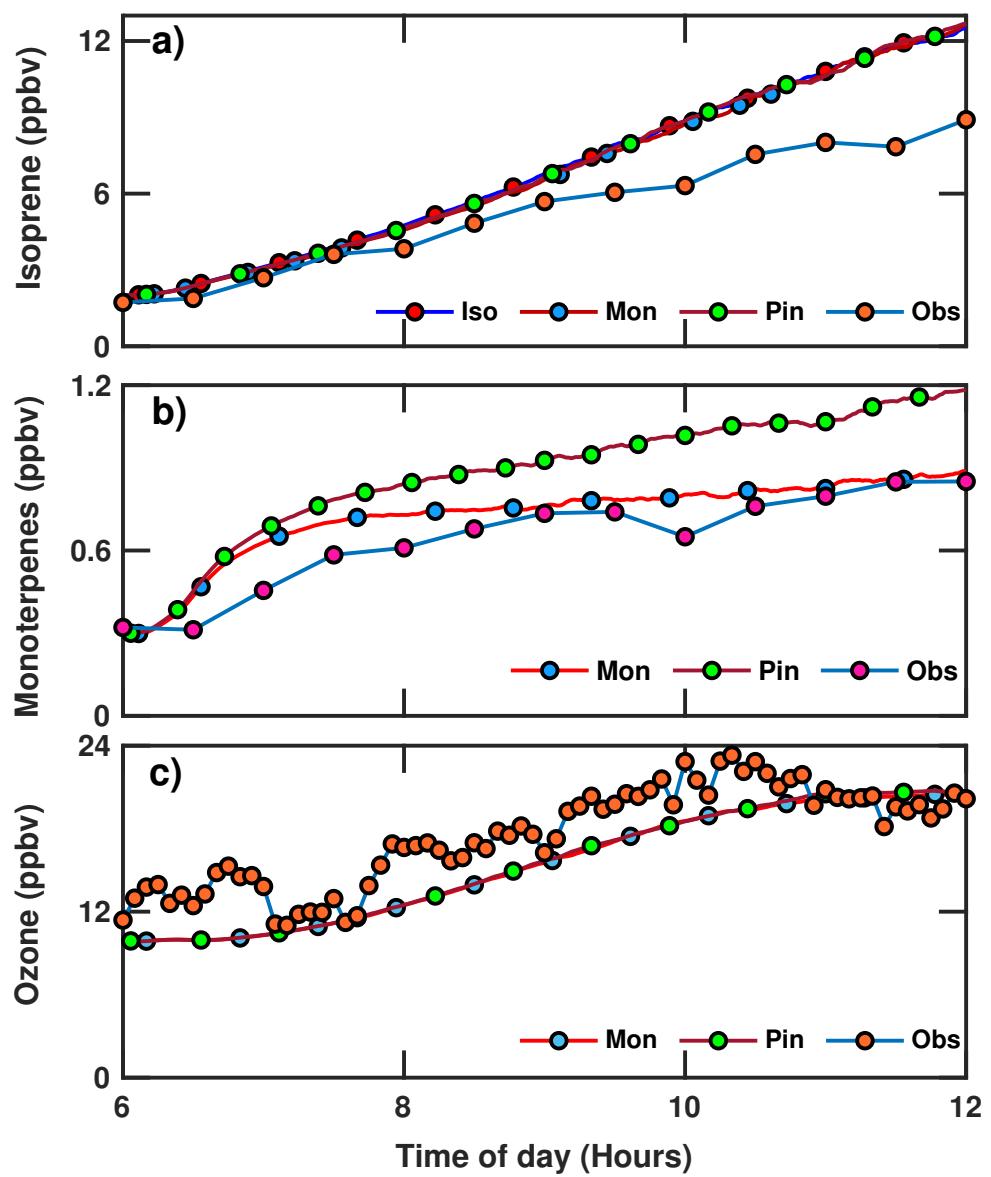
727 **Figure 2.** Horizontally averaged profiles of instantaneous a) virtual potential temperature (θ_v) in
728 degrees Kelvin (K) and mixing ratios in ppb of b) isoprene, c) monoterpenes (*Mon*), and d) passive
729 monoterpenes (*Mon*) at 8:00 (black), 10:00 (blue), and 12:00 h (red) on 14 September 2014.

