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Resumo
A busca pelo desenvolvimento de modelos inteligentes capazes de resolver problemas complexos é cada vez mais
recorrente em diversas áreas. Uma delas é a agricultura, onde as doenças são uma grande preocupação, principalmente
pelas perdas de produtividade, impacto social e ecológico que podem causar. Assim, o emprego da tecnologia no auxílio à
tomada de decisão pode ser um aliado no acompanhamento do cultivo, e, consequentemente, no sucesso da colheita. O
Aprendizado Profundo é uma subárea do Aprendizado de Máquina que tem obtido casos de sucesso no desenvolvimento
de modelos inteligentes, se destacando na detecção e classicação de imagens, por meio da utilização de Redes Neurais
Convolucionais. Neste contexto, o presente trabalho tem como objetivo avaliar modelos baseados em Aprendizado
Profundo para classicar doenças foliares do milho, por meio da análise de regiões em imagens da folha. Ametodologia
envolveu a utilização de Transferência de Aprendizagem, com a aplicação das Redes Neurais ResNet50 e VGG19 em
um subconjunto de dados público com 3.838 imagens de folhas, divididas em quatro classes. Os resultados indicaram
acurácia máxima de 98,31% utilizando a Rede Neural VGG19 e técnicas de aumentação de dados.

Palavras-Chave: Agricultura; Aprendizado Profundo; Doenças Foliares; Redes Neurais Convolucionais; Transferência de
Aprendizagem.

Abstract
The search for the development of intelligent models capable of solving complex problems is increasingly common
in various elds. One of them is agriculture, where diseases are a major concern, mainly due to the potential loss of
productivity and their social and ecological impact. Thus, the use of technology to aid decision-making can be an ally in
monitoring crops and, consequently, ensuring successful harvests. Deep Learning is a subeld of Machine Learning that
has achieved successful cases in developing intelligentmodels, particularly in image detection and classication, through
the use of Convolutional Neural Networks. In this context, the present work aimed to evaluate Deep Learning-based
models for classifying corn leaf diseases by analyzing regions in leaf images. The methodology involved the use of
transfer learning, applying the ResNet50 and VGG19 Neural Networks to a subset of publicly available data with 3.838
leaf images, divided into four classes. The results indicated a maximum accuracy of 98,31% using the VGG19 Neural
Network and data augmentation techniques.

Keywords: Agriculture; Convolutional Neural Networks; Deep Learning; Foliar Diseases; Transfer Learning.
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1 Introdução

A agricultura é um setor fundamental na economia global,
e a produção saudável de culturas é essencial para garantir
a segurança alimentar. No entanto, a saúde das planta-
ções pode ser afetada por diversas doenças, que podem
ser causadas por patógenos como vírus, bactérias e fun-
gos. A identicação precoce dessas doenças é fundamental
para prevenir sua disseminação e garantir uma produção
saudável. Além disso, a detecção correta e o tratamento
adequado ajudam a evitar o uso excessivo de pesticidas e o
desperdício de recursos.

É conhecido que a maioria das doenças que afetam as
plantações gera algumamanifestação visível em suas fo-
lhas (Arnal Barbedo, 2013). Porém, a identicação incor-
reta e o consequente uso equivocado de pesticidas podem
causar o desenvolvimento de resistência a longo prazo
dos patógenos, reduzindo severamente a capacidade de
reversão. Assim, é importante o desenvolvimento de mé-
todos que ajudem na identicação da doença e em um tra-
tamento rápido e ecaz, evitando o desperdício de recur-
sos e alcançando uma produção saudável (Sladojevic et al.,
2016).

Atualmente, os métodos de detecção de doenças em
plantas são,muitas vezes, baseados emobservação visual e
análise laboratorial. No entanto, esses métodos podem ser
caros, demorados e, emmuitos casos, exigem a presença
de especialistas ou infraestrutura laboratorial que não es-
tão disponíveis em todas as regiões (Bock et al., 2010). O
diagnóstico de doenças emplantas combasena observação
das folhas pode ser uma tarefa desaadora mesmo para
especialistas experientes, devido ao grande número de es-
pécies de plantas e problemas topatológicos. Isso pode
levar a conclusões equivocadas e tratamentos inecazes,
resultando em danos às plantações (Ferentinos, 2018).

A análise de imagem por meio de métodos computa-
cionais pode ser uma alternativa viável para a detecção
rápida e precisa de doenças foliares no campo, o que pode
contribuir para a eciência no manejo e prevenção de do-
enças nas plantações (Ashwini and Sellam, 2024). Assim,
o desenvolvimento de sistemas automatizados de diag-
nóstico de doenças de plantas, que utilizam tecnologias
como InteligênciaArticial (IA) eAprendizadodeMáquina
(AM), pode ser útil para os agricultores. Esses sistemas
têm o potencial de identicar com precisão as doenças
presentes nas plantas, permitindo a detecção precoce e a
prevenção da disseminação, além de economizar tempo e
recursos (Sladojevic et al., 2016). No entanto, há desaos a
serem superados para melhorar esses sistemas como, por
exemplo, a necessidade de um banco de dados de imagens
abrangente que cubra uma variedade maior de doenças,
bem como a avaliação dosmodelos em culturas especícas
(Mohanty et al., 2016; Sladojevic et al., 2016; Ferentinos,
2018). Isso evidencia a necessidade de pesquisas na área, a
mde aprimorar a eciência e a precisão do diagnóstico de
doenças de plantas, o que pode beneciar os agricultores
e contribuir para a sustentabilidade da agricultura (Yang
and Guo, 2017).

