


SURE INFERENCE ANALYSIS

JOSE CARLOS SIMON DE MIRANDA

ABSTRACT In this work we define the new concepts of standard deviation based inferen-
tial sequence, variance based inferential seq , inferential seq of random
variables or random vectors and inferential sequence of real or vector valued sto-
chastic processes that enable us to estimate and draw conclusions about vectors and vector
valued functions without knowing any other information about the probabilistic structure of
these random variables and stochastic processes but their inferential sequences. We also define
m-th order at least probability p intervals and bands for vectors and vector valued
functions. The intervals and bands thus obtained are extremely cautious and this lead us to
call this subject sure inference analysis. The existence of orders of inference is also suggested.
As an example an inferential seq for esti jefined by integrals of random measures is
given. We also suggest a way of calculating small sample intervals for the mean when we have
some extra information, i.e., information that comes from outside the data.

1. INTRODUCTION

In this article the problem to be studied is that of finding confidence intervals for parameters,
here real numbers or real vectors, and confidence bands for functions that may be real or vector
valued ones. The analysis of inference that will be presented here is one which is extremely cautions.
It is made in such a way to, as much as possible, avoid doubts and it is in this sense that we choose
the name sure inference analysis.

The plan of this article is the following. In section 2 we present the first and central definitions
and theorems for standard deviation based sure inference and variance based sure inference. No
assumption about the probabilistic structure of random variables or stochastic processes but their
inferential sequences are made till section 6. Section 3 is devoted to optimization of random sets
(confidence intervals and bands) for real parameters and real functions. The optimal sets for
vector parameters and vector valued functions are obtained in section 4. Examples are given in
sections 5 and 6. Actually, section 6 is used to develop sure inference when some extra information
is available such as relations between mean values and variances (standard deviations) or more
complete information as distributions of random variables. We also suggest a way of calculating
small sample confidence intervals for the mean of some random variables. In section 7 we close the
work with some comments.

We will assume that X : £} — IR is an unbiased estimator for z and that 5td (X) = 0;. We will
also assume that we have a sequence of non-negative estimators and finite standard deviations, &y
and o, for all n > 1 such that o3 = Std (X), on41 = S5td(6n) and Eé, = on. By Chebychev's

Key words and phrases. inferential sequence of random variables or of stochastic processes, m-th order at least
probability p confidence interval or confidence band, non-parametric confidence interval or cc fid band, 1
estimators.
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inequality, for A; > 0, we have P{X(w) € [z—A101,7+M01]} = 1-1/)f and, equivalently, P{z ¢
[X (w)—Aio1, X (w)+A01]} < 1/23. Analogously we can write P{on & {fn(w)—Ant10n41,0n(w)+
Ant10n+1]} € 1/(An41)?, for all n > 1. It may occur, and this is the most frequent situation in
practice, that we don't know the value of o; and we use &;(w), some estimator of oy, and X{w)
to form confidence intervals for z when the distribution of X : ! — IR is known. Note that &y is
not necessarily unbiased. In most of these situations, after some analysis has been done, we could
almost conclude that, with probability p,  belongs to the interval [X (w) — aé1(w), X (w) + 863 (w))]
for some a, # € R ,. We have said almost conclude because there is uncertainty associated with &,.
On the other hand there are situations where we know the distribution of some statistic S(X, 6, )
that allows us to conclude that with probability p, x belongs to the set $~1(X,5y,-)(lo, 8]) when
P{w € Qa < S(X,5,,7) < B} = p. As an example consider for 1 < i < n, ¥; ~ N(u,0?) normal

random variables with mean u and variance o2, X = i Yi/n, 61 = v i(}’.- -X)?/(n—1),z=p,
i &

and §(X,1,7) = T(%:2) where T is t-student distribution.
We are interested in the situation where not only we don’t know the distribution of X but also
we want to decrease the uncertainty due to the substitution of &, (w) or & {w) by 3.
Since P{Ul -4 [&1((4)) - /\202,6‘1(01) + Azd’g]} < I/A%, we have
Poy £ é1(w) + Aoz} = 11— P{oy > &1(w) + Aaca}

o ~ 1
> 1-P{o; € [81{w) — Xa02,61(w) + 2029} 21~ bV
]

Let L{w, A1, A2) = A1{61(w) + A303), A(w, A1, A2) = X(w) — L{w, A1, A2) and Blw, A, Az) =
X(w) + L{w, A1, A2).
Let also

Ot = {we oy < 81(w) + Aoz},

a° {we Qlz € [X(w) — Mo1, X(w) + M101]},

o! {w € Qlz € [X () — L(w, M1, A2), X (w) + L(w, A1, A2)]}
Thus we have P(Q°) > (1 = g;,) and P(Q) > (1 = i'z)

Since L(w, A, A2) 2 Ajoy when a3 < 61 (w) + Az02, we have (RF NQY) D (2 NQP) and we can
write

Pz € [A(w, M, X3}, B{w, M1, A3)]} = P(R")
> PNy > P(O°NAY)

zP(n°)+P(n+)-1g1—X1,—x15.
1 2

The inequality above lets us draw such conclusions as: with at least probability (1~ 3 — 7\1‘-,),

z belongs to the interval [X (w) — Ay(d1(w) + A202), X (w) + X1 (61 (w) + Ago2)). ]
In practice, this interval will be replaced by

[X(w) = At {81(w) + Agb2(w)), X (w) + Ar(B1(w) + Aeba(w))]
and this substitution induces some uncertainty. In this situation we can almost conclude that, with
at least probability (1 - 'le = -x‘»;e), T belongs to the later interval. We can continue this process
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of analyzing the worst case and obtain probabilities in the form 1 - f: 7\1-; for intervals of the form
=1
[X{w) = Len(w, M1y -« Am). X (@) + Lon(w, At .., Am)] where
Lon(@, M1y - -3 Am) = M (61(w) + A2(- - + A1 (Bme 1 (@) + AmOm) -+ +))-

2. DEFINITIONS AND THEOREMS

The veracity of the following theorems is not changed by the substitution of m-th order inferential
sets for inferential sequences in their hypothesis.

2.1. Standard Deviation Based Sure Inference.

2.1.1. Real Random Variables and Stochastic Process.

Definition 1. 4 3-tuple (X, (0u)1<n<m: (6n)1gngm) formed by a random variable X : Q@ — IR,
m positive numbers (0n)1gn<m 6nd m random variables (6, : Q — R)i<ngm, i8 o standard
deviation based m-th order inferential set for z € R if and only if
(i) EX =z, o1 = Std(X),
() f1€n<m~—1 then onyy =Std(5y),
(iii) if1 <n<m-—1 then Eén = 0n, and EGm > 0m
(vi) f1 <n < mthen 6.(02) C Ry

Definition 2. A S-tuple (X, (On)nelN-; (Fn)nen+) formed by o random variable X ; Q2 —1R, a
sequence of positive numbers (Gn)nen- and a sequence of random variables (6n: 22— R)nen-,
a standard deviation based inferential sequence for z € R if and only if

(i) EX =z, oy = Std (X),

(i) VR e N* gn41 = Std(6a),

(iii) Vn € N* E&n = 0,

(vi) Yn e N* 4.(0) C R,

We will use the notation (X, 0., &») to represent an inferential sequence and, occasionally, we
will simply say that the sequences o, and &, form an inferential sequence for . Observe that
this definition implies the fact that all random variables, that is, X and d,, n > 1, have finite
expectations and variances, which is a necessary condition to apply Chebychev’s inequality to each
of them.