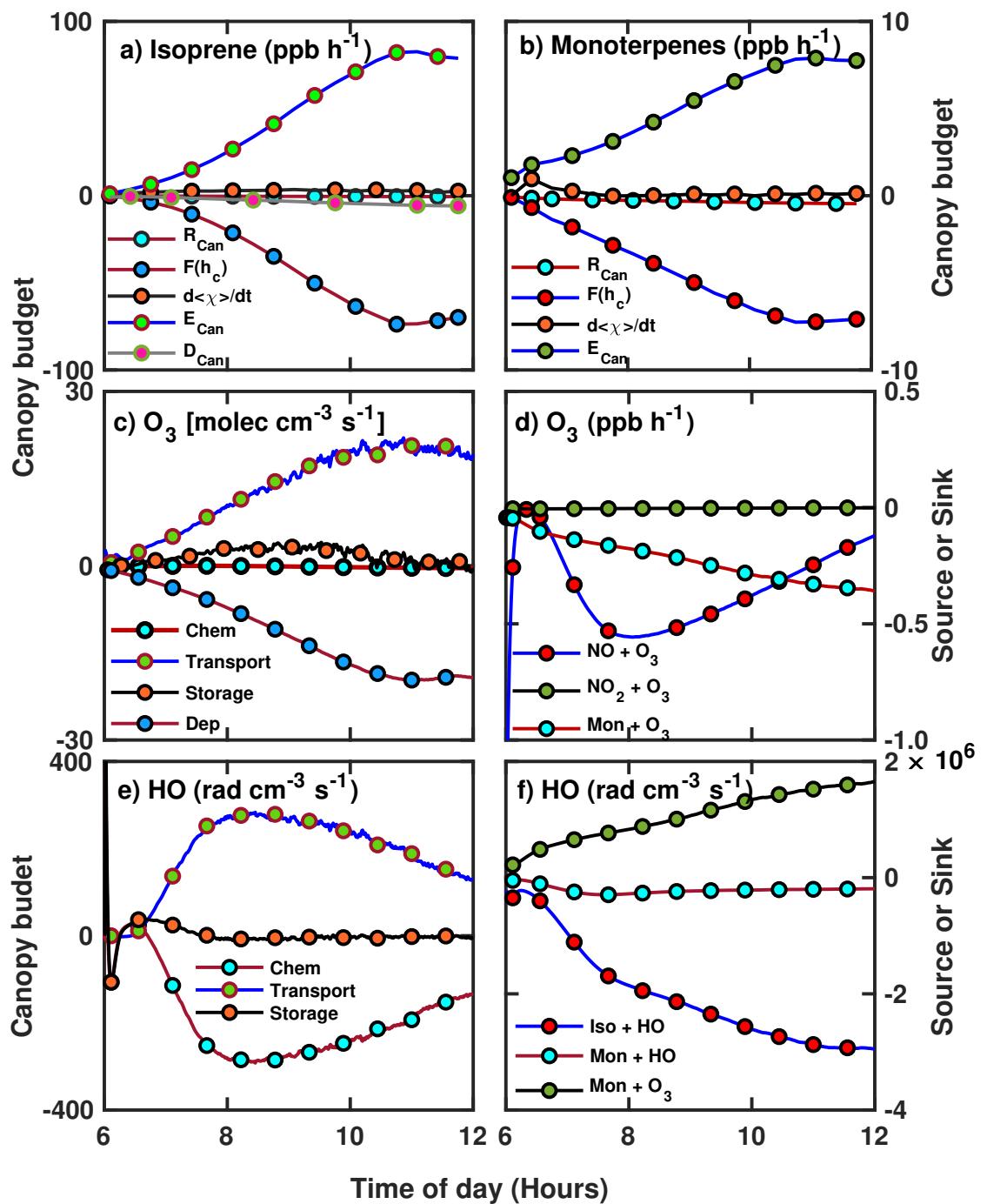
730

731 **Figure 3.** Simulated and observed gas mixing ratios in ppb at $zh_c^{-1} = 1.14$ of a) isoprene (the
732 *Iso* case indicates only isoprene chemistry, *Mon* means that the chemistry of monoterpenes was
733 added to the isoprene chemistry, *Pin* means the chemistry of α -pinene was added to the isoprene
734 chemistry), b) monoterpenes (*Mon* indicates that the chemistry of monoterpenes was combined with
735 isoprene chemistry, *Pin* means the chemistry of α -pinene was added to the isoprene chemistry),
736 and c) ozone for cases *Iso*, *Mon*, and *Pin* on 14 September 2014. Shaded circles represent select
737 times when data are plotted.


738


739 **Figure 4.** Computed budgets of gases at the canopy top. a) Terms in the canopy budget for a)
740 isoprene and b) monoterpenes (*Mon* case). Budget terms include air chemistry (R_{Can}), flux across
741 canopy top ($F(h_c)$), change in gas storage ($d<\chi>/dt$), canopy emission (E_{Can}), and surface de-
742 position (D_{Can}), which was calculated as the residual of the other terms. Positive values indicate
743 accumulation in the control volume. c) Terms (air chemistry, transport, storage, and surface depo-
744 sition) of the ozone canopy budget. d) Rates of ozone destruction due to reactions with nitric oxide
745 (NO), nitrogen dioxide (NO_2), and monoterpenes (*Mon*). e) Terms (air chemistry, transport, and
746 storage) of the hydroxyl radical budget. f) Rates of hydroxyl radical destruction or formation due
747 to reactions with isoprene, monoterpenes, and ozonolysis of monoterpenes on 14 September 2014.
748 Shaded circles represent select times when data are plotted.