Neste contexto, o presente trabalho tem como objetivo
avaliar modelos baseados em Aprendizado Profundo para
classicar doenças foliares da cultura do milho, utilizando
regiões de imagens de folhas doentes e saudáveis para o

Figura 1: Representação do neurônio biológico.
Fonte: Faceli et al. (2011)

treinamento.
O conteúdo deste trabalho está dividido emmais cinco

capítulos. Na Seção 2 são abordados os conceitos funda-
mentais utilizados no desenvolvimento do estudo, como
Redes Neurais Articais (RNA), Redes Neurais Convolu-
cionais (CNN), Aprendizado Profundo, Transferência de
Aprendizagem e uma breve descrição de algumas doenças
foliares do milho.

Em seguida, na Seção 3, são apresentados alguns traba-
lhos da literatura relacionados a aplicação de Aprendizado
Profundo na classicação de doenças foliares em plantas.

Na Seção 4 sobre a metodologia, são descritos o con-
junto de dados, as técnicas, as métricas de avaliação e as
ferramentas utilizadas no desenvolvimento dos modelos.

Os resultados obtidos foram apresentados na Seção 6.
Nesta sessão foi feita a avaliação dos modelos treinados.

Por m, na Seção 7, são apresentadas as conclusões e
considerações nais sobre o estudo.

2 Fundamentação Teórica
2.1 Redes Neurais Articiais

As RNAs são modelos computacionais de IA inspirados
na estrutura neural do cérebro humano que adquirem co-
nhecimento por meio da experiência. Neste contexto, é
importante entender o funcionamento básico dessa estru-
tura a m de facilitar a compreensão do funcionamento
de uma RNA.

O sistema nervoso é composto por uma rede de neurô-
nios que formam o cérebro, responsável por receber infor-
mações e tomar decisões. Essa rede é formada por neurô-
nios interconectados, o que permite a comunicação entre
eles. Essa comunicação é realizada por meio de impulsos
elétricos que produzem uma substância neurotransmis-
sora, transmitida do corpo celular para o axônio. Em sín-
tese, segundo Cintra (2018), os principais componentes
de um neurônio são os dendritos, o corpo celular, o axônio
e as sinapses, conforme representado na Fig. 1.

Os dendritos são responsáveis por receber estímulos
vindos de outros neurônios. O corpo celular, por sua vez,
coleta e combina informações vindas de vários dendritos.
O axônio é responsável por transmitir estímulos entre as
células, enquanto as sinapses permitem a transmissão das
informações entre os neurônios (Cintra, 2018).
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Figura 2: MLP com duas camadas ocultas.
Fonte: Faceli et al. (2011)

As RNAs, baseadas no modelo biológico, são compostas
por unidades de processamento organizadas em uma ou
mais camadas, conectadas por diversas conexões que pos-
suem pesos para armazenar o conhecimento adquirido e
medir a entrada recebida por cada neurônio na rede (Braga
et al., 2000).

Assim, além das camadas de entrada e saída, as RNAs
podem apresentar camadas intermediárias, conhecidas
como camadas ocultas. Nelas, os neurônios recebem va-
lores de saída de neurônios da camada anterior e enviam
seus valores de saída para os terminais de entrada dos
neurônios da camada posterior, formando ummodelo de
processamento de informação complexo e adaptativo. O
objetivo do treinamento daRNAé encontrar os pesos ideais
para que a rede possa realizar uma determinada tarefa de
forma eciente (Faceli et al., 2011). AFig. 2 representa uma
RNAMultilayer Perceptron (MLP), ilustrando a utilização
de duas camadas ocultas.

Conforme Faceli et al. (2011), as RNAs são amplamente
utilizadas para resolver problemas complexos devido às
suas vantagens, como a capacidade de tolerar dados com
ruído e a natural capacidade de serem paralelizáveis, o
que pode acelerar o processo computacional. Elas ainda
são capazes de aprender e se adaptar a partir dos dados
de entrada, o que as tornam adequadas para tarefas de
reconhecimento de padrões, classicação e previsão.

2.2 Redes Neurais Convolucionais e Aprendizado
Profundo

O Aprendizado Profundo é uma técnica de AM baseada
em RNAs com múltiplas camadas, conhecidas como Re-
des Neurais Profundas. Cada camada dessa rede é respon-
sável por extrair características dos dados de entrada e
transformá-los em representações abstratas. Essas cama-
das permitem que a rede aprenda características hierár-
quicas complexas a partir de dados brutos, permitindo que
as RNAs realizem tarefas cada vezmais sosticadas, como
a classicação de imagens (Goodfellow et al., 2016).

As Redes Neurais Convolucionais - do inglês, Convoluti-
onal Neural Networks (CNN) - usadas na extração de carac-
terística de imagens, possuem uma arquitetura base que
as diferem de outros modelos de RNAs, como por exem-
plo a Rede Neural MLP. AMLP é comumente usada para

Figura 3: Camadas de uma CNN.
Fonte: LeCun et al. (1995)

Figura 4: Aplicação de ltro 3x3 em uma camada de
convolução.