Theorem 2.1. (Standard deviation inferential sequence of random variables’ theorem.)
Let (X, 0n, 6n) be an inferential sequence for z € R. If

Lon(@, Atsen -y Am) = A1 (61(w) + A2+ + Ame1(Fm—1(w) + Amam) =+ )
A eRy foralll <i<m, me N, then

m

P{z € [X(®) = Lm(@ Ao+, Am) X(@) + L0, My Am)} 21— 3 le

ja=]
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Proof (By induction.} If m =1, then
1
P{:L' € [X(w) - )\]UI,X(W) + A10'1]} =1- P{l’ ¢ [X(w) - A)Ul,X(U) + A]O‘j]} >1- Xlg,

by Chebychev’s inequality.
For easy of notation, let Ax(w) = X(w)—Li{w, Ay, ..., Ag) and Be(w) = X(w)+Le(w, A1, . .., Ak).
Under the assumption that the statement holds for m — 1, we have
P{z € [Am(w),Bn(w)]} 2 P{z€[An(w),Bm{w)] A om-1 < 6m-t(@)+ Inom}
> P{z€[Am-1{), Bm-1(w)] A Om-1 € Fm-1(w) + AnOm}
since
[Am-1(w}, Bm-1(w)] C [Am{w), Bm(w)]
when om-1 £ Fm-1{w) + AniOm-
Thus, P{z € [Am(w), Bm(w)]}
2 Pz e [Am-1(w), Bm-1{w)]} + P{om-1 < Fm-1(w) + Amom} -1
m-—1 m
1 1 1
= (I—Eﬁ)+(l—x{)-l = 1-27’7,

=1 8 =1t

since
P{am-l < a'm—l(w) + /\mam} >1- P{am-—l ¢ [&m—l(w) = AmOm, ¢a"m—l(‘") + Am"m]}
>1- -;2;

If we substitute &,,(w) for ¢, some uncertainty will be introduced in our analysis. This kind
of uncertainty may be eliminated if we know the value of o; for some J or some superior bound
for o;.

We observe that by applying this sure inference analysis we can obtain these confidence
intervals of “at least probability p”, for = whatever the distribution of X is. Furthermore, this
analysis is more conservative then that made if we assume some distribution to construct confidence
intervals.

Definition 8. We will call the interval {X(w) — Ly (w, M1, - -, Am), ng) +Ln(w, A1,...1Am)) an
m-th order standard deviation based at least probabilityp=1-3 1~ i confidence interval for T.

Briefly we will call this intervals sure inference intervals.

As random varisbles are estimators of real numbers, stochastic processes can be understood as
estimators of functions.

If X : QxR — R is a stochastic process which is an unbiased estimator for the function
z : R — R, that is, such that EX and z are equal, and we have sequences of non-negative
estimators (stochastic process in this case) &, : 2 x R — IR, and standard deviations (standard
deviation functions), o, : R — IR for n > 1, such that

oy =StdX: R—R, Ons1 =5td(5,) and Ed, = o,
t— Std(X(£) : 2 = R)
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we can develop a sure inference analysis to obtain “at least probability p” confidence bands in a
completely similar way to that presented above for random variables.
From now on, [ is simply an arbitrary set.

Definition 4. A 3-tuple (X, (0n)nen: (Fn)new-) formed by a stochastic process X : @ x I = R,
a sequence of functions (on 1 I — R)aeme and a sequente of stochastic processes (Gn: %I —
R),en- is a standard deviation based inferential sequence for z: I = R if end only if
(i) EX =z, oy = Std(X),
(if) Yn € N* op41 = Std (Gn),
(iii) ¥n € N* Eb, = 0n,
(vi) Yre N* 5,.(@xI)CR,.

Analogously we define m-th order standart deviation based inferential sets forz:I—R.

Theorem 2.2. (Standard deviation inferential sequence of stochastic processes’ the-
orem). Let (X,0n,5,) be an inferential sequence for & : I — R. Defining for all m € N,
Ln:QxIx(R})™— Ry by

Lon(w,t, Ay ey dm) = A1 {B1{w, ) + Aa(. . + Am-1{8m—1(w,t) + Amom (). ..)),
we have, for alit € I, and all m € IN”,

P{a(t) € [X(w)6) = Ln(@1t, s Ay X (@) + Lm0, A)]} 2 1= 30 7\1,
=1 7
Proof It is sufficient to observe that, for each fixed and arbitrary t, we have as a direct consequence
of definitions (2) and (4) that (X (t), (On(t))news, (Fn(t))nen-) is an inferential sequence for x(t)
and apply Theorem 2.1, .

Definition 5. We will call the set

1) {[X(w,t) = Ln(w, 8, A1, - - -y Am)s X(w, 1) + Lnfer, 2 Mgy Om)lit € 1}

an m-th order standard deviation based at least probability p confidence band.
Briefly we will call this bands sure inference bands.

For example, if I = IR, the sure inference band (1) corresponds to the ¢, 2 plane region delimited
by the curves 1 () = X (w,t)—Lm(w,t, A1, -y Am) 8nd To(t) = X(w,t)+ Ln{w, &, Ayy .- -y Am) that
contains the curve X (w,t). f I = R2, ¢ = (t1,¢2), then the sure inference band (1) corresponds to
the IR® region delimited, in a natural way, by the surfaces (not necessarily continuous) z1(t1,t2) =
X(w,tl,tq) - L,,.(w, by, t2, A1sen ey Am) and .’l:z(tl,tg) = X(w, ll,tz) + L,,.(w,tl,tg, Alyees ,Am) that
contains the graph of the mapping X : {w} x IR2 — R, that is, the surface X (w,ty,t2). If I =IR™
we have analogous interpretations.

9.1.2. Random Vectors and Stochastic Process Over R?. We will now study the case of ran-
dom vectorsLet X = (X1,...,Xq) : 2 = R%, X; : @ - R, 1 24 S g, and Std(X) =
(Std(X1),.--,5td (X,)). We define m-th order inferential sets in an analogous way.
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Definition 6. A 3-tuple (X, (0n)neN-,(Fn)nen-) formed by a random vector X : @ — R, a
sequence of vectors (On)neN = (FLmy+ .+ Ogn)neN-, where (Tin)nen- is a sequence of positive
numbers for all i, 1 < i < q, and a sequence of random vectors (&,, : {? = R7),en-, is a standard
deviation based inferential sequence for x € R? if aud only if

(i) EX =1z, oy = Std (X),

(ii) Vn e N* 0,41 = Std(6,),

(iii) Vn € N* Eé, =ou,

(vi) Vne N" 4,(2) c RY.