749


750 **Figure 5.** a) Vertical variation of hydroxyl radical sink due to reaction with isoprene ($\text{Sink}_{HO,Isop}$)
751 and b) source of hydroxyl radical due to rozonolysis of monoterpenes ($\text{Source}_{HO,Mon}$). c) Compar-
752 ison of source and sink strength of hydroxyl radical as a function of canopy depth. d) The absolute
753 ratio of hydroxyl radical sink due to reaction with isoprene to average ambient hydroxyl radical
754 concentration as a function of canopy depth for 08:00, 10:00, and 12:00 hours on 14 September
755 2014. Shaded circles represent select heights where data are plotted.

756

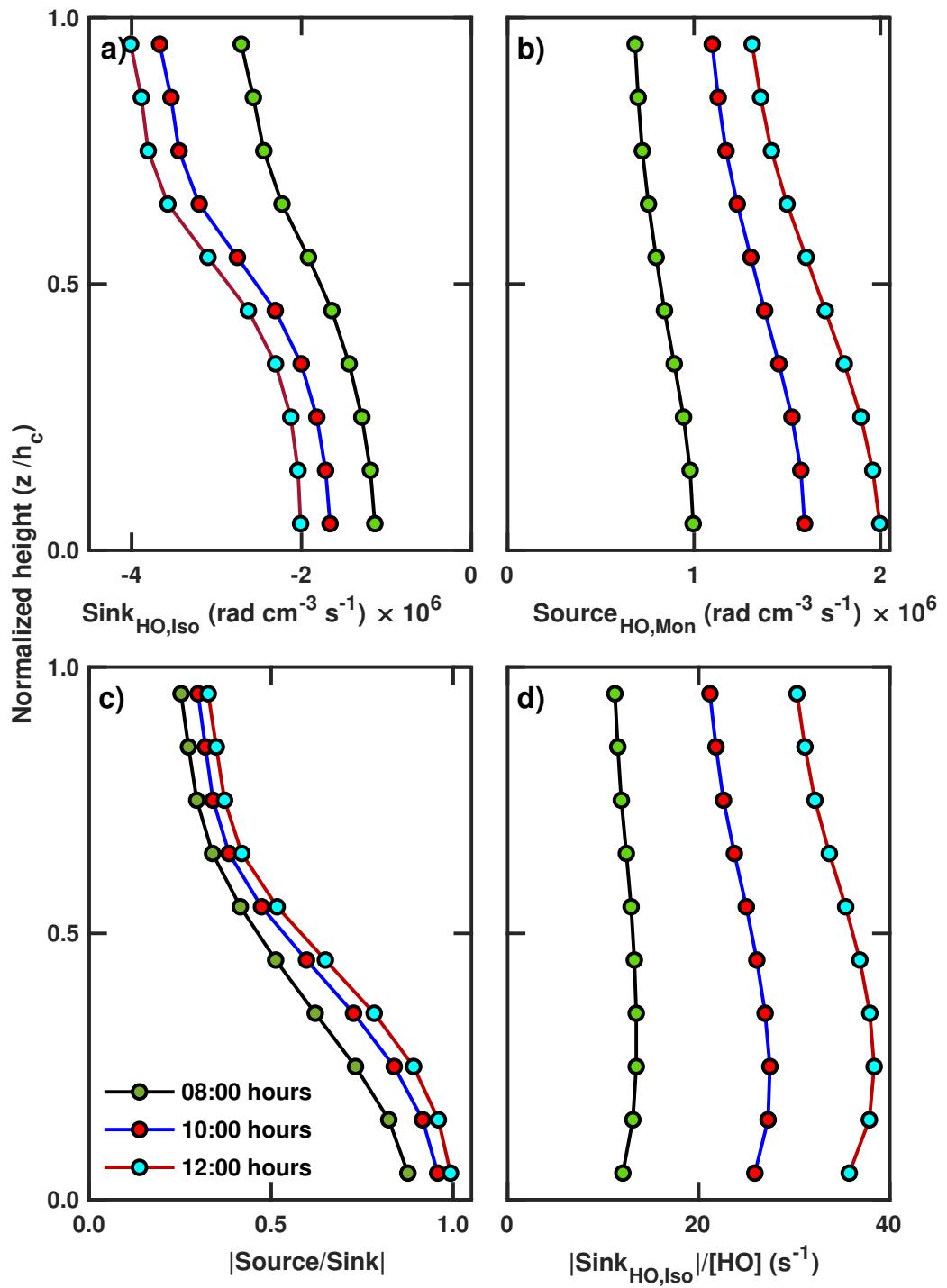


Table 1: Data used to initialize the vertical profiles in the LES domain

Variable	Height	Value	Unit
θ_v	$z \leq 50$	299.1	K
$\Delta\theta_v/\Delta z$	$50 \text{ m} < z \leq 150 \text{ m}$	0.024	K m^{-1}
$\Delta\theta_v/\Delta z$	$z > 150 \text{ m}$	0.016	K m^{-1}
q	$z \leq 150$	17.0	g kg^{-1}
	$z > 150$	13.0	g kg^{-1}
O_3	$z \leq 450 \text{ m}$	$8 + 0.056 \text{ ppb m}^{-1} z$	ppb
	$z > 450 \text{ m}$	33.1	ppb
NO	$z \leq 150 \text{ m}$	0.1	ppb
NO_2		0.1	ppb
CH_4		1724.0	ppb

757 **Supplement**

758

759 The purpose of this supplement is to provide the details of the photochemical mechanism (see Table
760 S1) included in the updated LES and include additional figures showing the LES results for air
761 turbulence and kinematic heat fluxes in and above the forest canopy.

Table S1: Chemical reaction scheme used in the LES with reactions and their respective rate constants

Number	Reaction	Reaction rate constant ^a
R1	$O_3 + h\nu \rightarrow O(1D) + (O_2)^b$	$3.83 \cdot 10^{-5} \cdot e^{\frac{-0.575}{\chi}}$
R2	$O(1D) + H_2O \rightarrow 2HO$	$1.63 \cdot 10^{-10} \cdot e^{\frac{60}{T}}$
R3	$O(1D) + (N_2) + (O_2) \rightarrow O_3 + (N_2)$	$2.15 \cdot 10^{-11} \cdot e^{\frac{110}{T}}$
R4	$O(1D) + (O_2) \rightarrow O_3$	$3.30 \cdot 10^{-11} \cdot e^{\frac{55}{T}}$
R5	$NO_2 + h\nu \rightarrow NO + O_3$	$1.67 \cdot 10^{-2} \cdot e^{\frac{-0.575}{\chi}}$
R6	$CH_2O + h\nu \rightarrow HO_2$	$5.88 \cdot 10^{-5} \cdot e^{\frac{-0.575}{\chi}}$
R7	$HO + CO \rightarrow HO_2 + (CO_2)$	$2.40 \cdot 10^{-13}$