Fonte: Yamashita et al. (2018)

recursos de aprendizado simultâneo e classicação de da-
dos. A principal limitação com o seu uso em imagens é
que o número de neurônios pode ser muito alto, mesmo
para arquiteturas rasas. A ideia básica por trás das CNNs é
criar uma solução para reduzir o número de parâmetros,
permitindo que uma rede seja mais profunda commenos
parâmetros (Yamashita et al., 2018).

As CNNs, propostas pelos pesquisadores LeCun et al.
(1995), são redes que realizam operação de convolução
em pelo menos uma de suas camadas, aplicando ltros
para extrair características locais dos dados ao qual são
aplicadas. Uma CNN possui pelo menos três componentes
básicos: camada de convolução, pooling e camada total-
mente conectada. AFig. 3 ilustra a arquitetura de umaCNN
(LeCun et al., 1995).

A camada de convolução é responsável por extrair carac-
terísticas relevantes das imagens por meio da aplicação de
ltros, ou kernels. Essesltros sãoprojetados para detectar
padrões especícos nas imagens, como bordas, texturas e
formas, e a aplicação repetida desses ltros em diferentes
partes da imagem resulta em uma representação rica e hi-
erárquica das características da imagem (Yamashita et al.,
2018). A Fig. 4 ilustra uma camada de convolução com a
aplicação de um ltro 3x3.

Já a camada de pooling tem como função reduzir a di-
mensionalidade das características extraídas pela camada
de convolução, o que torna o processo de treinamento da
rede mais eciente. Isso é feito por meio da aplicação de
uma operação de agregação em uma região local da ima-
gem, que resulta em uma única representação daquela
região. Esse processo reduz a quantidade de informação
na rede, tornando-a mais eciente e ajudando a evitar
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Figura 5: Operação demax pooling em uma camada de
pooling.

Fonte: Yamashita et al. (2018)

Figura 6: Rede totalmente conectada.
Fonte: Autor, 2023

problemas de overtting (Yamashita et al., 2018). A Fig. 5
ilustra uma operação demax pooling.

Por m, a rede totalmente conectada é a última camada
das CNNs e é responsável por realizar a classicação dos
dados de entrada após a extração das características re-
levantes pelas camadas anteriores. Nessa camada, as ca-
racterísticas são transformadas em uma representação
vetorial unidimensional e passadas por uma ou mais ca-
madas densas, que realizam uma combinação linear das
características para gerar as saídas da rede (Yamashita
et al., 2018). A Fig. 6 ilustra a camada totalmente conec-
tada, última etapa para a classicação de imagens.

O processo de aprendizagem ocorre por meio do ajuste
dos pesos das conexões entre as camadas. Os pesos são
inicializados aleatoriamente e a rede é alimentada com
um conjunto de dados de treinamento pré processado, en-
volvendo geralmente o redimensionamento e normaliza-
ção das matrizes de imagens. Durante o treinamento, a
CNN realiza a propagação dados de entrada para frente,
passando-os pelas camadas convolucionais e de pooling
para extrair características das imagens. As características
são então alimentadas nas camadas totalmente conectadas
para produzir a saída nal. Ao calcular a diferença entre

as saídas previstas e as saídas esperadas, a CNN usa uma
função de perda que mede a diferença entre as previsões
e os rótulos reais. Em seguida, a retropropagação é usada
para calcular o gradiente da função de perda em relação
aos pesos da rede. Com o gradiente calculado, um algo-
ritmo de otimização, como o Stochastic Gradient Descent
(SGD), ajusta gradualmente os pesos da rede para mini-
mizar a função de perda. Esse processo é repetido muitas
vezes, usando um conjunto de treinamento rotativo para
evitar overtting. O objetivo da aprendizagem éminimizar
a diferença entre as saídas previstas pela rede e as saídas
esperadas. Obtendo umdesempenho satisfatório para o ce-
nário aplicado, a CNN pode ser usada para fazer previsões
em novas imagens.

O processo de treinamento de uma CNN pode ser com-
putacionalmente intensivo para conjuntos grandes e com-
plexos, no entanto, uma vez treinada, a rede é capaz
de classicar novas imagens com rapidez e precisão,
tornando-a uma ferramenta útil em diversas aplicações.
Além disso, é possível a utilização de técnicas como a
Transferência de Aprendizagem, que permitem reutilizar
parte do conhecimento adquirido durante o treinamento
em outras tarefas, o que pode melhorar o desempenho da
rede.

2.3 Transferência de Aprendizagem

A Transferência de Aprendizagem é uma estratégia uti-
lizada no Aprendizado Profundo na qual modelos pré-
treinados são empregados como ponto de partida para
novos modelos. O aprendizado de uma RNA aplicada em
tarefas de visão computacional geralmente requer uma
grande quantidade de dados, mas nem sempre é possível
obter acesso a conjuntos de dados extensos o suciente
para treinar os modelos. Nessa abordagem, os modelos
pré-treinados são utilizados como extratores de caracte-
rísticas de imagens, eles são submetidos a grandes con-
juntos de imagens pertencentes a diferentes classes. A
Transferência de Aprendizagem permite aproveitar esse
conhecimento prévio em tarefas relacionadas, reduzindo
a quantidade de parâmetros e acelerando o tempo de trei-
namento (Yosinski et al., 2014).