Theorem 2.3. (Standard deviation inferential sequence of random vectors’ theorem.)
Let (X, 0., 5,) be an inferential sequence for z € RY. If

Ljm(w, 251, Ajm) = A0 (G52 (@) + Xj2(- - + Ajm—1(8j.m-1(w) + Ajm&jm) =),
’\"'E]R-‘Ffm‘anlsJS‘bISiSm,mEN‘, then
; g m 1
P{z e H[Xj(w) —Ljm(@, Ajts o s Ajim s Xi(w) + Lym(w, Aja, .o Ajm)]} 21— Z E T
= j=11=1 "3
Proof Observe that for events Aj, such that P(4;) = 1 — a; we have P( ﬁ A4)21- i =1
=1 5=1

can be easily checked by induction.
Let Aj= {w - QI.‘L'_,' € [X,'(w) - L_,-,,,.(w, ’\j.lf s, A,;,,,),Xj(w) + L -',,.(w,/\-,l, e b ,Aj'm)]}. From
Theorem 2.1, foreach j,1 < j <gq,

= 1
P{A;}21-3 o

i=1 T

Thus

q
P{z € []1X;(w) = Lym(@, Mgty 1 Agm)s X5 (@) + Lty A1« s Agm)]} =

J=1

P 4)21-3 5
J=1 j=1 i=1 "I

Definition 7. f]l[x,-(w) g0y Ml oy Agine o ) ¥ g i, D50 4 A} i bl i
’=

th order standard deviation based at least probability p = 1 — Xq: (ﬁ I}—) confidence R7-interval
FR

i=1 i=1
forz € R,

We note that the IR? sure inference interval above does not dependent on the joint distribution
of X = (Xy,...,X,).
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Definition 8. A 3-tuple (X, (0n)nem=: (Gn)newe) formed by a vector valued stochastic process
X : QU x 1 — RY, a sequence of vector valued functions (on, : I — R),en- and o sequence
of vector valued stochastic processes (6, : @ X I = R¥)pen- is a standard deviation based
inferential sequence for z: ] — R? if and only if

(iy EX =2, 0y = 5td (X),

(ii) Vr € N* ongy = Std (Gn),

(i) Yn e N* Egp =0,

(vi) Vrne N* &,{(QxI) cRY.

Theorem 2.4. (Inferential sequence of vector valued stochastic processes’ theorem).
Let (X,0,,6,) be an inferential sequence for = : I — IRY. Defining for all j, 1 < j < g, and for
almeN*, L : 2 xIx(RY)™ - Ry by

Ljm{wits At Azan) = X (5,000 8) + Ag2( oo + Am-1(85.m-1(w8) + Xym5m 1)) ),

we have, for allt € I. and all m € IN”,

P{z(t) € H[Xj(w,t) —Lim(@rt, X1y oy Ajym)s Xi (1) + L@, g1, -5 Agm)l}

i=l
p m 1
21-3"% TR
j=1i=1"2¢

Proof It is sufficient to observe that, for each fixed and arbitrary ¢, we have as a direct consequence
of definitions (6) and (8) that (X(t), (6n(t))neme, (Fn(t))nen-) is an inferential sequence for z(t)
and apply Theorem 2.3. .

Definition 9. We will call the set

q
{H[X.‘i(“)v t) - Lj'm(wl L A_'i.lv seey Aj,ﬂl)v Xj(wvt) + Lj,m(wy i, A;i,ly ceey Aj,m)”t € I}

=1

an m-th order standard deviation based at least probability p confidence band for the
vector valued function z.

Briefly we will call this bands sure inference bands.

For example, if we take ] = Rand ¢ =2 then the sure inference band is a tubular neighborhood
contained in R? of the curve X (w,t) = (t, X1{w, t), X2(w, 1)) which section at ¢ is the rectangle
[Xl (wv t) - Ll,m(wy ty A1,1) seey Al.m)a -Xl (wy t) + Ll,m(“-’: tv Al,l, ey Al,m)] X

[Xa(w, t) — Lo (@, ty Aoty - - daym)s Xa(w, 8) + Lo (@it Azt - Azym)]

If I = R® and ¢ = 2 we can not visualize the band. Whenever we have I = R", the bands will
be tubular neighborhoods of the surface X (w,t) = (£, X (w,t)) in R™*? which section at t € R" is
8 g-dimensional parallelepiped.
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2.2. Variance Based Sure Inference. We will assume that X : @ — R is an unbiased estimator
for 2 and that Var(X) = o}. We will also assume that we have a sequence of non-negative
estimators and finite vatiances, V,, and V,, for all n > 1 such that V; = Var (X). Vg1 = Var V.
and EV, = V,. By Chebychev’s inequality, for A; > 0, we have P{X(w) € [r—Mor.x+ o]} =
1-1/A7 and, equivalently, P{z ¢ X (w) ~ Mo1, X (w) + Mo} € 1/, Let 00 = V.

Since EV,, = V,, by Chebychev’ smequahty, P{V (w) e [V At vVVar, Vat A vV} >
1-1/A2,, and, equivalently, P{Vp € [Va(w) = Ans1v/ Vit 1s Va (@) + Anp 1/ Vra |} 2 1 - 1/A%,,.

So, we have
Plo. € [y max{0, V,,(w) = Ms1vVas1}s \/ﬁ: )+ Al \/V,.“]} 21-1/22

from which P{oy < \/Va(w) + Anp1y/Var1} 21— 1/22,; for all n € N*.

Proceeding as before we start writing P{z € [X(w)—Mo1, X (w)+M01) Ag) £ “m} 3
1= 1/ = 1/33 that is Pz € [X(w) = hy/Viw) + 2avP5 X(@) + Ay Valw) + AavT3] >
1—1/M — 1/A] and continue to obtain the conclusion that with at least probability 1 — E"f 1/23,

i=

z belongs to the interval [X(w) — L2 (w, Ay, -..,Am), X(w) + LY, (w, A1, - - <, Am)] where

L@, My Den) = Ax\/ﬂ(u)ne\/...um-l\/ff (@) + A/ Vi,

In practice we will replace L¥, by f"m,

L:’,,(w,,\l,. ,/\".) = AIJ Vl(w) + /\2\/..- + A..._q/f/ _1((4!) + /\mv Vm(w).

2.2.1. Real Random Variables and Stochastic Process.

Definition 10. A 3-tuple (X, (Va)1<ngm, (Va)igngm) formed by a random verisble X : Q@ — R,
m positive numbers (V,)1<n<m and m random variables (V 2 = R)ign<m, i3 an variance
based m-th order inferential set for z € R if and only if
(i) EX ==z, Vj = Var(X),
(i) f1<n<m-—1 then Voyq = Var (V;,),
(iii) f1<n<m—1then EV, =V,, and EVy > V.,
(vi) i1 <n<m then V,(Q) C R,.

Definition 11. A 3-tuple (X, (Va)aeme: (Va)nene) formed by a random variable X : 0 — R, e
sequence of positive numbers (Vo )nen- and o sequence of random variables (V, 1 Q — R)nen-, is
o varience based inferential sequence for z € R if and only if
(i) EX =z, V| = Var(X),
(i) Vn € N° Viyy = Var(Vp),
(iii) vn e N* EV, = V,,
(vi) Vn e N* V() C R,.
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We will use the notation (X, V,,, V;,) to represent an inferential sequence and, occasionally, we
will simply say that the sequences V,, and V,, form an inferential sequence for z. Observe that
this definition implies the fact that all random variables, that is, X and V,._, n > 1, have finite
expectations and variances, which is a necessary condition to apply Chebychev’s inequality to each
of them.

Theorem 2.5. (Variance based inferential sequence of random variables’ theorem.) Let
(X, Va, Vi) be an inferential sequence for z € R. If

LM, Am) = 21| 050) 4 221+ Aoy Vo1 (0) + A Vi,

MeER] foralll<i<m,meIN’, then

Pz € [X(@) = L5(@. My oo ), X (@) + L8 (@, M, A} 2 1= 3 %

i=l

Proof Substitute y/ Vin—1{w) + Am v/ Vi 01 811 (w) + Am0Om and L} for L in the demonstration
of Theorem 2.1. "

Definition 12. We will call the interval [X (w) — LY (w, M.+ oy Am)y X (@) + L (w, A1y ooy Am)]
an m-th order variance based at least probability p =1~ ¥ 1o, Xl-; confidence interval for z.