R8	$HO + CH_4 \rightarrow CHO_2$	$2.45 \cdot 10^{-12} \cdot e^{\frac{-1775}{T}}$
R9	$HO + ISO \rightarrow RO_2$	$1.00 \cdot 10^{-10}$
R10	$HO + MVK \rightarrow HO_2 + CH_2O$	$2.40 \cdot 10^{-11}$
R11	$HO + HO_2 \rightarrow (H_2O) + (O_2)$	$4.80 \cdot 10^{-11} \cdot e^{\frac{250}{T}}$
R12	$HO + H_2O_2 \rightarrow 2(H_2O)$	$2.90 \cdot 10^{-12} \cdot e^{\frac{-160}{T}}$
R13	$HO_2 + NO \rightarrow HO + NO_2$	$3.50 \cdot 10^{-12} \cdot e^{\frac{250}{T}}$
R14	$CH_3O_2 + NO \rightarrow HO_2 + NO_2 + CH_2O$	$2.80 \cdot 10^{-12} \cdot e^{\frac{300}{T}}$
R15	$RO_2 + NO \rightarrow HO_2 + NO_2 + MVK + CH_2O$	$2.43 \cdot 10^{-12}$
R16	$HO + CH_2O \rightarrow HO_2$	$5.50 \cdot 10^{-12} \cdot e^{\frac{125}{T}}$
R17	$2HO_2 \rightarrow H_2O_2 + (O_2)$	(Vilà-Guerau de Arellano, 2015)
R18	$CH_3O_2 + HO_2 \rightarrow PRODUC$	$4.10 \cdot 10^{-13}$
R19	$RO_2 + HO_2 \rightarrow PRODUC$	$1.50 \cdot 10^{-11}$
R20	$HO + NO_2 \rightarrow HNO_3$	$3.50 \cdot 10^{-12} \cdot e^{\frac{-340}{T}}$
R21	$NO + O_3 \rightarrow NO_2 + (O_2)$	$3.00 \cdot 10^{-12} \cdot e^{\frac{-1500}{T}}$
R22	$NO + NO_3 \rightarrow 2NO_2$	$1.80 \cdot 10^{-11} \cdot e^{\frac{110}{T}}$
R23	$NO_2 + O_3 \rightarrow NO_3 + (O_2)$	$1.40 \cdot 10^{-13} \cdot e^{\frac{-2470}{T}}$
R24	$NO_2 + NO_3 \rightarrow N_2O_5$	(Vilà-Guerau de Arellano, 2015)
R25	$N_2O_5 \rightarrow NO_3 + NO_2$	(Vilà-Guerau de Arellano, 2015)
R26	$N_2O_5 + H_2O \rightarrow 2HNO_3$	$2.50 \cdot 10^{-22}$
R27	$N_2O_5 + 2H_2O \rightarrow 2HNO_3 + (H_2O)$	(Vilà-Guerau de Arellano, 2015)
Monoterpene runs only		
R28	$MON + HO \rightarrow TPO_2$	$8.19 \cdot 10^{-11} / 5.33 \cdot 10^{-11} b$
R29	$MON + O_3 \rightarrow 2MVK + 0.1HO_2 + 0.7HO$	$1.82 \cdot 10^{-16} / 8.09 \cdot 10^{-17} b$
R30	$MON + NO_3 \rightarrow TPO_2$	$1.17 \cdot 10^{-11} / 6.16 \cdot 10^{-12} b$
R31	$TPO_2 + NO \rightarrow 2MVK + HO_2 + HO$	$4.20 \cdot 10^{-12} \cdot e^{\frac{180}{T}}$
R32	$TPO_2 + HO_2 \rightarrow TPOOH$	$7.50 \cdot 10^{-13} \cdot e^{\frac{700}{T}}$
R33	$TPOOH + HO \rightarrow TPO_2$	$3.80 \cdot 10^{-12} \cdot e^{\frac{200}{T}}$
R34	$TPOOH + h\nu \rightarrow 2MVK + HO_2 + HO$	$3.01 \cdot 10^{-5} \cdot e^{\frac{-0.575}{\chi}}$