Neste estudo essa estratégia será aplicada ao copiar as
primeiras "n"camadas da rede de origem para para as pri-
meiras "n"camadas da rede de destino. As camadas res-
tantes da rede de destino terão neurônios com pesos inici-
alizadas aleatoriamente e serão treinadas para a tarefa de
classicação, conforme ilustrado na Fig. 7.

Quando o conjunto de dados de destino é signicativa-
mente menor que o conjunto de dados base, como é o caso
desse estudo, a Transferência de Aprendizagem pode ser
uma ferramenta poderosa para permitir o treinamento,
evitando o overtting (Yosinski et al., 2014).

2.4 Doenças foliares do milho

Nos últimos anos as doenças têm se tornado uma grande
preocupação por parte de técnicos e produtores envolvi-
dos no agronegócio do milho. A evolução das doenças do
milho está relacionada, entre outros fatores, à evolução do
sistema de produção desta cultura, bem comomodica-



Ariza & Bruno | Revista Brasileira de Computação Aplicada (2024), v.16, n.2, pp.75–87 79

Figura 7: Exemplo de aplicação da Transferência de
Aprendizagem.
Fonte: Autor, 2023

Figura 8: Ferrugem Comum.
Fonte: Hughes and Salathé (2014)

ções ocorridas no sistema de produção, que resultaram no
aumento da produtividade da cultura (Costa et al., 2021).
Dentre as doenças que atacam a cultura do milho estão a
Ferrugem Comum, a Cercosporiose e a Helmintosporiose
ou Mancha de Turcicum, que serão utilizadas no escopo
deste estudo.

A Ferrugem Comum é caracterizada pela formação de
pústulas. As pústulas da Ferrugem Comum apresentam
formato circular a alongado e coloração castanho clara a
escuro, que se acentua à medida em que as pústulas ama-
durecem e se rompem, liberando os uredósporos, que são
os esporos típicos do patógeno (Costa et al., 2021). A Fig. 8
ilustra uma folha com a doença Ferrugem Comum.

A Cercosporiose é caracterizada por manchas de colo-
ração cinza, predominantemente retangulares, com as
lesões paralelas às nervuras. A Fig. 9 ilustra uma folha
com a doença Cercosporiose (Costa et al., 2021).

Porm, aManchadeTurcicumse caracteriza por lesões
necróticas, elípticas. A coloração do tecido necrosado varia
de cinza a marrom e, no interior das lesões, observa-se
intensa esporulação do patógeno, onde as primeiras lesões
aparecem geralmente nas folhas mais velhas (Costa et al.,
2021). A Fig. 10 ilustra uma folha com a doença Mancha
de Turcicum.

Neste estudo serão avaliados modelos computacionais

Figura 9: Cercosporiose.
Fonte: Hughes and Salathé (2014)

Figura 10: Mancha de Turcicum.
Fonte: Hughes and Salathé (2014)

para classicar as plantas saudáveis e doentes, indicando
a classe da doença pertencente.



80 Ariza & Bruno | Revista Brasileira de Computação Aplicada (2024), v.16, n.2, pp.75–87

3 Trabalhos Relacionados
Devido a característica da manifestação visual de doenças
emplantas, a utilização deAprendizadoProfundopormeio
de CNNs vem obtendo resultados promissores na detecção
e classicação de imagens para a identicação de doenças
foliares.

Mohanty et al. (2016), treinarammodelos baseados em
CNN (GoogLeNet e AlexNet) para identicar 14 espécies
de culturas e 26 doenças utilizando um conjunto de dados
público de imagens de folhas de plantas, atingindo uma
acurácia de 99,35% ao aplicar a Transferência de Apren-
dizagem com a rede GoogLeNet. No entanto, ao testar o
modelo em imagens capturadas em condições diferentes
da base de teste, a acurácia foi de 31%.

Sladojevic et al. (2016), utilizaram CNNs para reconhe-
cer e classicar 13 tipos diferentes de doenças em 4 espé-
cies de plantas a partir da imagem de suas folhas, alcan-
çando acurácia média de 96,3%.

Liu et al. (2017), utilizaram CNNs derivadas de Alex-
Net para detectar doenças de folhas de macieira, usando
um conjunto de dados de 13.689 imagens, atingindo uma
acurácia média de 97,62%.

Ferentinos (2018), comparou modelos de CNNs para
a classicação de doenças de plantas usando imagens de
folhas saudáveis e doentes, aplicando as redes AlexNet, Go-
ogLeNet, VGG16, Overfeat e AlexNetOWTBn. Omelhormo-
delo (VGG16) obteve acurácia de99,53%. Porém, a acurácia
foi reduzida para 65,69% quando treinado com imagens
coletadas em campo e testado com imagens de laboratório.

Zhang et al. (2018) propôs modelos derivados do Go-
ogLeNet e Cifrar10 para classicar oito tipos de doenças
foliares do milho. Foram utilizadas 500 imagens coleta-
das de diferentes fontes. Com a aplicação de técnicas de
aumentação de dados e o ajuste de hiperparâmenteos, o
melhor modelo (GoogLeNet) atingiu uma acurácia má-
xima de 98,9%.