If X : Q x R — IR is a stochastic process which is an unbiased estimator for the function
z : R — IR, that is, such that EX and z are equal, and we have sequences of non-negative
estimators (stochastic process in this case) V, : 2 x R — IR, and variances (variance functions),
V, :IR — IR for n > 1, such that

Vi=VarX: RoR, Viy1 = Var(V,) and EV, =V,
t— Var (X(t): 2 - R)

we can develop a sure inference analysis to obtain “at least probability p” confidence bands in a
completely similar way to that presented above for random variables.

Definition 13. A 3-tuple (X, (Vo )nene, (Vi )neme) formed by a stochastic process X : A xI — R,
a sequence of functions (V,, : I — R)nen- and a sequence of stochastic processes Vo:xI—>
R)nen- is o variance based inferential sequence for z : I = R if and only if

(l) EX=z, V= VGT(X),

(i) Vn € N* V4 = Var(¥,),

(iii) Vo e N* EV, =V,

(vi) Yne N* V(2 xI)CRy.
Theorem 2.8. (Variance based inferential sequence of stochastic processes’ theorem).
Let (X, V.., V) be an inferential sequence for x : I — IR. Defining for allm € N*, LY QxIx
®Y™ - Ry by

L:‘n(wi ts Alr sae 7Am) = Al \-'I: Vl (w| f) + A? ‘]III'J' -t Aﬂl—l \-"I‘A/ —l(wyt) + A‘"I V Vm(t)
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we have, for allt € I, and all m € IN*,

-|"‘

P{z(t) € [X(w,t) — Ly {w,t, A1 Am) X (w, 8) + LY (wity Mg, A i

Proof It is sufficient to observe that, for each fixed and arbitrary ¢, we have as a direct consequence
of definitions (11) end {13) that (X(t), (Va(t)}uen, (Va(t))nen+) is a inferential sequence for z(t)
and apply Theorem 2.5. .

Definition 14. We will call the set
(2 {[X(w,t) = Lo (w,t, 21, ., A}, X{w, ) + L7 (w, 8, A1, . .., Am )]t € T}
an m-th order variance based at least probability p confidence band.

2.3. Random Vectors and Stochastic Process Over IR?. We will now study the case of
random vectors. Let X = (X;,..., X} Q@ » R, X;: Q2 - R, 1 < i< g, and Var{X) =
(Var (X;),..., Var (X,))

Definition 15. A $-tuple (X, (Vn)nEN'a(‘Z\)n€N') Jormed by a random vector X : Q@ — IR7, o
sequence of vectors (Vn)nEN' =) (‘fl,na . -1Vq,ﬂ)neN': where (V:',n)nEN' is a sequence Of positive
numbers for alli, 1 < i < g, and a sequence of random vectors (V;, : 1 — RY),.en-, is a variance
based inferential sequence for x € R? if and only if

(i) EX =z, V; = Var(X),

(H) Yn e N* V,pq = Var(V},),

(iii) Yne N* EV, =V,

(vi) Vvn e N* V() c RY.

Theorem 2.7. (Variance based inferential sequence of random vectors’ theorem.) Let
(X, Va, Vo) be an inferential sequence for z ¢ R?. If

f p=
LG m(@; X154 Ajm) = Aj2 JV'.x @) + X321/ -+ Xim-1y Vim-1(@) + Xiym v Vi
Ajs €RY forall1<j<q,1<i<m, meN, then
q
Pz € [TIX5(w) = L} m(@ Mt -+ s i)y X5(@) + L, Ajre oy Mg} 2 1 = ZE ST
Sl Fwl il Jv‘

Proof Substitute L? , for L; . in Theorem’s 2.3 demonstration. .

q
Definition 16. H X (@)= L7 (w3 Ajias - Ajm )y X (@) + LY o (@, Agy1, - -y Ajym)] 8 called an m-

q m
th order variance based at least probability p = 1— 3 (3 1) confidence R%-interval for x € RY.

=1 1=1 "4
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Definition 17. A 3-tuple (X, (Vi)nen-, (Vn)nEIN‘) formed by a vector valued stochastic process
X : Qx I — RY, asequence of vector valued functions (V,, « I — R7),ew+ and a sequence of vector
valued stochestic processes (V,. : Q% I - R%),en is a variance based inferential sequence
for xr: I —» RY if and only +f

(i) EX =z, Vi = Var(X),

(i) Yo € N* Vi = Var(¥},),

(iii) vn e N* EV, =V,

(vi) Yne N* V,(2xI)CRY.
Theorem 2.8. (Variance bas?d inferential sequence of vector valued stochastic pro-
cesses’ theorem). Let (X,V,,V,) be an inferential sequence for z : I — IR?. Defining for all j,
1<j<qondforallmeN*, LY - QxIx(R}™ — Ry by

; ——
. | I
L;-’,,,(w, t, /\j,11 Ly /\j'm) = A_-,',l \ %,I(w,t) + /\j_g \f O /\_;.m—l \_,'l Vj.m—l (w,t) + /\j)m\/Vj,m(t)

we have, for allt € I, end ellm e N*,

q
P{I(t) € H[Xj(wv t) - L_“;,m(wit1 Aj.h LR ’\j.m)! Xj(wi t) + L;{,m(wy t, Aj,la ceey Aj,m)]}

=

Proof Immediate. »

Definition 18. We will call the set
q
([T 5,8) = L sty At -5 Riam)s X0 ) + L (w1t At - Ase)lit € 1}

j=l
an m-th order variance based at least probability p confidence band for the vector valued
function x.

We observe that letting A; or );; depend on ¢ € [ and substituting A(t) for A; or Aji(t) for
A, on Theorems 2.2, 2.4, 2.6 and 2.8 we obtain new true statements. If we perform the same
substitutions on Definitions 5, 9, 14 and 18, we obtain at least probability p() confidence bands,
that is, “non-homogeneous” confidence bands.

3. OPTIMAL INTERVALS AND BANDS FOR NUMBERS AND REAL FUNCTIONS

Now we are interested in finding the optimal m-th order sure confidence interval or band,
given an at least probability level p. Let us start with the simplest case, i.e., that of inter-
vals for £ € R. All m-th order standard deviation based intervals are written as [X(w) —
Lon(w, A1,- -y Am ), X(w) + L,,.(w,/\l,..._,,\,.,.)] where Lin(w, M, - <1 Am) = M(61{w) + Ao(--- +

dns(Gmt() + Am0m) ) = S ﬁ; A):() + (1 A)om. An estimate for this interval
=1 j= i=l

=
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is written as [X(w) = Lm(w, M1y ee ey Am), X (@) + LBen(@, My ooy Am)} Where Lo (w, Ayeeny Am) =

Z( H A;)8:(w). The later interval is the one that we can access in practice.
i=1 j=1
Aunalogously, we write [X (w) — LY {w, A1, ..y Am), X (W) + L& (w, A1, ..., Am)]. An estimate for

this interval is written as [X(w) — L2 (w, My ..oy Am)s X (@) + L% (w, Are - Am)]-

Deﬁnitign 19. An m-th order at least probability p interval forx € I}i, [X(w)—f,,n(w, ALyeoy Am)y
X(w) + Lon(@, A1y ey Am)] 0 [X(@) = L2 (w, Ay ee ey Am)y X (@) + E2,(w, My - ooy Am)), is optimal
if it has minimum length.

Theorem 8.1. Let 5(m) be the greatest integer less than or equal to m such that &pim)(w) > 0
and for all j p(m) < j < m,&;(w)=0

The optimal m-th order standard deviation based at least probabiity p, p # 1, confidence interval
for £ € R is written as [X (w)—Lon(w, AL, ..., A%), X (W) 4 Lon (w, A, ... %)) where (Af,...,A%) €
(IRY)™ satisfies:

Vi, B(m) < j £ m, A} is an arbitrary positive real number and (A],..., Ay,,)) i within the
solutions of the simultaneous system of B(m) + 1 equations

Blm) p(m)
E oagr =1 -2 and WD (T M)6ete)) =
sk j=1

Jor allk, 1 < k < P(m), and v a real constant.

