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Sheaf Theory is a well-established area of research with applications that goes from Algebraic
Geometry [9] and Logic [10] to recent developments in Machine Learning [1]. A presheaf on a locale
(or, equivalently, a complete Heyting algebra) L is a functor F : Lop → Set. Given u, v ∈ L such
that v ≤ u, we consider restriction maps ρuv : F (u) → F (v) and denote ρuv (t) = t�v , for any t ∈ F (u).
Quantales are a non-idempotent and non-commutative generalization of locales, introduced by C.J.
Mulvey [2]. Explicitly, a quantale Q is a complete lattice endowed with a binary associate operation
� that distributes over arbitrary suprema. A quantale Q is semicartesian, whenever u � v ≤ u, v.
Examples of semicartesian quantales include locales, the poset of ideals of a commutative ring, and
the interval [0,∞]op (where � = +). There are distinct definitions of sheaves on quantales [3–7],
generalizing different ways that one can approach sheaf theory.

In [8,11], we proposed the following novel definition of a sheaf on a semicartesian (commutative)
quantale Q:

A presheaf F : Qop → Set is a sheaf if for any cover u =
∨

i∈I
ui of any element u ∈ Q, the

following diagram is an equalizer

F (u)
e ��

∏

i∈I
F (ui)

p ��
q

��
∏

(i,j)∈I×I

F (ui � uj)

where

e(t) = {t�ui : i ∈ I}, p((tk)k∈I) = (ti�ui�uj
)(i,j)∈I×I

q((tk)k∈I) = (tj�ui�uj
)(i,j)∈I×I

This definition recovers cohomological [13] and logical aspects [8,12] of sheaf theory. In this talk,
we present the category Sh(Q) whose objects are sheaves on Q and whose morphisms are natural
transformations. The main results concerning the logical properties of this category are:

• Sh(Q) is not a topos in general, although it behaves like one in a certain sense.

• The lattice of external truth values of Sh(Q), that is, the lattice of subobjcts of the terminal
sheaf, is canonically isomorphic to the quantale Q.

• Assuming certain extra conditions on Q, there is a sheaf that essentially classifies a class of
subobjects in the category Sh(Q). In other words, there is a candidate for an “internal truth
value object” in Sh(Q).
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The above places this work as part of a greater project towards a monoidal closed but non-cartesian
closed version of elementary toposes. We hope to obtain a category more general and strongly
related to a topos (whose internal logic is intuitionistc) but with an internal logic that has a linear
flavor.
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