Waheed et al. (2020) propôs uma arquitetura otimizada
de CNN densa (DenseNet) para a classicação de doenças
foliares do milho. Utilizou-se no estudo um conjunto de
12.332 imagens, coletadas de diversas fontes, referentes a
4 classes. Após a aplicação de técnicas de aumentação de
dados, omodelo proposto atingiu uma acurácia de 98,06%.

Mishra et al. (2020) desenvolveram ummodelo de CNN
implantado em um Raspberry Pi 3 para a detecção em
tempo real de doenças em plantas de milho, alcançando
uma acurácia de 88,46%.

Jasrotia et al. (2023) desenvolveram ummodelo de CNN
para classicar doenças em plantas de milho, usando téc-
nicas de pré-processamento como, por exemplo a trans-
formação logarítmica e a conversão de RGB para HSV. O
modelo treinado alcançou acurácia máxima de 99,76%.

Ashwini and Sellam (2024) propôs ummodelo híbrido
3D-CNN-RNN para a classicação de doenças nas folhas
domilho emdois conjuntos de dados distintos, alcançando
uma acurácia superior a 94% em ambos os conjuntos de
dados e desempenho acima de 90% em todas as métricas
avaliadas.

Nos estudos relacionados, a Transferência de Aprendi-
zagem tem sido amplamente utilizada. No entanto, o teste
de alguns modelos em culturas especícas foi pouco ex-
plorado. Além disso, a falta de conjuntos de imagens diver-

sicados, limita a classicação quando aplicado a imagens
distintas do conjunto de treinamento.

Este estudo propõe-se a avaliar modelos alternativos de
CNNs utilizando Transferência de Aprendizagem, a m
de identicar aquele que apresenta melhor capacidade de
generalização em doenças que afetam a cultura do milho.

4 Materiais e Métodos
4.1 Proposta

O estudo consiste em avaliar o desempenho na classica-
ção de doenças em imagens de folhas da cultura do milho,
utilizando duas arquiteturas de CNNs: VGG19 e ResNet50.
Para isso, serão realizados experimentos comumconjunto
de dados composto por imagens de folhas de plantas com
diferentes doenças foliares.

Para treinar os modelos, será aplicada a técnica de
Transferência de Aprendizagem, que consiste em utili-
zar arquiteturas de RNAs pré-treinadas em bases de dados
com grandes conjuntos de imagens e aproveitar os pesos
aprendidos durante esse treinamento, conforme explicado
na Seção 2.3.

O primeiromodelo será construído combase na arquite-
tura VGGNet, originalmente proposta por (Simonyan and
Zisserman, 2014). A VGG19, uma das variações da VGGNet,
é uma rede neural profunda composta por 19 camadas, or-
ganizadas em uma sequência de camadas convolucionais
com ltros de tamanho 3x3 e por operações demaxpooling.
Após cada camada convolucional, é aplicada a função de
ativação ReLU. A cada duas camadas convolucionais ocorre
uma operação demaxpooling, e o número de ltros é du-
plicado após cada uma dessas operações. A rede VGG foi
pioneira ao utilizar ltros menores, de dimensão 3x3, em
cada camada convolucional.

O segundo modelo terá como base a rede ResNet. A
ResNet é uma arquitetura que tem como principal caracte-
rística a incorporação de blocos residuais, que sãomódulos
especiais adicionados às camadas convolucionais padrão.
Esses blocos residuais permitem que a ResNet aprenda re-
síduos ou diferenças entre os recursos extraídos em cada
camada. A ResNet utiliza conexões de atalho, onde o gradi-
ente é diretamente retropropagado para camadas anterio-
res (He et al., 2016). A variação utilizada será a ResNet50,
que possui 50 camadas.

4.2 Conjuntos de Dados

O subconjunto utilizado foi proveniente do conjunto de
dados PlantVillageDataset (Hughes and Salathé, 2014), que
contém aproximadamente 54 mil imagens rotuladas de
folhas de plantas saudáveis e infectadas. Para o estudo,
foram selecionadas imagens relacionadas a doenças do
milho, divididas em quatro classes (Saudável, Ferrugem
Comum, Cercosporiose e Mancha Turcicum), totalizando
3.838 imagens. As imagens foram separadas na proporção
de 80% para treinamento e 20% para validação e teste,
conformemostrado na Tabela 1.

As imagens foram capturadas em condições diferentes
de luminosidade, contraste e base de fundo. AFig. 11 ilustra
o conteúdo do conjunto de dados.
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Tabela 1: Número de imagens do subconjunto de dados.
Categoria Imagens Treinamento Validação
Saudável 1162 930 232
Ferrugem Comum 1192 953 239
Cercosporiose 509 406 103
Mancha Turcicum 975 778 197
Total 3838 3067 771

Fonte: Hughes and Salathé (2014)

Figura 11: Amostra de imagens do conjunto de dados.
Fonte: Hughes and Salathé (2014)

Por m, foram aplicadas estratégias de aumentação de
dados, por meio da rotação e espelhamento do conjunto
de imagens de treinamento.