Proof We search for the minimum of f;,,.(u,)q,...,/\,,,) as a function of A = (A1,...,Am) €
(IR}, )™ subjected to the constraint gm () = E 1/ <1-p. Sinceforallw € N andi,1<i<m,
=1

6i(w) > 0 the function L, (w,-) : ( R,)™ C R”' — IR is non-decreasing in each of its variables A;
and gm(A) is decreasing in each of its variables, the constraint g,(A) < 1 — p may be replaced by
gm(A)=1—pin our search for the minimum.

Thus we have Z f,—-l 2—( Z ).
i=p(m)+1

Now, f,,,(,,,)(w,- : (R3)P™) c RP™ - R is an increasing function of all of its variables
Aty ,A,—,(m).

Note that Lm(w, M, .-, Am) = Lpmy(@, M, - -, Agim)), that is, this value does not dependent
on dpmy+1s- -1 Am: Leta= 3 rand A= (Ap,..., Agm)) € (R )P

i=p(m)+1 *

Thus we will assume the constraint gg(m)(M,. .-, Xpm)) =1—p — a to hold.

For all p and a, 0 < (p+ a) < 1 the set Gpia = {Algpim)(}) =1 —p - a} C (R Fe™) ¢ RP(™
is a (m) — 1 dimensional C* manifold with empty border and, for all w € £, f,ﬁ(,,.)(w, )isa C™
function. Thus, the critical points of fz;(,,.) {w, -) under gg(m) constraint satisfy Lagrange’s multipli-
ers equation dﬂ,;(,,,) (w, A*(a)) = m(a)dgp(m)(A*(a)), A*(a) € (R )P and v (a) a real constant.
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Due to 8G,4, = 0. all local minimum points are critical points. Since, "5131111 [A,m,,,)(w./i) =00
AeCp.

there is a global minimum for f,—p(,,,) under gi(m,(X) = 1 — p — a constraint and it is within the
critical points.

Now. Va € [0.1 ~ p) we have df,—(m,(w A*(a)) = m{a)dgzm)(A*(a}) and this relation defines
(A*(a),11(a)) as an implicit function of a which is also C* in a.

Thus ({13%’(/\‘((1). yi{a)) = (A*(0),11(0)) = (A*, 1) is the solution for dL—,,<,,,)(.u.,\’) = 114g5(m){A*)
under the constraint gz(m)(A*) =1 ~-p.

Suppose 0 < a < b. The minimum of ﬂg(m)(w,p) under the constraint gz, (¢} =1-p-a>0
is less then its minimum under the alternative constraint gs(my(u) = 1 - p - b > 0 since, if

= (U1y. .., 5(m)) Satisfies gpimy(u) = 1 —p— b then p' = () — a1, ..., pp(m) — Qp(m)) satisfies
gpm)(#) = 1 -~ p — a for some o = (ay,...,05m) € (R4)P™ from which Loy (0, 1) <
f“p(m) (w,p,).

Thus we will assume the constraint

Pplmn} 1 m 1
Loyp=l-r- Jm | 3 gf=1-»
“ ; i

i=1 7% Pm)+1Sigm \i=H(m)+1 *

to hold.

Now, dL,—,(,,,, w,X) = (-’“—’Sﬁ@ gD, Gy () = (igi’;f?,) and 258 (1, 3) =
% ( E (H A;):(w)) = Z (H A;)i(w).

i=k

Thus, (A1)%( Z H A8i{w)) = =21 = yforallk, 1 <k < p(m),and A* = AL My -0 Am)
with A!, B(m) < i < m arbxtrary real positive numbers. .

Theorem 3.2. Let 5(m) be the greatest integer less than or equal to m such that V—,;(,,,)(w) >0
and for all j, B(m) < j < m, V,(u) =

The optimal m-th order variance based at least probability p, p # 1, confidence interval forze R
is written as [X(w) = L2, (w, A}, ..., A%), X (w) + L2 (w, M-, A)] where (Af,..., %) € (RY)™

satisfies: Vj, B(m) < j < m, A} is an arbitrary positive real number and (A},... p(m)) is within

p(m)
the solutions of the simultaneous system of p(m) + 1 equations 3, 0_1-3’ =1-~pand
k=1

ORI 2B --1A)

k=1 =7
2k H Am,i(ws’\la“-v)‘m)
=1
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ls RN
whet® Am 1w, M, - Am) = Vi) + Miaf- Amy/Vim(w) for 1 <1< m, forall k, 1<k <
p(m), and v a real constant.

Proof It suffices to observe that

k-1
oL, A M1, (eI=]x X)Bumx
—_— = m,k = —
di 28,1 28k 2-1T] A

t=1

and

&
2 .
oLy, -m (%) (.'];11 M) Amk n
o X 2k klrll Ay

=1

Note that the void product is equal to one.

For 2™ order sure inference analysis we have the following cloged form for optimal intervals.
Theorem 3.3. The optimal 2 order standard deviation based at least probability p confidence
interval for z € R is [X(w) - L3(w), X(w) + L3(w)] where L3(w) = M (61(w) + M62(w)), Af =

5
1=-p)(A3)%~-17

= #mr—p) v \/(2(;—:»))2' (3(12—1»))3 X dz(lr—p) B /(2(1'—:»))2 L (3(1%))3

and r = 61 (w)/éy(w) for 62(w) # 0. If 63(w) =0 then L;(w) = (1//T=p) 61{w).

2
Proof By Theorem 3.1 for p(m) = 2 we have 35 + 3 = 1 —p, M} (]I A;)8:(w) = v and

fm] j=1
2 i 2
A ‘Z;(jl:[l A;)8i(w) = v which reduces to A} = h—_}s&;_—l and A (51(w) + Aad2(w)) = A3(Aa)d2(w)
thus 61 (w) + Aedz{w) = Ae((1 — p)A3 — 1)a2(w) from which

5’1(&)) 3
= 4+ 2Xg = (1 — p)A
Ug(w) 4 ( P) 2
L L LT
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We remind that the roots of the cubic equation 3 +pr+g = O arez = {/ —q/2+ (a/2)2 + (p/3)3+

\’f -9/2— (a/2)* + (p/3)—3. Thus

e Vj(m—ip))g () iq[(lr—p) ) \"K(z(lr—p))z ()

1
1f 63{w) = O then we have gl aﬁg =1-—p from which \} = 711_—”. .

