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Resumo

A busca pelo desenvolvimento de modelos inteligentes capazes de resolver problemas complexos é cada vez mais
recorrente em diversas areas. Uma delas € a agricultura, onde as doencas sdo uma grande preocupagdo, principalmente
pelas perdas de produtividade, impacto social e ecoldgico que podem causar. Assim, o emprego da tecnologia no auxilio a
tomada de decisdo pode ser um aliado no acompanhamento do cultivo, e, consequentemente, no sucesso da colheita. O
Aprendizado Profundo é uma subarea do Aprendizado de Maquina que tem obtido casos de sucesso no desenvolvimento
de modelos inteligentes, se destacando na deteccdo e classificacao de imagens, por meio da utilizacdo de Redes Neurais
Convolucionais. Neste contexto, o presente trabalho tem como objetivo avaliar modelos baseados em Aprendizado
Profundo para classificar doengas foliares do milho, por meio da analise de regides em imagens da folha. A metodologia
envolveu a utilizacdo de Transferéncia de Aprendizagem, com a aplicacdo das Redes Neurais ResNet50 e VGG19 em
um subconjunto de dados publico com 3.838 imagens de folhas, divididas em quatro classes. Os resultados indicaram
acuracia maxima de 98,31% utilizando a Rede Neural VGG19 e técnicas de aumentacdo de dados.

Palavras-Chave: Agricultura; Aprendizado Profundo; Doencas Foliares; Redes Neurais Convolucionais; Transferéncia de
Aprendizagem.

Abstract

The search for the development of intelligent models capable of solving complex problems is increasingly common
in various fields. One of them is agriculture, where diseases are a major concern, mainly due to the potential loss of
productivity and their social and ecological impact. Thus, the use of technology to aid decision-making can be an ally in
monitoring crops and, consequently, ensuring successful harvests. Deep Learning is a subfield of Machine Learning that
has achieved successful cases in developing intelligent models, particularly in image detection and classification, through
the use of Convolutional Neural Networks. In this context, the present work aimed to evaluate Deep Learning-based
models for classifying corn leaf diseases by analyzing regions in leaf images. The methodology involved the use of
transfer learning, applying the ResNet50 and VGG19 Neural Networks to a subset of publicly available data with 3.838
leaf images, divided into four classes. The results indicated a maximum accuracy of 98,31% using the VGG19 Neural
Network and data augmentation techniques.

Keywords: Agriculture; Convolutional Neural Networks; Deep Learning; Foliar Diseases; Transfer Learning.
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1 Introdugao

A agricultura é um setor fundamental na economia global,
e a producdo saudavel de culturas é essencial para garantir
a seguranga alimentar. No entanto, a saide das planta-
¢Oes pode ser afetada por diversas doencas, que podem
ser causadas por patégenos como virus, bactérias e fun-
gos. A identificacao precoce dessas doencas é fundamental
para prevenir sua disseminacdo e garantir uma produgao
saudavel. Além disso, a deteccdo correta e o tratamento
adequado ajudam a evitar o uso excessivo de pesticidas e o
desperdicio de recursos.

E conhecido que a maioria das doencas que afetam as
plantacdes gera alguma manifestacéo visivel em suas fo-
lhas (Arnal Barbedo, 2013). Porém, a identificacdo incor-
reta e o consequente uso equivocado de pesticidas podem
causar o desenvolvimento de resisténcia a longo prazo
dos patégenos, reduzindo severamente a capacidade de
reversdo. Assim, é importante o desenvolvimento de mé-
todos que ajudem na identificacdo da doenca e em um tra-
tamento rapido e eficaz, evitando o desperdicio de recur-
sos e alcancando uma producdo saudavel (Sladojevic et al.,
2016).

Atualmente, os métodos de detecgdo de doencas em
plantas sdo, muitas vezes, baseados em observagao visual e
analise laboratorial. No entanto, esses métodos podem ser
caros, demorados e, em muitos casos, exigem a presenca
de especialistas ou infraestrutura laboratorial que nao es-
tdo disponiveis em todas as regides (Bock et al., 2010). O
diagnostico de doengas em plantas com base na observacao
das folhas pode ser uma tarefa desafiadora mesmo para
especialistas experientes, devido ao grande ntimero de es-
pécies de plantas e problemas fitopatoldgicos. Isso pode
levar a conclusdes equivocadas e tratamentos ineficazes,
resultando em danos as plantacoes (Ferentinos, 2018).

A andlise de imagem por meio de métodos computa-
cionais pode ser uma alternativa viavel para a deteccao
rapida e precisa de doengas foliares no campo, o que pode
contribuir para a eficiéncia no manejo e prevengao de do-
engas nas plantacoes (Ashwini and Sellam, 2024). Assim,
o desenvolvimento de sistemas automatizados de diag-
noéstico de doencas de plantas, que utilizam tecnologias
como Inteligéncia Artificial (IA) e Aprendizado de Maquina
(AM), pode ser ttil para os agricultores. Esses sistemas
tém o potencial de identificar com precisao as doencas
presentes nas plantas, permitindo a deteccao precoce e a
prevengao da disseminacdo, além de economizar tempo e
recursos (Sladojevic et al., 2016). No entanto, ha desafios a
serem superados para melhorar esses sistemas como, por
exemplo, a necessidade de um banco de dados de imagens
abrangente que cubra uma variedade maior de doencas,
bem como a avaliacdo dos modelos em culturas especificas
(Mohanty et al., 2016; Sladojevic et al., 2016; Ferentinos,
2018). Isso evidencia a necessidade de pesquisas na area, a
fim de aprimorar a eficiéncia e a precisao do diagnéstico de
doencas de plantas, o que pode beneficiar os agricultores
e contribuir para a sustentabilidade da agricultura (Yang
and Guo, 2017).