4.3 Métricas de Avaliação

Para avaliar os modelos de classicação, foram utilizadas
as métricas de acurácia, precisão, revocação e perda.

A acurácia mede a capacidade do modelo de classicar
corretamente as instâncias em todas as classes, enquanto a
precisãomede a proporção de classicações corretas para a
classe positiva. Por sua vez, a revocação mede a proporção
de instâncias da classe de interesse corretamente classi-
cadas pelo modelo. As Eqs. (1) a (3) mostram as denições
matemáticas para cada uma das métricas utilizadas neste
estudo.

Acurácia = VP + VN
VP + VN + FP + FN (1)

Precisão = VP
VP + FP (2)

Revocao = VP
VP + FN (3)

Figura 12: Exemplo de umamatriz de confusão.
Fonte: Autor, 2023

Nas equações acima, VP, VN, FP e FN correspondem
aos valores verdadeiros positivos, verdadeiros negativos,
falsos positivos e falsos negativos, respectivamente.

Aperda representa a diferença entre as saídas domodelo
e as saídas esperadas. O objetivo é minimizar o valor da
perda, o que signica que omodelo está fazendo previsões
mais precisas. Neste estudo a perda foi calculada por meio
da métrica RootMean Squared Error (RMSE), denido na
Eq. (4).

RMSE =

 1
n

n

i=1
(yi – ŷi)2 (4)

Ainda, a m de analisar a assertividade de classicação
dos modelos para cada uma das classes, foram geradas
matrizes de confusão.

A matriz de confusão é uma tabela que apresenta as
classicações corretas e incorretas feitas pelo modelo para
cada classe. Ela nos permite visualizar de formamais de-
talhada o desempenho do modelo em cada classe de in-
teresse, ajudando a identicar possíveis padrões de erros
de classicação. As células da matriz de confusão são pre-
enchidas com os valores de VP, VN, FP e FN, conforme
ilustrado na Fig. 12.

Também foram gerados mapas de atributos a m de
avaliar visualmente asprincipais regiõesda imagemqueos
modelos aprenderam a distinguir durante o treinamento.
A Fig. 13 ilustra os mapas de atributos de uma camada
convolucional em uma imagem de folha doente.

Os mapas de atributos podem ser usados para interpre-
tar o funcionamento de umaRNAe ajudar a entender como
ela está tomando suas decisões.

Como cada camada de convolução apresenta diferen-
tes quantidades de ltros, selecionou-se os aqueles com
os maiores valores dentro de cada camada convolucional,
representando as maiores ativações. As imagens geradas
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Figura 13: Exemplo de geração de mapas de atributos.
Fonte: Autor, 2023

foram normalizadas para o intervalo entre 0 e 1, onde 1
representa o maior valor possível.

4.4 Tecnologias

Para o desenvolvimento dos modelos, foram utilizadas
as bibliotecas Tensorow, Keras e bibliotecas auxiliares,
como Sklearn, OpenCV, Pandas, Numpy, Matplotlib, Sea-
born e PIL. O ambiente de desenvolvimento utilizado para
o treinamento dos modelos foi o Google Colaboratory. O
Google Colaboratory é um ambiente de Jupyter Notebook
que opera totalmente na nuvem, ele é pré empacotado com
algumas das bibliotecas utilizadas no estudo, como o Ten-
sorow e o Keras (Google Colab, n.d.). As especicações do
ambiente são mostradas na Tabela 2.

Tabela 2: Especicações do ambiente de
desenvolvimento.

Nome Especicação
CPU Intel(R) Xeon(R) CPU@ 2.20GHz
GPU Tesla T4 16GB
SO Linux Ubuntu 22.04.2
Linguagem Python 3.10.6

Fonte: Google Colab (n.d.)

A escolha do ambiente foi motivada pela disponibliza-
ção de recursos de hardware especializado para a acelera-
ção do treinamento dos modelos.

5 Conguração e Treinamento
Os modelos foram desenvolvidos com base nas arquitetu-
ras VGG19 e ResNet50, conformemencionado na Seção 4.1.

O conjunto de 3.838 imagens foi redimensionado para
256x256 pixels, normalizado e submetido a técnicas de
aumentação de dados, por meio da rotação (em até 40º)
e espelhamento horizontal. Os pesos pré-treinados no
conjunto de dados ImageNet foram empregados, e duas
camadas totalmente conectadas foram adicionadas, cada
uma com 64 neurônios. Além disso, entre as duas cama-

das totalmente conectadas, foi adicionada uma camada de
dropout com uma taxa de 0,25. Por m foi adicionada uma
camada de saída com a aplicação da função softmax para 4
classes.

Ao longo de 50 épocas de treinamento, ajustou-se so-
mente os pesos das camadas totalmente conectadas. A
taxa de aprendizado de 0,01 foi utilizada nas primeiras
10 épocas, posteriormente sendo reduzida a uma taxa de
aproximadamente 20% do valor a cada época, até que atin-
gisse o valor mínimo de 0,00001, com o otimizador SGD.
Os parâmetros utilizados são mostrados na Tabela 3. Os
demais parâmetros mantiveram-se nos valores padrão
fornecidos pela biblioteca Keras.

Tabela 3: Parâmetros utilizados no treinamento dos
modelos.