Theorem 3.4. The optimal 2! order variance based at least probability p confidence inter-
a o ” [ s -
val for z € R is [X(w) — LY (w), X(w) + L3*(w)] where L§* = /\;\/Vl(w)+z\;\/V2(w), A=

= J e ((11,,))2- ((1ip))3+ J ) ‘\/I(u:p))z‘ ((Qp))?

andr = Vl(w)/\/%(w) for Va(w) # 0. If Va(w) = 0 then L3*(w) = (1/vT=p) /T (w).
Proof Immediate for B, = 1 and for B,y = 2 we have X‘; + :\i, =1-pand

A W) + 22y Oa(w) M(A1r2)y/ Vaw)
2)(1 a . -
o 2[¥4(0) + 2ay/ 7o)
that reduces to M = r=gy—y and 223(Vi(w) + day/Va(w)) = 234/V3(w). Thus

23(V1(w) + A2y ¥a(w)) = (1 - PN — DAY/ Va(w)
2r + Aa) = (1 -p)X3~1)

and the result follows. s

Observe that we can define a function A” : [0,1] x @ — (IR})™ where A(p,w) is the vector, in
some situations one of the possible vectors, A*(p,w) € (R})™ that makes the interval [X(w) -
f,,,.(w, A(p,w)), X (w)+f,m (w, A*(p,w))} have minimum length at probability level p. Analogously
we define A"*. )
Now, we turn our attention to sure inference bands. Define now L@, t, A1y e dm) = 2(T1 % ¥oi(w, t)

=1 j=1

—

- | .
and Lv'n(wrta Alv- . -qu) = )‘l VI VI(W\ ‘) + ’\2 'V'j' -t /\m Vm(“’it)'
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Definition 20. An aptzmal m-th order at least probability p band for x : I — R is a band
{{(X(w,t)— L@yt Aty - o2 Am)y X {w, O+ Lonlw, t, A1, At € T} or {[X (w, t)— =LY (w,t, A1y .4y Am)
X(w,t)+ L2 (w8, ). ,,,)ut € I} such that for allt € I the corresponding intervals are optimal

at least probability p intervals Jor z(t).

Theorem 3.5. Let for each t € I, B(t.mn) he the greatest integer less than or equal to m such that
F5e.my{(w, 1) > 0 and for all j, B(t,m) < § < mG;(w,t) =0.

The optimel m-th order standard deviation based at least probability p (p # 1) confidence band
forz: I =R is written as {[X(w,t) = Lm(w, 8, A0, A%), X (w,8) + Lin(w, 2, 8,... At € T)
where (A1(2),...,25(t)) € (BR})™ satisﬁes for allt Vj, B(t,m) < j £ m, A(t) is on arbitrary

positive real number and (M (t);- .., A5y my(2)) is within the solutions of the szmultaneoua systems
of B(t,m) + 1 equations:
Flt,m) B(m) i
—_—=] 2 i &; =
& ()‘k(t))g 1 p and (Ak(t)) (§ (]].;Il ’\l (t))Ul(wrt)) 'Y(t)

for allk, 1 < k < B(t,m), and (t) o real constant for each t.
Proof Direct application of Theorem 3.1 for each t € 1. .

Theorem 3.8. Let for each t € I, B(t,m) be the greatest integer less than or equal to m such that
Va(tmy(w, t) > 0 and for all j, 5(t,m) < § < m,V;(w,t) =0.

The optimal m-th order variance based at least probability p (p # 1) confidence band for
z: I - R is written as {{X(w,t) — L% (w, 6,2, ...,A%), X (w,2) + LU (w, 8, AL, ..., A0t € I}
where (A1(2),...,A5(t)) € (R} )’" satisﬁea for all t, V5, B(t,m) < j < m, A}(t) is an arbitrary
positive real number and (Af(2), .., Ay, ) (t)) is within the solutions of the mmzdtaneom systems
of B(t,m)} + 1 equations:

Ae)2(IT M0V B (0 -, Aem(8))
=1-—pand ':i =1(t)
2k 1’11 A i{wyt, Ma{t), - oo, Am(2))

Bem)
o w()?

where A i{w,t, M1 (8),- - ., Am(t)) = \/ Vi(w, t) + A (t) \/ et A (O Vin(w, 2) for 1 <1< m, for
all k, 1 < k <B(t,m), and ¥(t) a real constant for each t.
Proof Direct application of Theorem 3.2 for each t € I. .

Theorem 3.7. The optimal Z"“ order standard deviation based ot lenst probability p confidence
band forz : I — R is {[X(w, t)—L3(w, £), X (w, )+ Lj(w, 1))t € I} where L§(w,6) = A{(£)(61(w, )+
3085,0) M) = /sty

—1°

A J T \/(2(;@”)2 ) (su{p))s 3 J o \/(2(;(?:»))2 T (3(12—1:))3
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and r(t) = &1 (w,)/82(w,t) for Ga(w,t) # 0. If &2(w,t) = O then Ly(w,t) = {1/VT=p)o1(w, ).

Proof Consequence of Theorems 3.3 and 3.5. .

Theorem 3.8. The optimal 2 order variance based at least probability p confidence band for z :
[ =+ R s {[X (w, )= L3 (0, £), X (w0, O+ L3(w, )1t € IY] where 1§ (w.t) = 200y Vi, 8) + 2300y Valon ),

0
M) = iz p%zA‘_((; ):)557-1 '
|

N I 5 () [ r(t) 2_ 1 3o ) B [ r{t) 2_ 1 s
Xl = J(l—p)’f\“(l-p)) (&) \-n \/(('1—p)) (a=m)
andr(t) = Vi(w,1)/1/Va(w, ) for Va(w,8) # 0. I Va(w,t) = O then L3*(w,t) = (1/\/1-—p),/vl(w,t).

Proof Consequence of Theorems 3.4 and 3.6.

4. OPTIMAL INTERVALS AND BANDS FOR VECTORS AND VECTOR VALUED FUNCTIONS

In this section we are interested in finding optimal R%intervals for vector values and optimal
bands for R?%-valued functions. In the previous case, that of R!, there was no other sensible
way of defining an optimal interval but claiming that it must have minimum length and extend
this property, in a point-wise manner to bands. Note that we are only dealing with symmetrical
intervals. Now for R?, ¢ > 2 there is freedom in choosing optimal criteria. For example we could
say that an R%-interval is optimal if its volume (Lebesgue measure) is minimal, or if the sum of its
edges is minimum, or choose weights for each coordinate interval to form an “weighted volume”
to be minimized. This situation may happen in practice since it is possible that some of the
coordinates are more important than others and demand a better resolution on their values.

» LR
Let Lj_,,.(w, Aj‘l, ceny X_,"m) = E ( H A "1)6‘1".'((41) and
i=l =1

[ f
Lim=2 \/‘.’5.1 (w) + Aj2 \i'l' c o Aim Gy m(w)-
DeSfinition 21. Let M : R? — R, be a function. An m-th order at least probability p confi-
g "
dence interval for = € R, [11X5(@) = Lim(@ Ag 100+ -+ Aim) X5(@) + Liml@s Mooy im)] (o
=1

Jm

T 15 (0) = L2 @ Ao s Asom)s X5 (@) + LEm (@, Xj1,- - Asm)]) i said t0 be M-optimal if and
=1
only if M(L1m(@, A1y - sMumds ooy Lam{@s Ag1s-- 01 2g,m)) for ML} (w0 Arse s Asm)scees

L::,m(wl Aq.l: ey Aq,m))) is minimum.

Clearly we sre interested in functions M that are non-decreasing in all of its variables.

It is important to note that the concept of M-optimality is quite general. For example, let
L= (... b)) e R, L=(Ly...,Lq) € (R4)? and A, = (M- dim) ERYY™ 1ST 20,
A= (Ao Ag) If {m : Bre — Ryl € R} is a class of Borel measures then minimizing F :
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R?x (R,)? — R, given by F(!, L) = m([1I_, [li— Ly, i+ Lyl), for I = X(w) and L; = L m(w, A;)
for L, = ﬁ, m(@:A5)), 1 < j < g, with respect to A is the same as minimizing M : (R) — Ry
given b) M(,..., ) = F(X(w), L) with respect to A. That is, for optimal criteria as general as
choosing Borel measures that may depend on the point X{w) for measuring the IR? symmetrical
intervals [17_,{X;{w) ~ L;(w, A;), X;{w) + L;(w, A;)}, we can choose an appropriate function M to
accomplish the same minimization work.

Let (X,0,,64), and (X, V,,,V,,) be inferential sequences for z’.