Neste contexto, o presente trabalho tem como objetivo
avaliar modelos baseados em Aprendizado Profundo para
classificar doencas foliares da cultura do milho, utilizando
regides de imagens de folhas doentes e saudaveis para o
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Figura 1: Representacdo do neur6nio biolégico.
Fonte: Faceli et al. (2011)

treinamento.

0 contetido deste trabalho esta dividido em mais cinco
capitulos. Na Secdo 2 sdo abordados os conceitos funda-
mentais utilizados no desenvolvimento do estudo, como
Redes Neurais Artificais (RNA), Redes Neurais Convolu-
cionais (CNN), Aprendizado Profundo, Transferéncia de
Aprendizagem e uma breve descricdo de algumas doencas
foliares do milho.

Em seguida, na Secao 3, sao apresentados alguns traba-
lhos da literatura relacionados a aplicac¢do de Aprendizado
Profundo na classificagao de doencas foliares em plantas.

Na Secdo 4 sobre a metodologia, sao descritos o con-
junto de dados, as técnicas, as métricas de avaliagdo e as
ferramentas utilizadas no desenvolvimento dos modelos.

Os resultados obtidos foram apresentados na Secdo 6.
Nesta sessdo foi feita a avaliacao dos modelos treinados.

Por fim, na Secao 7, sao apresentadas as conclusoes e
consideragoes finais sobre o estudo.

2 Fundamentagao Teorica
2.1 Redes Neurais Artificiais

As RNAs sdao modelos computacionais de IA inspirados
na estrutura neural do cérebro humano que adquirem co-
nhecimento por meio da experiéncia. Neste contexto, é
importante entender o funcionamento basico dessa estru-
tura a fim de facilitar a compreensao do funcionamento
de uma RNA.

O sistema nervoso é composto por uma rede de neur6-
nios que formam o cérebro, responsavel por receber infor-
macoes e tomar decisdes. Essa rede é formada por neurd-
nios interconectados, o que permite a comunicagao entre
eles. Essa comunicacdo é realizada por meio de impulsos
elétricos que produzem uma substancia neurotransmis-
sora, transmitida do corpo celular para o ax6nio. Em sin-
tese, segundo Cintra (2018), os principais componentes
de um neur6nio sdo os dendritos, o corpo celular, o axonio
e as sinapses, conforme representado na Fig. 1.

Os dendritos sdo responsaveis por receber estimulos
vindos de outros neurdnios. O corpo celular, por sua vez,
coleta e combina informagdes vindas de varios dendritos.
0 ax0nio é responsavel por transmitir estimulos entre as
células, enquanto as sinapses permitem a transmissdo das
informacoes entre os neur6nios (Cintra, 2018).
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Figura 2: MLP com duas camadas ocultas.
Fonte: Faceli et al. (2011)

As RNAs, baseadas no modelo biolégico, sdo compostas
por unidades de processamento organizadas em uma ou
mais camadas, conectadas por diversas conexdes que pos-
suem pesos para armazenar o conhecimento adquirido e
medir a entrada recebida por cada neurdnio na rede (Braga
etal., 2000).

Assim, além das camadas de entrada e saida, as RNAs
podem apresentar camadas intermediarias, conhecidas
como camadas ocultas. Nelas, os neur6nios recebem va-
lores de saida de neurdnios da camada anterior e enviam
seus valores de saida para os terminais de entrada dos
neurdnios da camada posterior, formando um modelo de
processamento de informacao complexo e adaptativo. O
objetivo do treinamento da RNA é encontrar os pesos ideais
para que a rede possa realizar uma determinada tarefa de
forma eficiente (Faceli et al., 2011). AFig. 2 representa uma
RNA Multilayer Perceptron (MLP), ilustrando a utilizacao
de duas camadas ocultas.

Conforme Faceli et al. (2011), as RNAs sdo amplamente
utilizadas para resolver problemas complexos devido as
suas vantagens, como a capacidade de tolerar dados com
ruido e a natural capacidade de serem paralelizaveis, o
que pode acelerar o processo computacional. Elas ainda
sdo capazes de aprender e se adaptar a partir dos dados
de entrada, o que as tornam adequadas para tarefas de
reconhecimento de padroes, classificacdo e previsao.

2.2 Redes Neurais Convolucionais e Aprendizado
Profundo

0 Aprendizado Profundo é uma técnica de AM baseada
em RNAs com multiplas camadas, conhecidas como Re-
des Neurais Profundas. Cada camada dessa rede é respon-
savel por extrair caracteristicas dos dados de entrada e
transforma-los em representacgdes abstratas. Essas cama-
das permitem que a rede aprenda caracteristicas hierar-
quicas complexas a partir de dados brutos, permitindo que
as RNAs realizem tarefas cada vez mais sofisticadas, como
a classificagao de imagens (Goodfellow et al., 2016).