^a First order reaction rates are in s^{-1} , second order reaction rates are in $cm^3 \text{molec}^{-1} s^{-1}$.

χ is the solar zenith angle and T [K] is the absolute temperature from the LES.

^b Brackets indicate that the reaction scheme does not change the concentration of the species

^c The first reaction rate is for an average monoterpene, while the second rate is for α -pinene only.

762 **Kinematic heat fluxes**

763

764 Observed kinematic heat fluxes at the study site were used to specify the canopy heat source in the
765 simulation. Small differences between modeled and observed fluxes originated from smoothing and
766 interpolation in the forcing data (Figure S1). The kinematic fluxes increased until about 10:30 h,
767 with a marked decay at 11:00 h when clouds reduced the incoming sunlight (Figure S1a). Above
768 the forest canopy and within the roughness sublayer, for the most part the kinematic fluxes re-
769 mained invariant with height (Figure S1b). Above the rainforest roughness sublayer, the kinematic
770 heat fluxes linearly decreased with altitude as typically observed in the convective boundary layer,
771 reaching negative values some distance within the entrainment zone (Figure S1c).

772

773 **Atmospheric turbulence**

774

775 Atmospheric turbulence statistics, derived from the LES outputs, were contrasted with observed
776 quantities for 21 September 2014 (Figure S2) to verify the fidelity of simulations in determining
777 vertical velocity (w) and momentum transfer ($\overline{u'w'}$) as a function of height (z) normalized to canopy
778 depth ($z h_c^{-1}$). Results (Figure S2) demonstrated that the numerical model realistically represented
779 the air turbulence characteristics in and above the forest canopy. On average, the numerical sim-
780 ulations of the normalized mean velocity as a function of height ($\overline{u}(z)$) to the mean wind speed at
781 h_c , $\frac{\overline{u}(z)}{u(h_c)}$, closely matched the observations in and above the forest canopy (Figure S2a). In the
782 case of the standard deviation of the zonal wind speed (σ_u) normalized to the friction velocity (u_*),
783 $\frac{\sigma_u(z)}{u_*}$, the LES results agreed reasonably well in the canopy but above the forest the numerical
784 model underestimated the $\frac{\sigma_u(z)}{u_*}$ values (Figure S2b). Similar results were observed for vertical
785 velocity variance $\frac{\sigma_w(z)}{u_*}$ (Figure S2e). This discrepancy likely resulted from the assumption of flat
786 topography or from the grid resolution adopted (or a combination of both). Simulations including
787 topography under neutral stability conditions using a finer grid were in better agreement with ob-
788 servations from the same field campaign (Chen et al., 2019). The LES results and measured values
789 of the skewness of the u , (Sk_u), showed qualitative good agreement in shape and depth, albeit with
790 a reduced magnitude (Figure S2c). The results could be used as an indicator of the penetration
791 depth of coherent sweeps and ejections. The penetration depth of sweeps and ejections occurred in

792 the upper half of the canopy. Results appeared to be in agreement with previous findings (Kruijt
793 et al.,2000). Results for the momentum flux $\overline{u'w'}$ (Figure S2d) exhibited better agreement with ob-
794 servations and provided confidence that turbulent transport in the LES was realistically simulated
795 and warranted reliable subsequent analyses of trace gas transport and chemistry in and above the
796 forest canopy. There was also qualitative agreement between measurements and LES results for the
797 skewness of vertical velocity (Sk_w), as both have a tendency for positive values above the canopy
798 and for negative values below canopy height (Figure Sf).