Theorem 4.1. Let M : (R,)? — Ry be a C! function which is non-decreasing in all of its
variables. Define, for all j, P(m) 08 the greatest integer less than or equal to m such that
&j_,-,um)(w) >0 and for all k, Piimy < k< m,&j,k(w) =0.
The M-optimal m-th order standard deviation based at least probability p, p # 1, confidence in-
q
terval for 2 € R? is written as 1'1 [X5w) = Limlw, X3, s A ) X5 (@) + Lm0, X354 A8)]

3=
where (A 1,..., 25 ,) € (RY)™ satzsﬁes, forallj,1<j<q:
For allk such thatB; .y < k < m, A; ,, is an arbitrary positive real number and (Al "\J"J’u ...))

is within the solutions of the simultaneous system of ( Z P(im)) + 1 equations:
=1

9 Pym

> ooy

Je=1 I=l

and
’(,’ m) i

) ( Z (H AJ.k)o':a,t("")) (tt) &=

i=l k=1

z=(Z1,....2g) (zj = f.j,m(w,Af,l,... yAjm)) foralljandl, 1< j<gq,1 <I<Pjm andya
real constant.

Proof Follow the steps of Theorem'’s 3.1 demonstration. Let
Ligmi = (Brymi- -1 Bqm) : 0 x (R3)™ — (R},

t(q.m](w, /\1,1, are ,Al,m, ooy ’\q.h N ,/\q'm) =
(Ll,m(wy A1,11 ren 1Al,m)1 . atq,m(wy Aq.lly ey Aq,m))-
Note that M o Lig mj(w, ) is non-decreasing in all of its variables and that the continuity of
the implicit function argument is still valid since M is a C? function. Let g(}) = f: 3 TX_F
ja=l ie=1
= (An1,-. .0 Aqm) € (RL)™.
Now, Lagrange’s equation is written d(M o qu,m] (w,")) = ndg. Thus E 5:{ %’-‘x"-‘& 'ylzi',—?fg

that reduces to (A;, )35;’—%%\1;‘— = —2v; = + since L;‘ . does not depend on )\,-" for j # k.
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5(,’,".) i

t’].m(“’v Aj.1~ ----- A j.m) = Z(H ’\j,k)&j,i(u) = Z (H AJ,I;)&J‘J(W) and

i=1 k=] i=1 k=1

i

d) 'jom Py n
Drgs ; ([T 2k)855)

k=1

katl
from which
Pim i
. oM
(M) ZI ("H] /\j.k)aj,i(w))a_%flz=£[,,m,(w,,\l,l,...,).,‘,,,,...,A.,_,,....A,,A,,,) =7

Theorem 4.2. Let M : (Ry)? — Ry be a C! function which is non-decreasing in all of its
varighles. Define, for all j, Pijm) s the greatest integer less than or egqual to m such that
ViiBiy.my (@) > 0 and for all k, Bjmy < k <, Vie(w) = 0.
The M-optimal m-th order variance based at least probability p, p # 1, confidence interval for
q . .
z € RY is written as [] [X;(w) — LY (@ M50 s A5 ) X5 (W) + L3 (s A 1A} )] where
j=1

j=
A%y, M) € (RY)™ satisfies, forallj, 1 <j<gq:
For allk such thatB; ) < k < m, A] , is an arbitrary positive real number and (A5 101 A5, )

g
is within the solutions of the simultaneous system of (3 P(;m)) + 1 equations:
J=1

{
2(};[1 Ai)Aj.m.’(er',ly--'ij,m) M B
D=L My
2 _I-Il Bjmi (W@, Aj1s- -3 Ajjm)

f P ——
| [ =
where Djmi(w, M1, Aim) = A,-Wff’,-,;(w)+,\,-,;+1V'---+,\,-,,,.\/V,~,,,.(w), T = (T1,--+1%q)s
z; = fg'm(w, XgreeerAfm) for alljandl,1<j<q, 1<1<PGm andy o real constant.
Proof Analogous to Theorem'’s 4.1 proof. =

If the criterium of minimum is that of minimum volume of confidence intervals them we can use

q .
M = [] ;. From practical instances, it may occur that some of the variables are more important
i=1
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than others. In this situation we can use weighted volumes and define M = H :t i, fora; >0
j=1

real constants that indicate the weights associated to each magnitude.

Theorem 4.3. If M = H , the M -optimal m-th order standard deviation based at least prob-
ability p, p# 1, mnﬁdenw interval may be obtained from the solutions of the system:

a3 () gl(rzll 098300 T B 1D D)

p—— =1
,—lm(w,)\-,l, cany j.m)

forelljandl, 1< j<q,1 SlSﬁ(,-,m) and vy a real constant.

Proof Direct application of Theorem 4.1 for M = n z

=1
M _ 8 L o lle " g
= [ 23~ = —= =M
," = .
T 81‘]' nI=Il I Zj

Theorem 4.4. If the M = H ?, the M-optimal m-th order variance based at least p, p # 1,
confidence interval may be obtamed from the solutions of the system:
g Pu,m) 1

/\,,1)2 =1-~pand

=1 =] (

1
i) T A5 a0, At -1 i) ﬁlcﬁz,m(w, Ants- 1 )

=1 ~ =7
2’( .I_]l Aj',,‘i(w, A iy o9 /\,-_,,.))L;‘,m(w, A flyseny )\j,m)
Joralljandl 1<j<q,1 S L <P my and v o real constant.
Proof Direct application of Theorem 4.2. .

Lets turn our attention to optimal bands. Note that now we have much more freedom for our
choice of optimumn criteria, since for each point ¢ € I we can choose an M function that will define
an optimal interval associated to that particular point.
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Definition 22. Let M : IxIRY — IRy be a function. An m-th order at least probability p confidence
band for = : I — R,

q
{JIX @ 8) = Lim(wrts Asy o2 dgom) X (8] + Lym(w,t, A1+ Ay m)lIt € T}
3=1

g
{or {H[X(w, t) = Ly o{w,t, A1, - Ajan): X(w,t) + L (@, 8 A1, -+ Aim)lit € I})
=1
is M-optimal if for each and every t € I, the interval

q
TIIX (@) = Lim(w,t 305, Ay X, 2) + Lijm{@,t, A500- -+ Ajym)]

=1

q
(OT H[X(w, t) - i;{m(w, t, /\j.l Teety ’\jJn)r ‘Y(wyt) + i;vm(wstv '\j.lr ERRE ] AJ-"')])
=1

is M(t)-optimal.

Clearly we are interested in functions M : 7 x R? — Ry such that for all t € T M(t,-) is
non-decreasing in all of its variables.

Theorem 4.5. Let for alit € I, M(t,") : (R})? — Ry be a C* function which non-decreasing in
all of its variables. Let for allt € I and for all §, By ;m) be the greatest integer less than or equal
to m such that &J—j“d_")(w,t) >0 and for allk, Py jm) <k <m, Fju(w,t) =0.

The M-optimal m-th order standand deviation based at least probability p, p # 1, confidence band

q . i
forz : I — R? is written as { [] [X;(w,t)—Ljm(w, t, A5, .-, z\},m),X_,-(w,t)+L-,m(w,t,/\;,l, s Aimll It E
j=1
I} where (A} 1,0 A5 m) = (A1 (2).- .. AL () € (RY)™ satisfies, for all t and forallj,1<j<
q:
For allk such thatﬁ(, Gy < k<m, ,\;‘m(t) is an arbitrary positive real number and (z\,‘-,l(t), ey ’\;.5(,_1.,,.,“))

is within the solutions of the simultaneous system of (i B(e.jm)) + 1 equations:
3=1

[ ’_’(1-1.--)

R S
=l - T0)
and
Pgmy i oM
(s ) ( g (g A5 k()03 (w, t))ajj(t,x) =1(t),

T=(T1,e. Ty T = f;j'm(w, AirersAjm) forallj andl, 157 <q 1 <1< Pyjm) and «(t) a
real constant for each t.