Parâmetros VGG19 Resnet50
Épocas de treinamento 50 50
Tamanho do lote 32 32
Taxa de aprendizagem 0,01, com decai-

mento
0,01, com decai-
mento

Otimizador SGD SGD
Tamanho da imagem 256x256x3 256x256x3
Aumentação de dados Sim Sim
Fonte: Autor, 2023.

A seleção dos parâmetros foi fundamentada em umpro-
cedimento sistemático de experimentação empírica, onde
diversas combinações foram avaliadas amde determinar
a conguração que proporcionasse o melhor desempenho.

6 Resultados e Discussões

6.1 Comparação do desempenho dos modelos de
classicação

Utilizou-se para o treinamento um subconjunto de ima-
gens da base de dados Plant Village, especicamente rela-
cionadas à cultura do milho. Para essa etapa, foi adotada
uma divisão de 80% das imagens para treinamento e 20%
para validação e teste, conforme mencionado na Seção 4.2.

As Figs. 14 e 15 ilustram a evolução da taxa de perda
ao longo das 50 épocas de treinamento para os modelos
VGG19 e ResNet50 respectivamente. Em ambas as arqui-
teturas, observa-se uma queda acentuada de perda nas
etapas iniciais do treinamento, tornando-se mais gradual
por volta da 20ª época. Observa-se ainda que, omodelo ba-
seado na arquitetura ResNet50, atingiu um valor de perda
menor durante o treinamento em comparação com omo-
delo baseado na arquitetura VGG19. No entanto, ao avaliar
o desempenho na base de teste, omodelo ResNet50, exibiu
um valor de perda maior, o que elevou a amplitudo entre o
valor de perda no treinamento e o valor de perda no teste.
Isso pode indicar que, omodelo VGG19 obteve umamelhor
capacidade de generalização.

A curva de acurácia dos modelos, ilustrada nas Figs. 16
e 17, apresenta comportamento semelhante, aumentando
até a vigésima época e mantendo-se estável a partir desse
ponto. Nota-se ainda que, a rede VGG19 demonstra um de-
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Figura 14: Histórico de perda por época VGG19.
Fonte: Autor, 2023

Figura 15: Histórico de perda por época ResNet50.
Fonte: Autor, 2023

sempenho superior na base de teste, quando comparada ao
modelo ResNet50. Amaior acurácia obtida na base de teste
foi por meio da rede VGG19, chegando a 98,31%, frente a
97,80% da ResNet50.

A m de analisar a assertividade de classicação dos
modelos para cada uma das classes, foram geradas matri-
zes de confusão.

Observa-se nasmatrizes de confusão (Figs. 18 e 19) que
os modelos classicaram corretamente todas as amostras
para as classes Ferrugem doMilho e Saudável. Para as de-
mais classes observa-se que houve falsos positivos. Esses
falsos positivos, caracterizados por erros de classicação
entre essas duas categorias, sugerem a que o modelo con-
siderou que há características visuais semelhantes entre
as doenças Mancha Cercospora e Mancha de Turcicum.
Observa-se também que a classeMancha Cercospora apre-

Figura 16: Histórico de acurácia por época ResNet50.
Fonte: Autor, 2023

Figura 17: Histórico de acurácia por época ResNet50.
Fonte: Autor, 2023

senta uma quantidade substancialmente menor de amos-
tras de dados, o que pode ter contribuído para o menor
desempenho na classicação.

Alguns estudos destacam a escassez de conjuntos de
dados de imagens de plantas sucientemente abrangentes
que possibilitem uma boa generalização. Essa constata-
ção ressalta a necessidade de aprimorar a diversidade e a
representatividade do conjunto de dados para melhorar a
capacidade de generalização dos modelos de classicação.
A inclusão de mais exemplos e variações nas condições de
captura das imagens pode fornecer uma base mais sólida
para o treinamento dos modelos e melhorar seu desempe-
nho em cenários reais.

Ao analisar as demais métricas de avaliação, evidencia-
se que ambos osmodelos não apenas exibemuma acurácia
elevada,mas tambémdemonstramumpadrão semelhante
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Figura 18: Matriz de confusão com a assertividade de
classicação de cada classe pelo modelo VGG19.

Fonte: Autor, 2023

Figura 19: Matriz de confusão com a assertividade de
classicação de cada classe pelo modelo ResNet50.

Fonte: Autor, 2023

de precisão e revocação. Isso indica que ambos modelos
são capazes de classicar as instâncias na base de dados
utilizada. A VGG19 apresenta pequena vantagem em ter-
mos de acurácia, registrando 98,31%, em comparação com
os 97,80% da ResNet50. O mesmo se repete para as métri-
cas de precisão e revocação média. A ResNet50 apresentou
uma precisão de 96,75% e revocação de 97,00%, enquanto
a VGG19 apresentou valores de precisão e revocação de
97,75% e 97,25%, respectivamente, conformemostrado
na Tabela 4.

A análise das matrizes de confusão reforçou os desaos

Tabela 4: Comparativo de acurácia, precisão e revocação
dos modelos VGG19 e ResNet50.

Métrica / Modelo VGG19 ResNet50

Acurácia 98,31% 97,80%

Precisão 97,75% 96,75%

Revocação 97,25% 97,00%
Fonte: Autor, 2023.