As Redes Neurais Convolucionais - do inglés, Convoluti-
onal Neural Networks (CNN) - usadas na extrag¢ao de carac-
teristica de imagens, possuem uma arquitetura base que
as diferem de outros modelos de RNAs, como por exem-
plo a Rede Neural MLP. A MLP é comumente usada para
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Figura 3: Camadas de uma CNN.
Fonte: LeCun et al. (1995)
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Figura 4: Aplicacao de filtro 3x3 em uma camada de
convolucao.
Fonte: Yamashita et al. (2018)

recursos de aprendizado simultaneo e classifica¢do de da-
dos. A principal limitagdo com o seu uso em imagens é
que o numero de neur6nios pode ser muito alto, mesmo
para arquiteturas rasas. A ideia basica por tras das CNNs é
criar uma solucdo para reduzir o nimero de parametros,
permitindo que uma rede seja mais profunda com menos
parametros (Yamashita et al., 2018).

As CNNs, propostas pelos pesquisadores LeCun et al.
(1995), sao redes que realizam operagao de convolucao
em pelo menos uma de suas camadas, aplicando filtros
para extrair caracteristicas locais dos dados ao qual sdo
aplicadas. Uma CNN possui pelo menos trés componentes
basicos: camada de convolugdo, pooling e camada total-
mente conectada. AFig. 3ilustra a arquitetura de uma CNN
(LeCun et al., 1995).

A camada de convolucio é responsavel por extrair carac-
teristicas relevantes das imagens por meio da aplicacdo de
filtros, ou kernels. Esses filtros sdo projetados para detectar
padrdes especificos nas imagens, como bordas, texturas e
formas, e a aplicacdo repetida desses filtros em diferentes
partes da imagem resulta em uma representacao rica e hi-
erarquica das caracteristicas da imagem (Yamashita et al.,
2018). A Fig. 4 ilustra uma camada de convolugao com a
aplicagdo de um filtro 3x3.

Ja a camada de pooling tem como funcao reduzir a di-
mensionalidade das caracteristicas extraidas pela camada
de convolucdo, o que torna o processo de treinamento da
rede mais eficiente. Isso € feito por meio da aplicacdo de
uma operacao de agregacao em uma regido local da ima-
gem, que resulta em uma Unica representacdo daquela
regido. Esse processo reduz a quantidade de informacdo
na rede, tornando-a mais eficiente e ajudando a evitar
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Figura 5: Operacdo de max pooling em uma camada de
pooling.
Fonte: Yamashita et al. (2018)
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Figura 6: Rede totalmente conectada.
Fonte: Autor, 2023

problemas de overfitting (Yamashita et al., 2018). AFig. 5
ilustra uma operacao de max pooling.

Por fim, a rede totalmente conectada é a Gltima camada
das CNNs e é responsavel por realizar a classificagao dos
dados de entrada apds a extracdo das caracteristicas re-
levantes pelas camadas anteriores. Nessa camada, as ca-
racteristicas sdo transformadas em uma representagdo
vetorial unidimensional e passadas por uma ou mais ca-
madas densas, que realizam uma combinacao linear das
caracteristicas para gerar as saidas da rede (Yamashita
etal., 2018). A Fig. 6 ilustra a camada totalmente conec-
tada, Gltima etapa para a classificacdo de imagens.

O processo de aprendizagem ocorre por meio do ajuste
dos pesos das conexdes entre as camadas. Os pesos sao
inicializados aleatoriamente e a rede é alimentada com
um conjunto de dados de treinamento pré processado, en-
volvendo geralmente o redimensionamento e normaliza-
¢do das matrizes de imagens. Durante o treinamento, a
CNN realiza a propagacao dados de entrada para frente,
passando-os pelas camadas convolucionais e de pooling
para extrair caracteristicas das imagens. As caracteristicas
sao entdo alimentadas nas camadas totalmente conectadas
para produzir a saida final. Ao calcular a diferenca entre

as saidas previstas e as saidas esperadas, a CNN usa uma
fungao de perda que mede a diferenca entre as previsoes
e os rétulos reais. Em seguida, a retropropagacao é usada
para calcular o gradiente da fun¢do de perda em relacao
aos pesos da rede. Com o gradiente calculado, um algo-
ritmo de otimizac¢do, como o Stochastic Gradient Descent
(SGD), ajusta gradualmente os pesos da rede para mini-
mizar a funcdo de perda. Esse processo é repetido muitas
vezes, usando um conjunto de treinamento rotativo para
evitar overfitting. O objetivo da aprendizagem é minimizar
a diferenca entre as saidas previstas pela rede e as saidas
esperadas. Obtendo um desempenho satisfatério para o ce-
nario aplicado, a CNN pode ser usada para fazer previsoes
em novas imagens.

O processo de treinamento de uma CNN pode ser com-
putacionalmente intensivo para conjuntos grandes e com-
plexos, no entanto, uma vez treinada, a rede é capaz
de classificar novas imagens com rapidez e precisdo,
tornando-a uma ferramenta Gtil em diversas aplicagées.
Além disso, é possivel a utilizacdo de técnicas como a
Transferéncia de Aprendizagem, que permitem reutilizar
parte do conhecimento adquirido durante o treinamento
em outras tarefas, o que pode melhorar o desempenho da
rede.

2.3 Transferéncia de Aprendizagem

A Transferéncia de Aprendizagem é uma estratégia uti-
lizada no Aprendizado Profundo na qual modelos pré-
treinados sao empregados como ponto de partida para
novos modelos. O aprendizado de uma RNA aplicada em
tarefas de visdao computacional geralmente requer uma
grande quantidade de dados, mas nem sempre é possivel
obter acesso a conjuntos de dados extensos o suficiente
para treinar os modelos. Nessa abordagem, os modelos
pré-treinados sdo utilizados como extratores de caracte-
risticas de imagens, eles sdo submetidos a grandes con-
juntos de imagens pertencentes a diferentes classes. A
Transferéncia de Aprendizagem permite aproveitar esse
conhecimento prévio em tarefas relacionadas, reduzindo
a quantidade de parametros e acelerando o tempo de trei-
namento (YosinskKi et al., 2014).