799

800 Thermodynamics of the atmospheric boundary layer

801

802 After sunrise, canopy heating contributed to the growth of the convective boundary layer that
803 reached a depth of 760 m around 12::00 hours (Figures S3a, b). After 7:00 h, the growth rate of the
804 convective boundary remained approximately constant and started to slow after kinematic fluxes
805 decreased after 11:00 h. Entertainment of drier air into the convective atmospheric boundary layer,
806 initially decreased the specific humidity until the value stabilizes resulting from increased evapotran-
807 spiration (Figure S3c,d). The development of depth of the convective boundary layer and turbulent
808 transport of kinematic heat appeared realistic (Figure S3a, b). There were no direct observations of
809 temperature profiles at the study site to discern the depth of the mixed layer. Earlier studies (Fisch
810 et al., 2004) observed boundary layer depths of 491 ± 133 m and 813 ± 128 m for 11:00 h and
811 14:00 h, respectively, over a rainforest site 24 km away from the study site during the wet season.
812 The maximum boundary layer depth of 1002 ± 195 was observed around 17:00 h (Fisch et al., 2004).

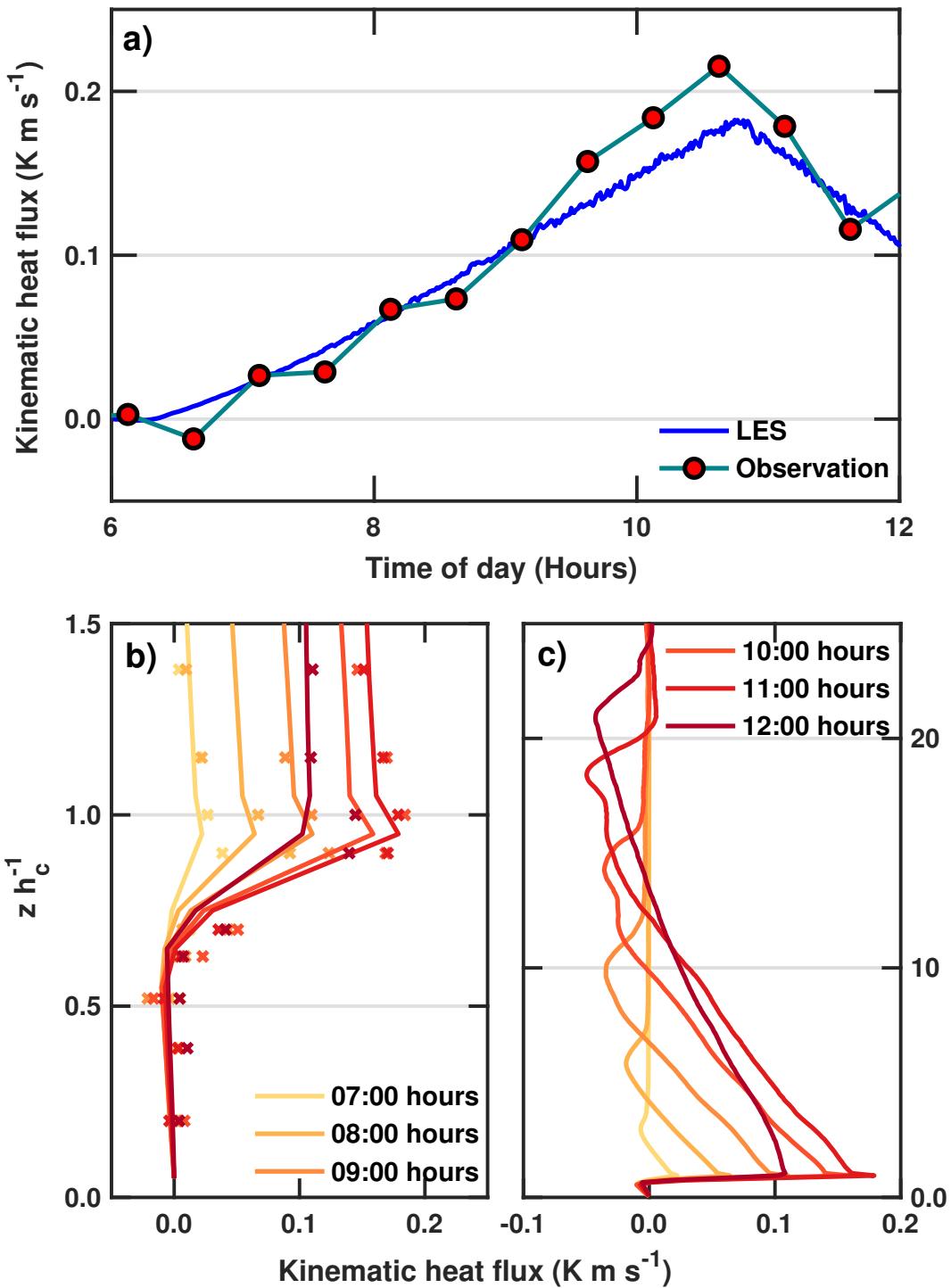
813

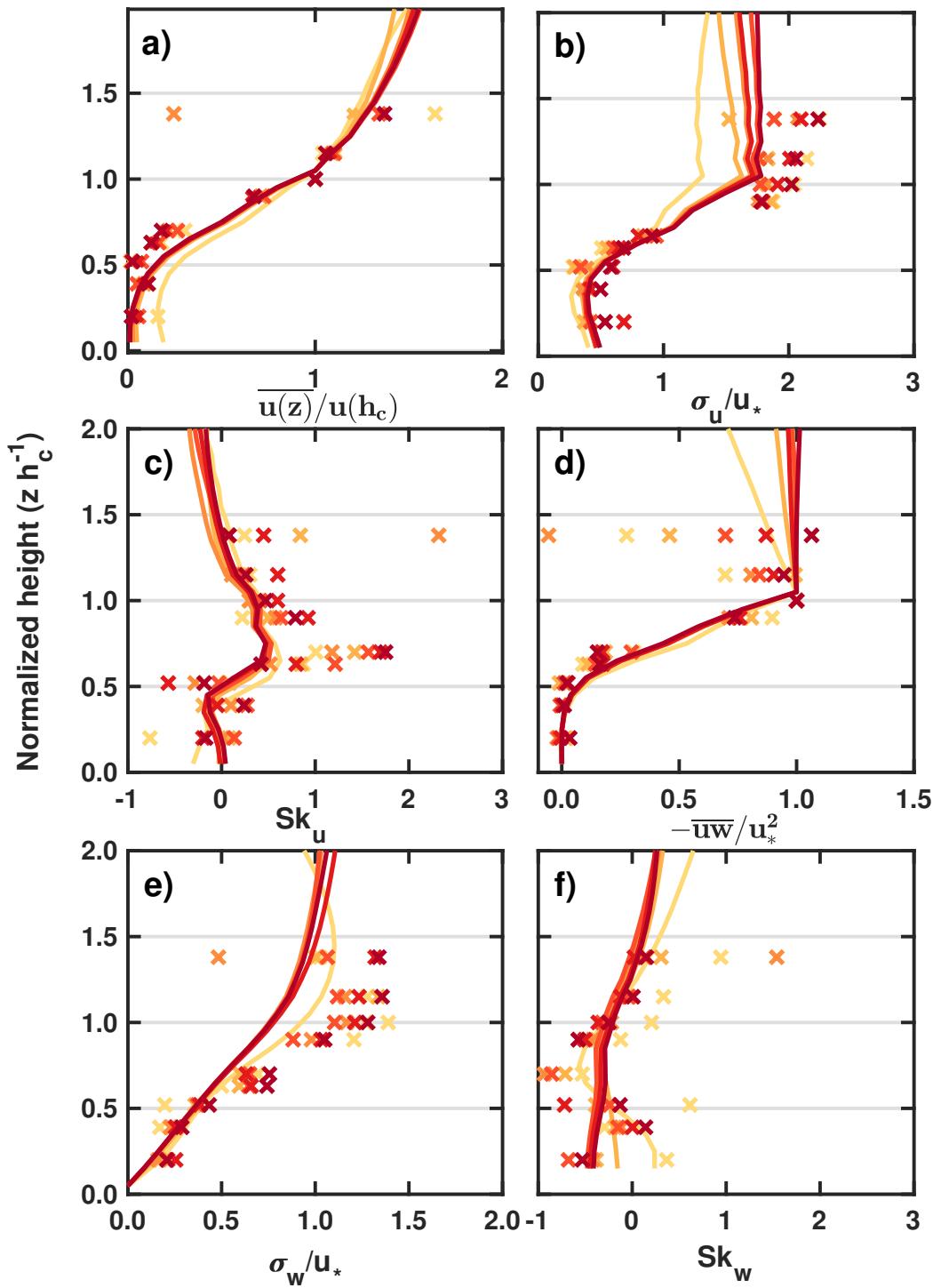
814 Figure captions

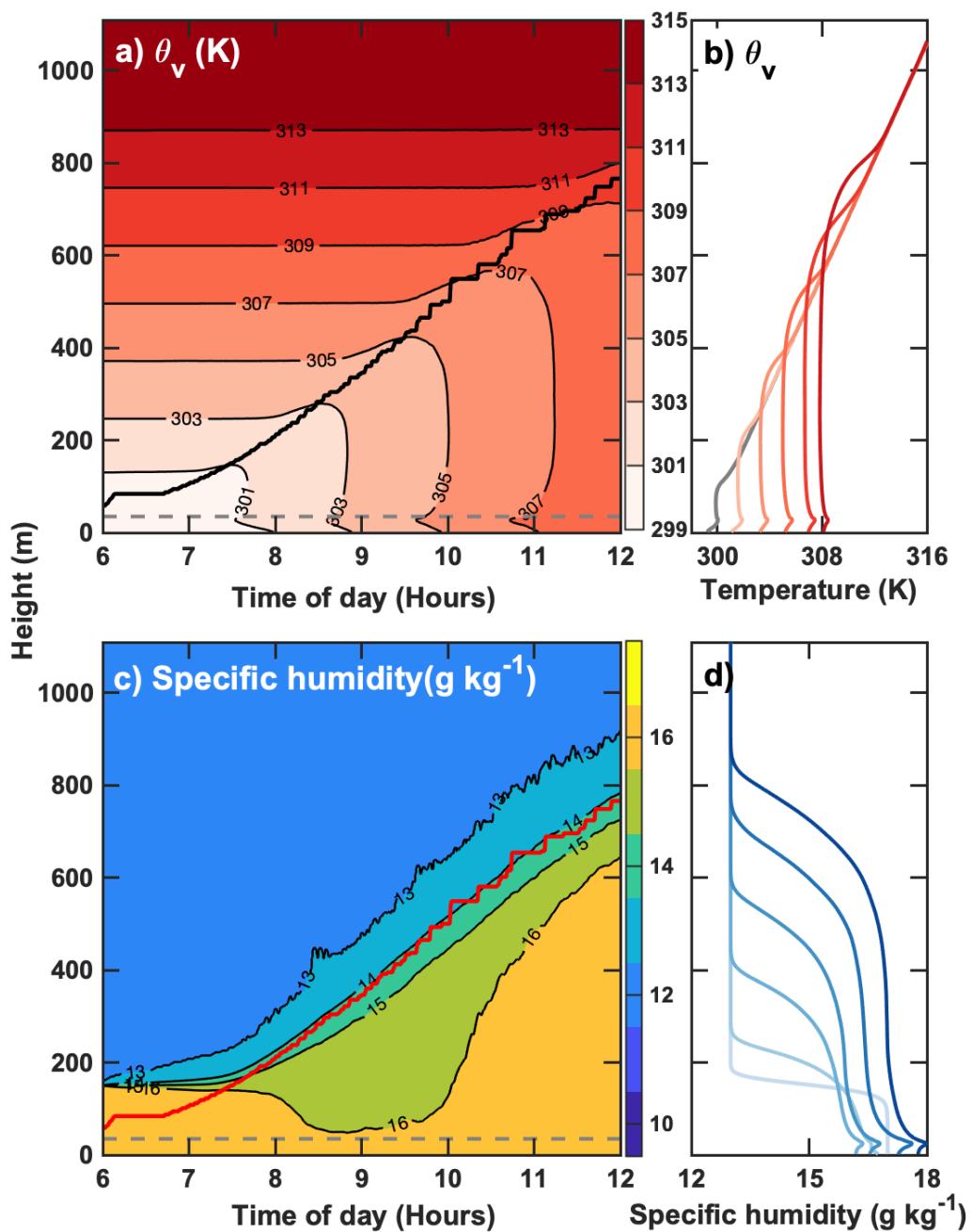
815

816 **Figure S1.** Comparison of modeled and observed kinematic heat flux. a) Time series of kinematic
817 heat flux determined at canopy top (h_c). b) Hourly kinematic heat flux variations with normalized
818 altitude ($z h_c^{-1}$). c) Hourly kinematic heat flux variations with $z h_c^{-1}$ for the total vertical LES
819 domain. Crosses indicate measured quantities while lines represent LES results.

820


821 **Figure S2.** Comparison of simulated (lines) and observed (crosses) atmospheric turbulence statis-


822 tics as a function of normalized height ($z h_c^{-1}$). a) Average zonal wind speed (u), (b) zonal
823 wind speed standard deviation (σ_u), (c) zonal wind speed skewness (Sk_u), (d) vertical momen-
824 tum transfer ($\overline{u'w'}$), (e) vertical wind speed standard deviation (σ_w), and (f) vertical wind speed
825 skewness (Sk_w). Turbulence statistics were hourly values from 7:00 h (yellow) to 12:00 h (dark red).


826

827 **Figure S3.** a) Contours of horizontally averaged virtual potential temperature ($\langle \tilde{\theta}_V \rangle$). b) Vertical
828 variation of $\langle \tilde{\theta}_V \rangle$ for hours starting from 07:00 to 12:00 hours. c) Contours of horizontally averaged
829 specific humidity ($\langle \tilde{q} \rangle$). d) Vertical variation of $\langle \tilde{q} \rangle$ for hours starting from 07:00 to 12:00 hours.
830 The atmospheric convective boundary layer depth is indicated by black and red lines.

831 **Appendix A. Figures**