Figura 20: Mapas de atributos VGG19 para a doença
Ferrugem Comum.

Fonte: Autor, 2023

em distinções entre doenças visualmente similares, su-
gerindo oportunidades de aprimoramento do conjunto de
dados.

6.2 Visualização dos mapas de atributos

Para visualizar as regiões utilizadas pelas redes para dis-
tinguir áreas doentes em imagens e classicar as doenças,
realizou-se a obtenção dos mapas de atributos, como des-
crito na Seção 4.3.

As Figs. 20 e 21 ilustram as visualizações dos mapas
de atributos da rede VGG19 e ResNet50, respectivamente,
para uma imagem que contém sintomas da doença Ferru-
gem Comum. Em cada camada convolucional, selecionou-
se o mapa com os maiores valores de ativação da rede. As
visualizações dos mapas de calor revelaram que os sinto-
masvisuais são identicados edestacados frente o restante
da folha, principalmente nas primeiras camadas convo-
lucionais da rede. No entanto, observa-se que, devido a
diminuição da resolução, os últimos mapas de atributos
tendem a apresentar visualizações commenos nitidez nas
ativações das áreas dos sintomas. Isso indica que, como
esperado, as primeiras camadas capturaram característi-
cas mais perceptíveis ao humano, como bordas e texturas,
enquanto as camadas posteriores desenvolveram uma re-
presentação mais abstrata e complexa das características
da imagem.

O mesmo é observado nas Figs. 22 e 23, que ilustram as
visualizações dos mapas de atributos para uma imagem
que contém sintomas da doença Cercospora, e nas Figs. 24
e 25, que ilustram as visualizações dos mapas de atributos
para uma imagem que contém sintomas da doença Man-
cha Turcicum, onde as regiões doentes são destacadas das
demais regiões da folha. Observa-se ainda que a nervura
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Figura 21: Mapas de atributos ResNet50 para a doença
Ferrugem Comum.

Fonte: Autor, 2023

Figura 22: Mapas de atributos VGG19 para a doença
Cercosporiose.
Fonte: Autor, 2023

Figura 23: Mapas de atributos ResNet50 para a doença
Cercosporiose.
Fonte: Autor, 2023

principal da folha também recebe detaque nos mapas.
Para uma imagem da classe Saudável, os mapas de atri-

butos exibem maior homogeneidade e não apresentam
regiões de ativação contrastantes, exceto pela ativação na
nervura principal da folha, como nas demais classes. A
Fig. 26 e Fig. 27 ilustram os mapas de atributos para uma
folha saudável.

Os mapas de atributos mostraram que ambas as redes
treinadas foram capazes de identicar as características
discriminativas em pontos correspondentes as doenças
nas folhas do milho. Observou-se convergência das carac-
terísticas identicadas pelas redes com as regiões afetadas

Figura 24: Mapas de atributos VGG19 para a doença
Mancha Turcicum.

Fonte: Autor, 2023

Figura 25: Mapas de atributos ResNet50 para a doença
Mancha Turcicum.

Fonte: Autor, 2023

Figura 26: Mapas de atributos VGG19 para uma folha
saudável.

Fonte: Autor, 2023

pelas doenças foliares do milho. Observou-se ainda que
a nervura da folha foi considerada importante para o mo-
delo, trabalhos futuros podem concentrar-se em treinar
os modelos com imagens que representam apenas a re-
gião doente da folha a mde avaliar os mapas de atributos
gerados pela rede.
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Figura 27: Mapas de atributos ResNet50 para uma folha
saudável.

Fonte: Autor, 2023

7 Considerações Finais
Com o objetivo de classicar doenças foliares da cultura do
milho, foram desenvolvidos dois modelos, usando como
base as arquiteturas VGG19 e ResNet50. Os resultados in-
dicaram que ambas as redes obtiveram desempenhos si-
milares, com a VGG19 alcançando 98,31% de acurácia em
comparação com 97,80% da ResNet50. Os resultados mos-
traram que que a rede baseada na arquitetura VGG19 apre-
sentou melhor capacidade de generalização.

A visualização dos mapas de atributos das redes, refor-
çou a capacidade dos modelos em discernir os pontos de
manifestação das doenças em contraste com o restante da
folha, onde as ativações relacionadas as áreas afetadas pela
doença forammais evidentes nas primeiras camadas de
convolução.

Assim, conclui-se que a utilização das arquiteturas
VGG19 e ResNet50 por meio da Transferência de Apren-
dizagem podem ser uma alternativa viável para a classi-
cação de doenças foliares na cultura do milho. No en-
tanto, é importante ressaltar a necessidade da construção
de conjuntos de dados abrangentes e representativos para
aprimorar ainda a capacidade de generalização desses mo-
delos, visando uma detecção precisa e uma aplicabilidade
mais abrangente na detecção e classicação de doenças
nas plantações de milho.

Trabalhos futuros poderão se concentrar na obtenção
bases de dados mais abrangentes, com diferentes formas
de manifestão das doenças, possibilitando o desenvolvi-
mento demodelosmais robustos para detectar e classicar
as doenças do milho em campo. Além disso, poderão focar
na aplicação do modelo para a identicação de folhas sau-
dáveis e doentes e na classicação de doenças em culturas
não abordadas nesse trabalho.
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