Neste estudo essa estratégia serd aplicada ao copiar as
primeiras ''n'""camadas da rede de origem para para as pri-
meiras '"'n'"'camadas da rede de destino. As camadas res-
tantes da rede de destino terdo neurénios com pesos inici-
alizadas aleatoriamente e serao treinadas para a tarefa de
classificagao, conforme ilustrado na Fig. 7.

Quando o conjunto de dados de destino é significativa-
mente menor que o conjunto de dados base, como € o caso
desse estudo, a Transferéncia de Aprendizagem pode ser
uma ferramenta poderosa para permitir o treinamento,
evitando o overfitting (Yosinski et al., 2014).

2.4 Doengas foliares do milho

Nos tltimos anos as doencas tém se tornado uma grande
preocupacao por parte de técnicos e produtores envolvi-
dos no agronegécio do milho. A evolugédo das doengas do
milho esta relacionada, entre outros fatores, a evolucdo do
sistema de producao desta cultura, bem como modifica-
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Figura 8: Ferrugem Comum.
Fonte: Hughes and Salathé (2014)

¢bes ocorridas no sistema de produgao, que resultaram no
aumento da produtividade da cultura (Costa et al., 2021).
Dentre as doengas que atacam a cultura do milho estdo a
Ferrugem Comum, a Cercosporiose e a Helmintosporiose
ou Mancha de Turcicum, que serao utilizadas no escopo
deste estudo.

A Ferrugem Comum é caracterizada pela formagao de
pustulas. As pustulas da Ferrugem Comum apresentam
formato circular a alongado e coloragao castanho clara a
escuro, que se acentua a medida em que as pastulas ama-
durecem e se rompem, liberando os uredésporos, que sdo
os esporos tipicos do patégeno (Costa et al., 2021). A Fig. 8
ilustra uma folha com a doenca Ferrugem Comumm.

A Cercosporiose é caracterizada por manchas de colo-
racdo cinza, predominantemente retangulares, com as
lesGes paralelas as nervuras. A Fig. 9 ilustra uma folha
com a doenca Cercosporiose (Costa et al., 2021).

Por fim, a Mancha de Turcicum se caracteriza por lesdes
necraticas, elipticas. A coloragdo do tecido necrosado varia
de cinza a marrom e, no interior das lesoes, observa-se
intensa esporulacdo do patégeno, onde as primeiras lesdes
aparecem geralmente nas folhas mais velhas (Costa et al.,
2021). A Fig. 10 ilustra uma folha com a doeng¢a Mancha
de Turcicum.

Neste estudo serao avaliados modelos computacionais

Figura 9: Cercosporiose.
Fonte: Hughes and Salathé (2014)

Figura 10: Mancha de Turcicum.
Fonte: Hughes and Salathé (2014)

para classificar as plantas saudaveis e doentes, indicando
a classe da doenca pertencente.
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3 Trabalhos Relacionados

Devido a caracteristica da manifestacdo visual de doencas
em plantas, a utilizacdo de Aprendizado Profundo por meio
de CNNs vemn obtendo resultados promissores na detec¢ao
e classificacao de imagens para a identificacdo de doencas
foliares.

Mohanty et al. (2016), treinaram modelos baseados em
CNN (GoogLeNet e AlexNet) para identificar 14 espécies
de culturas e 26 doencas utilizando um conjunto de dados
publico de imagens de folhas de plantas, atingindo uma
acuracia de 99,35% ao aplicar a Transferéncia de Apren-
dizagem com a rede GoogLeNet. No entanto, ao testar o
modelo em imagens capturadas em condicoes diferentes
da base de teste, a acuracia foi de 31%.

Sladojevic et al. (2016), utilizaram CNNs para reconhe-
cer e classificar 13 tipos diferentes de doencas em 4 espé-
cies de plantas a partir da imagem de suas folhas, alcan-
¢ando acuracia média de 96,3%.

Liu et al. (2017), utilizaram CNNs derivadas de Alex-
Net para detectar doencas de folhas de macieira, usando
um conjunto de dados de 13.689 imagens, atingindo uma
acuracia média de 97,62%.

Ferentinos (2018), comparou modelos de CNNs para
a classificacdo de doencas de plantas usando imagens de
folhas saudaveis e doentes, aplicando as redes AlexNet, Go-
ogLeNet, VGG16, Overfeat e AlexNetOWTBn. O melhor mo-
delo (VGG16) obteve acuracia de 99,53%. Porém, aacuracia
foi reduzida para 65,69% quando treinado com imagens
coletadas em campo e testado com imagens de laboratdrio.

Zhang et al. (2018) propds modelos derivados do Go-
ogLeNet e Cifrar10 para classificar oito tipos de doencas
foliares do milho. Foram utilizadas 500 imagens coleta-
das de diferentes fontes. Com a aplicacdo de técnicas de
aumentacdo de dados e o ajuste de hiperparamenteos, o
melhor modelo (GoogLeNet) atingiu uma acuracia ma-
xima de 98,9%.

Waheed et al. (2020) prop6s uma arquitetura otimizada
de CNN densa (DenseNet) para a classificacao de doencas
foliares do milho. Utilizou-se no estudo um conjunto de
12.332 imagens, coletadas de diversas fontes, referentes a
4 classes. Apoés a aplicacdo de técnicas de aumentacdo de
dados, 0 modelo proposto atingiu uma acuracia de 98,06%.

Mishra et al. (2020) desenvolveram um modelo de CNN
implantado em um Raspberry Pi 3 para a detec¢ao em
tempo real de doencas em plantas de milho, alcancando
uma acurdacia de 88,46%.

Jasrotia et al. (2023) desenvolveram um modelo de CNN
para classificar doengas em plantas de milho, usando téc-
nicas de pré-processamento como, por exemplo a trans-
formagdo logaritmica e a conversdo de RGB para HSV. O
modelo treinado alcangou acuracia maxima de 99,76%.

Ashwini and Sellam (2024) prop6s um modelo hibrido
3D-CNN-RNN para a classificacdo de doencas nas folhas
do milho em dois conjuntos de dados distintos, alcan¢ando
uma acuracia superior a 94% em ambos os conjuntos de
dados e desempenho acima de 90% em todas as métricas
avaliadas.

Nos estudos relacionados, a Transferéncia de Aprendi-
zagem tem sido amplamente utilizada. No entanto, o teste
de alguns modelos em culturas especificas foi pouco ex-
plorado. Além disso, a falta de conjuntos de imagens diver-

sificados, limita a classificagao quando aplicado a imagens
distintas do conjunto de treinamento.

Este estudo propoe-se a avaliar modelos alternativos de
CNNs utilizando Transferéncia de Aprendizagem, a fim
de identificar aquele que apresenta melhor capacidade de
generalizacdo em doencas que afetam a cultura do milho.

4 Materiais e Métodos
4.1 Proposta

0 estudo consiste em avaliar o desempenho na classifica-
¢ao de doencas em imagens de folhas da cultura do milho,
utilizando duas arquiteturas de CNNs: VGG19 e ResNet50.
Para isso, serao realizados experimentos com um conjunto
de dados composto por imagens de folhas de plantas com
diferentes doencas foliares.

Para treinar os modelos, sera aplicada a técnica de
Transferéncia de Aprendizagem, que consiste em utili-
zar arquiteturas de RNAs pré-treinadas em bases de dados
com grandes conjuntos de imagens e aproveitar os pesos
aprendidos durante esse treinamento, conforme explicado
na Secao 2.3.

O primeiro modelo sera construido com base na arquite-
tura VGGNet, originalmente proposta por (Simonyan and
Zisserman, 2014). AVGG19, uma das variacoes da VGGNet,
é uma rede neural profunda composta por 19 camadas, or-
ganizadas em uma sequéncia de camadas convolucionais
com filtros de tamanho 3x3 e por operacdes de maxpooling.
Apds cada camada convolucional, é aplicada a funcéo de
ativacdo ReLU. A cada duas camadas convolucionais ocorre
uma operacdo de maxpooling, e o nimero de filtros é du-
plicado apos cada uma dessas operacdes. A rede VGG foi
pioneira ao utilizar filtros menores, de dimensao 3x3, em
cada camada convolucional.

0 segundo modelo tera como base a rede ResNet. A
ResNet € uma arquitetura que tem como principal caracte-
ristica a incorporagdo de blocos residuais, que sao médulos
especiais adicionados as camadas convolucionais padrao.
Esses blocos residuais permitem que a ResNet aprenda re-
siduos ou diferencas entre os recursos extraidos em cada
camada. A ResNet utiliza conexdes de atalho, onde o gradi-
ente é diretamente retropropagado para camadas anterio-
res (He et al., 2016). A variacdo utilizada sera a ResNet50,
que possui 50 camadas.

4.2 Conjuntos de Dados

0 subconjunto utilizado foi proveniente do conjunto de
dados PlantVillage Dataset (Hughes and Salathé, 2014), que
contém aproximadamente 54 mil imagens rotuladas de
folhas de plantas saudaveis e infectadas. Para o estudo,
foram selecionadas imagens relacionadas a doencas do
milho, divididas em quatro classes (Saudavel, Ferrugem
Comum, Cercosporiose e Mancha Turcicum), totalizando
3.838 imagens. As imagens foram separadas na propor¢ao
de 80% para treinamento e 20% para validacdo e teste,
conforme mostrado na Tabela 1.

As imagens foram capturadas em condicoes diferentes
de luminosidade, contraste e base de fundo. A Fig. 11 ilustra
o contetdo do conjunto de dados.
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Tabela 1: Nimero de imagens do subconjunto de dados.

Categoria Imagens  Treinamento Valida¢ao
Saudavel 1162 930 232
Ferrugem Comum 1192 953 239
Cercosporiose 509 406 103
Mancha Turcicum 975 778 197
Total 3838 3067 771

Fonte: Hughes and Salathé (2014)

Ferrugem Comum

Saudavel

Figura 11: Amostra de imagens do conjunto de dados.
Fonte: Hughes and Salathé (2014)

Por fim, foram aplicadas estratégias de aumentacdo de
dados, por meio da rotacao e espelhamento do conjunto
de imagens de treinamento.

4.3 Métricas de Avaliacdo

Para avaliar os modelos de classifica¢ao, foram utilizadas
as métricas de acurdcia, precisdo, revocacdo e perda.

A acuracia mede a capacidade do modelo de classificar
corretamente as instancias em todas as classes, enquanto a
precisao mede a proporcao de classificagdes corretas paraa
classe positiva. Por sua vez, a revocacao mede a propor¢ao
de instancias da classe de interesse corretamente classifi-
cadas pelo modelo. As Egs. (1) a (3) mostram as defini¢oes
matematicas para cada uma das métricas utilizadas neste
estudo.

. VP+WN

Acuracia = VP +VN + FP + FN (@)
P

Precisdo = VP ED (2)

Revocao = — b (3)

VP + FN

ferrugem_do_milho
100

80
mancha_cercospora - 1 39 10 0
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Figura 12: Exemplo de uma matriz de confusdo.
Fonte: Autor, 2023

Nas equagdes acima, VP, VN, FP e FN correspondem
aos valores verdadeiros positivos, verdadeiros negativos,
falsos positivos e falsos negativos, respectivamente.

Aperdarepresentaa diferenca entre as saidas do modelo
e as saidas esperadas. O objetivo é minimizar o valor da
perda, o que significa que o modelo esta fazendo previsoes
mais precisas. Neste estudo a perda foi calculada por meio
da métrica Root Mean Squared Error (RMSE), definido na
Eq. (4).

RMSE = (4)

1< .
a ;(Yi - Vi)?

Ainda, a fim de analisar a assertividade de classificagao
dos modelos para cada uma das classes, foram geradas
matrizes de confusao.

A matriz de confusdo é uma tabela que apresenta as
classifica¢des corretas e incorretas feitas pelo modelo para
cada classe. Ela nos permite visualizar de forma mais de-
talhada o desempenho do modelo em cada classe de in-
teresse, ajudando a identificar possiveis padroes de erros
de classificagao. As células da matriz de confusdo sdo pre-
enchidas com os valores de VP, VN, FP e FN, conforme
ilustrado na Fig. 12.

Também foram gerados mapas de atributos a fim de
avaliar visualmente as principais regides da imagem que os
modelos aprenderam a distinguir durante o treinamento.
A Fig. 13 ilustra os mapas de atributos de uma camada
convolucional em uma imagem de folha doente.

Os mapas de atributos podem ser usados para interpre-
tar o funcionamento de uma RNA e ajudar a entender como
ela est4 tomando suas decisoes.

Como cada camada de convolucdo apresenta diferen-
tes quantidades de filtros, selecionou-se os aqueles com
os maiores valores dentro de cada camada convolucional,
representando as maiores ativacdes. As imagens geradas
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Figura 13: Exemplo de geracao de mapas de atributos.
Fonte: Autor, 2023

foram normalizadas para o intervalo entre 0 e 1, onde 1
representa o maior valor possivel.

4.4, Tecnologias

Para o desenvolvimento dos modelos, foram utilizadas
as bibliotecas Tensorflow, Keras e bibliotecas auxiliares,
como Sklearn, OpenCV, Pandas, Numpy, Matplotlib, Sea-
born e PIL. O ambiente de desenvolvimento utilizado para
o treinamento dos modelos foi o Google Colaboratory. O
Google Colaboratory é um ambiente de Jupyter Notebook
que opera totalmente na nuvem, ele é pré empacotado com
algumas das bibliotecas utilizadas no estudo, como o Ten-
sorflow e o Keras (Google Colab, n.d.). As especifica¢des do
ambiente sdo mostradas na Tabela 2.

Tabela 2: Especificacdes do ambiente de

desenvolvimento.
Nome Especificacdao
CPU Intel(R) Xeon(R) CPU @ 2.20GHz
GPU Tesla T4 16GB
SO Linux Ubuntu 22.04.2
Linguagem Python 3.10.6

Fonte: Google Colab (n.d.)

A escolha do ambiente foi motivada pela disponibliza-
¢ao de recursos de hardware especializado para a acelera-
¢ao do treinamento dos modelos.

5 Configuracao e Treinamento

Os modelos foram desenvolvidos com base nas arquitetu-
ras VGG19 e ResNet50, conforme mencionado na Secdo 4.1.

O conjunto de 3.838 imagens foi redimensionado para
256x256 pixels, normalizado e submetido a técnicas de
aumentagao de dados, por meio da rotacdo (em até 40°)
e espelhamento horizontal. Os pesos pré-treinados no
conjunto de dados ImageNet foram empregados, e duas
camadas totalmente conectadas foram adicionadas, cada
uma com 6/ neurdnios. Além disso, entre as duas cama-

das totalmente conectadas, foi adicionada uma camada de
dropout com uma taxa de 0,25. Por fim foi adicionada uma
camada de saida com a aplicacdo da funcdo softmax para 4
classes.

Ao longo de 50 épocas de treinamento, ajustou-se so-
mente os pesos das camadas totalmente conectadas. A
taxa de aprendizado de 0,01 foi utilizada nas primeiras
10 épocas, posteriormente sendo reduzida a uma taxa de
aproximadamente 20% do valor a cada época, até que atin-
gisse o valor minimo de 0,00001, com o otimizador SGD.
Os parametros utilizados sao mostrados na Tabela 3. Os
demais parametros mantiveram-se nos valores padrao
fornecidos pela biblioteca Keras.

Tabela 3: Parametros utilizados no treinamento dos

modelos.
Parametros VGG19 Resnet50
Epocas de treinamento 50 50
Tamanho do lote 32 32
Taxa de aprendizagem 0,01, com decai- 0,01, com decai-

mento mento

Otimizador SGD SGD
Tamanho da imagem 256X256X3 256X256X3
Aumentacdo de dados  Sim Sim

Fonte: Autor, 2023.

A selecdo dos parametros foi fundamentada em um pro-
cedimento sistematico de experimenta¢do empirica, onde
diversas combinacdes foram avaliadas a fim de determinar
a configuracgao que proporcionasse o melhor desempenho.

6 Resultados e Discussoes

6.1 Comparacao do desempenho dos modelos de
classificacao

Utilizou-se para o treinamento um subconjunto de ima-
gens da base de dados Plant Village, especificamente rela-
cionadas a cultura do milho. Para essa etapa, foi adotada
uma divisdo de 80% das imagens para treinamento e 20%
para validagdo e teste, conforme mencionado na Secdo 4.2.

As Figs. 14 e 15 ilustram a evolugao da taxa de perda
ao longo das 50 épocas de treinamento para os modelos
VGG19 e ResNet50 respectivamente. Em ambas as arqui-
teturas, observa-se uma queda acentuada de perda nas
etapas iniciais do treinamento, tornando-se mais gradual
por volta da 202 época. Observa-se ainda que, o modelo ba-
seado na arquitetura ResNet50, atingiu um valor de perda
menor durante o treinamento em comparagao com o mo-
delo baseado na arquitetura VGG19. No entanto, ao avaliar
o desempenho na base de teste, o modelo ResNet50, exibiu
um valor de perda maior, o que elevou a amplitudo entre o
valor de perda no treinamento e o valor de perda no teste.
Isso pode indicar que, o modelo VGG19 obteve uma melhor
capacidade de generalizacao.

A curva de acuracia dos modelos, ilustrada nas Figs. 16
e 17, apresenta comportamento semelhante, aumentando
até a vigésima época e mantendo-se estavel a partir desse
ponto. Nota-se ainda que, a rede VGG19 demonstra um de-
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Figura 14: Histdrico de perda por época VGG19.
Fonte: Autor, 2023
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Figura 15: Histérico de perda por época ResNet50.
Fonte: Autor, 2023

sempenho superior na base de teste, quando comparada ao
modelo ResNet50. A maior acuracia obtida na base de teste
foi por meio da rede VGG19, chegando a 98,31%, frente a
97,80% da ResNet50.

A fim de analisar a assertividade de classificacdao dos
modelos para cada uma das classes, foram geradas matri-
zes de confusao.

Observa-se nas matrizes de confusao (Figs. 18 e 19) que
os modelos classificaram corretamente todas as amostras
para as classes Ferrugem do Milho e Saudavel. Para as de-
mais classes observa-se que houve falsos positivos. Esses
falsos positivos, caracterizados por erros de classificacao
entre essas duas categorias, sugerem a que o modelo con-
siderou que ha caracteristicas visuais semelhantes entre
as doengas Mancha Cercospora e Mancha de Turcicum.
Observa-se também que a classe Mancha Cercospora apre-

Histérico de acuracia VGG19

1.00

0.9860
e R e —a—
0.95 X
0.90 A
0.85
0.80
0.75 4
—— Treinamento

0.704 —— validagdo

0 10 20 30 40 50

Epocas

Figura 16: Histdrico de acuracia por época ResNet50.
Fonte: Autor, 2023
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e MOZ
0.95 A
0.90 A
0.85
0.80
0.75 4
—— Treinamento

0.701 —— validagdo

0 10 20 30 40 50

Epocas

Figura 17: Histdrico de acuracia por época ResNet50.
Fonte: Autor, 2023

senta uma quantidade substancialmente menor de amos-
tras de dados, o que pode ter contribuido para o menor
desempenho na classificagao.

Alguns estudos destacam a escassez de conjuntos de
dados de imagens de plantas suficientemente abrangentes
que possibilitermn uma boa generalizacdo. Essa constata-
¢do ressalta a necessidade de aprimorar a diversidade e a
representatividade do conjunto de dados para melhorar a
capacidade de generalizacdao dos modelos de classificacao.
A inclusdo de mais exemplos e varia¢oes nas condicoes de
captura das imagens pode fornecer uma base mais sdlida
para o treinamento dos modelos e melhorar seu desempe-
nho em cendarios reais.

Ao analisar as demais métricas de avaliagdo, evidencia-
se que ambos 0s modelos ndo apenas exibem uma acuracia
elevada, mas também demonstram um padrao semelhante
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Figura 18: Matriz de confusdo com a assertividade de

classificacao de cada classe pelo modelo VGG19.
Fonte: Autor, 2023
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Figura 19: Matriz de confusdo com a assertividade de

classificacao de cada classe pelo modelo ResNet50.
Fonte: Autor, 2023

de precisao e revocagao. Isso indica que ambos modelos
sao capazes de classificar as instancias na base de dados
utilizada. A VGG19 apresenta pequena vantagem em ter-
mos de acuracia, registrando 98,31%, em comparacao com
0s 97,80% da ResNet50. O mesmo se repete para as métri-
cas de precisdo e revocacdo média. A ResNet50 apresentou
uma precisdo de 96,75% e revocacdo de 97,00%, enquanto
a VGG19 apresentou valores de precisao e revocagao de
97,75% e 97,25%, respectivamente, conforme mostrado
na Tabela 4.

A andlise das matrizes de confusao reforcou os desafios

Tabela 4: Comparativo de acuracia, precisdo e revocacido
dos modelos VGG19 e ResNet50.

Métrica [ Modelo  VGG19 ResNet50
Acurécia 98,31% 97,80%
Precisao 97,75% 96,75%
Revocacao 97,25% 97,00%

Fonte: Autor, 2023.

Figura 20: Mapas de atributos VGG19 para a doenga
Ferrugem Comum.
Fonte: Autor, 2023

em distin¢des entre doencas visualmente similares, su-
gerindo oportunidades de aprimoramento do conjunto de
dados.

6.2 Visualizacdao dos mapas de atributos

Para visualizar as regioes utilizadas pelas redes para dis-
tinguir areas doentes em imagens e classificar as doencas,
realizou-se a obtencao dos mapas de atributos, como des-
crito na Secao 4.3.

As Figs. 20 e 21 ilustram as visualizacées dos mapas
de atributos da rede VGG19 e ResNet50, respectivamente,
para uma imagem que contém sintomas da doenca Ferru-
gem Comum. Em cada camada convolucional, selecionou-
se 0 mapa com os maiores valores de ativagao da rede. As
visualizacOes dos mapas de calor revelaram que os sinto-
mas visuais sdo identificados e destacados frente o restante
da folha, principalmente nas primeiras camadas convo-
lucionais da rede. No entanto, observa-se que, devido a
diminuicdo da resolucdo, os ultimos mapas de atributos
tendem a apresentar visualiza¢des com menos nitidez nas
ativagbes das areas dos sintomas. Isso indica que, como
esperado, as primeiras camadas capturaram caracteristi-
cas mais perceptiveis ao humano, como bordas e texturas,
enquanto as camadas posteriores desenvolveram uma re-
presentacdo mais abstrata e complexa das caracteristicas
da imagem.

0 mesmo é observado nas Figs. 22 e 23, que ilustram as
visualizacdes dos mapas de atributos para uma imagem
que contém sintomas da doenga Cercospora, e nas Figs. 24
e 25, que ilustram as visualizacdes dos mapas de atributos
para uma imagem que contém sintomas da doenga Man-
cha Turcicum, onde as regides doentes sdo destacadas das
demais regides da folha. Observa-se ainda que a nervura
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Figura 21: Mapas de atributos ResNet50 para a doenca
Ferrugem Comum.
Fonte: Autor, 2023

Figura 22: Mapas de atributos VGG19 para a doenca

Cercosporiose.
Fonte: Autor, 2023

Figura 24: Mapas de atributos VGG19 para a doenga

Mancha Turcicum.
Fonte: Autor, 2023

Figura 25: Mapas de atributos ResNet50 para a doenca

Mancha Turcicum.
Fonte: Autor, 2023

Figura 23: Mapas de atributos ResNet50 para a doenca

Cercosporiose.
Fonte: Autor, 2023

principal da folha também recebe detaque nos mapas.

Para uma imagem da classe Saudavel, os mapas de atri-
butos exibem maior homogeneidade e nao apresentam
regides de ativagao contrastantes, exceto pela ativagcao na
nervura principal da folha, como nas demais classes. A
Fig. 26 e Fig. 27 ilustram os mapas de atributos para uma
folha saudavel.

Os mapas de atributos mostraram que ambas as redes
treinadas foram capazes de identificar as caracteristicas
discriminativas em pontos correspondentes as doencas
nas folhas do milho. Observou-se convergéncia das carac-
teristicas identificadas pelas redes com as regides afetadas

Figura 26: Mapas de atributos VGG19 para uma folha

saudavel.
Fonte: Autor, 2023

pelas doengas foliares do milho. Observou-se ainda que
anervura da folha foi considerada importante para o mo-
delo, trabalhos futuros podem concentrar-se em treinar
os modelos com imagens que representam apenas a re-
gido doente da folha a fim de avaliar os mapas de atributos
gerados pela rede.
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Figura 27: Mapas de atributos ResNet50 para uma folha

saudavel.
Fonte: Autor, 2023

7 Considera¢oes Finais

Com o objetivo de classificar doengas foliares da cultura do
milho, foram desenvolvidos dois modelos, usando como
base as arquiteturas VGG19 e ResNet50. Os resultados in-
dicaram que ambas as redes obtiveram desempenhos si-
milares, com a VGG19 alcancando 98,31% de acuracia em
comparac¢ao com 97,80% da ResNet50. Os resultados mos-
traram que que a rede baseada na arquitetura VGG19 apre-
sentou melhor capacidade de generalizagao.

A visualizac¢do dos mapas de atributos das redes, refor-
¢ou a capacidade dos modelos em discernir os pontos de
manifestacdo das doencas em contraste com o restante da
folha, onde as ativacdes relacionadas as areas afetadas pela
doenca foram mais evidentes nas primeiras camadas de
convolucao.

Assim, conclui-se que a utilizacdo das arquiteturas
VGG19 e ResNet50 por meio da Transferéncia de Apren-
dizagem podem ser uma alternativa viavel para a classi-
ficacdo de doencas foliares na cultura do milho. No en-
tanto, é importante ressaltar a necessidade da construcao
de conjuntos de dados abrangentes e representativos para
aprimorar ainda a capacidade de generalizacdo desses mo-
delos, visando uma detecc¢do precisa e uma aplicabilidade
mais abrangente na deteccao e classificacao de doencas
nas plantag¢oes de milho.

Trabalhos futuros poderdo se concentrar na obtencao
bases de dados mais abrangentes, com diferentes formas
de manifestdo das doencas, possibilitando o desenvolvi-
mento de modelos mais robustos para detectar e classificar
as doencas do milho em campo. Além disso, poderdo focar
na aplicacao do modelo para a identificacao de folhas sau-
daveis e doentes e na classificacdo de doengas em culturas
ndo abordadas nesse trabalho.
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