Proof Apply Theorem 4.1 for each t € I. .
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Theorem 4.6. Let for allt € I, M(t,-) : (IR4+)? — R, be a C! function which is non-decreasing
in all of its variables. Let for allt € I and for all j, Py, ; ..y be the greatest integer less than or
equal to m such that V;i,ﬁ(,,j.,,.)(“’vt) >0 and for all k, By ; my < k S m, Vjg({w,t)=0.

The M-optimal m-th order varionce based at least probability p, p # 1, confidence band for = :

q . s

I — 1R? iy written as { 'HI[Xj (W, t) = LY (et 3540 A ) Xj(w, 8) + LY, (w, 8, X5, -4, 25 ,0))
=

where (A .., A7) = (A3 1(2),. -, A% (1) € (IRY)™ satisfies, for all t and for all j, 1< j < g4:

i

For all k such that By, j m) < k < m, A3 . (2) is an arbitrary positive real number and (A3, (¢),...,

q
A5 Biesom (1)) 18 within the solutions of the simultaneous system of (]Z:l PBt.5,m)) + 1 equations:

g Pl 1
(1___,’_1“))2 =1-p and

=l =1

1
(n /\A_.,-.,,,_z(w,)«- 1y --’\jm)
iy ! ™ OM
(==L o () =1(0)
XTI Agms(wnt, Aji1s ooy Ajym)  °
=l

where Aj,m,((w,t, Xj.h ceey A_.,"m) == Aj.l(t) \/v:,'vt(w, t) + A '.H-l(t) J A -'m(t)ﬂ f/;-_,,.(w,t L ==

(z1,...,2q), z; = Im@ 054, A5) forall jandl, 1 < j <¢q 151 < Pr,j,m) and
~(t) a real constant.

Proof Apply Theorem 4.2 for each £ € I. .

We observe that we could have made the at least probability p confidence level vary over I.
Taking p: I — [0,1) a function that assigns to each point ¢ in I an at least probability level p(t)
we can, substituting p(t) for p, rewrite Theorems 4.5 and 5.6 and obtain two corresponding new
theorems for the case where the at least probability level may not be constant on the set J. This
new statements are true because everything that relates to I is done in a pointwise manner.

5. AN EXAMPLE

In this section we will construct an inferential sequence for the case where the unbiased estimator
X of z can be written as an stochastic integral with respect to a special type of random measure.

Let £ be a non-negative random measure with state space X, a complete separable metric space.
Let also D be the diagonal set {(z,z)|z € X} C X? and m the first projection m, : X2 — X,
m (Iv y) AT,

Definition 23. A rendom measure £ is seid to satisfy assumption A if and only if E(€x£)(AND) =
E¢r1(AN D) for all A € Bya Borel set of X2.

Definition 24. A random measure £ is said to satisfy assumption B if and only if (EE x EE)}(D) =
0.
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Definition 25. A random measure £ is said to satisfy assumption C if and only if VA, B € By
(AN B =0 — Cou€(4),€(B)) =0).

Theorem 5.1. Let A € By be a bounded Borel set and f : X — IR be Borel measuruble and bounded
over bounded sets. Suppose that £ satisfies assumptions A, B ondC and that X = [, fd6: 2 - R
is an nnbiased estimator for z. Then (X, Vo, V), where 0, = Ja ffde and V, = E'f,l f2de, s
an inferential sequence of random variables for .

Proof
(i) EX = z by hypothesis.

Var () = £ sy~ (& [ 1ae = B[ 1 sag xa)- ([, rmagy?
- / f ® FE(dE x df) - / f ® f(EdE) x (Ede)
A3 A?
- f f® fCov(de, dg) + / £ ® FE(dE x de) - / f ® F(Edg) x (Bdg)
Al-D AInp AIND

=o+/f2Edg+o=Ex‘/1=14.
A

(i) Substituting f2" for f in item’s (i) argument we have Var Vo= E(f, f7de)*—(E [, £ &) =

JA(f7)2EdE. Thus Var ¥, = [, £ Edé = Vo
(iii) EV, = V,, by construction.
(vi) Ve € 0 Vo (w) = [, F7 dE(w) > O since 7 (z) > O forall z € X.

Some estimators used in point processes intensity function estimation are special cases of the one
presented ahove. For a detailed example of inferential sequence of random variables and inferential
sequence of stochastic processes for the estimation of real values and functions accompanied by
the presentation of some inference bands, see de Miranda and Morettin (2003).

6. SURE INFERENCE WITH EXTRA INFORMATION — APPLICATIONS TO SMALL SAMPLE
CONFIDENCE INTERVALS FOR THE MEAN

The examples that follow illustrate the use of sure inference in situations where we have some
inforination on the random variables distribution.

In Theorems 6.1 and 6.2 we construct variance based and standard deviation based inferential
sequences for the mean of non-negative random variables. ’

Theorem 6.1. Let Y : Q@ — Ry be a non negative random variable. Define v € R by VarY =
vEY; p = EY, and suppose y1, ... ,Yn i on iid. sample of ¥. Then X = (i w) /0 Vi =
(-;—)(2 N u end Vi = (-5—)(2 VX isan inferential sequence for p.

Proof (i) EX = (L, EY)/n=p Var X = lVarY = LEY = Zu=Vi.

. m+l_. m+l_
(i) Var (V) = ()% P Var X = () P p= Vo,
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(iii) EV; = (2)* "V EX = Vin.
(iv) Since Y is non-negative, so is X and, consequently. V,, for all m € IN*,

Theorem 6.2. LetY : 1 — R, be a non negative random variable. Define v € R by Std (¥)
VvEY: = EY and suppose yy,...,yn i3 on iid. sample of Y. Then X = (31, 1) /™ Om

m

m
2 1t and Gpy = | 5 X is a standard deviativn based inferential sequence for p.
o v

Proof (i) EX = p; Std(X) = 2 = sy = 0,.
i ! m L\
(if) Std (6m) = (7":) Std (X) = (75) 1= Omys.

(i) Eom = (2) " EX = om.
(iv) Immediate. »

Theorem 6.3. Under the same hypothesis and notation as in theorem 6.1 (or 6.2), let &
T(y1,....yn) + ¢, where T i3 a linear transformation, T = (eq,...,¢,), and ¢ is a real con-

' ] i ™ ety
stant, be an unbiased estimator for a parameter a € R. Then, &, V,, = H-T—:-'u(;,—'itl—)—u and
a pp2™ (2™ -1} e " A " . = .

V, = llﬂnlﬂTﬁ,TX (oré, om = ¢ 7':,':_ Yy O = %%X) is an inferential sequence for the
parameter a.

Proof For variance based inference.
(i) Ea = a; Var (&) = Var (T(y1,- .., ) +¢) = (Tie, ¢2) Var Y = ||T)Pvu = Va.

]

(i) Var (V) = B0 Dy g  HE w0y
(iii} and (iv) immediate.
For standard deviation based inference.
(i) Std (&) = Std (T(y.l." cor¥n)) = \/Hil;learY = [T|vp = 0.
(i) Std (6m) = (Y=t (X) = Lo = o
(iii) and (iv) immediate. »

Since we don’t know the distribution of Y, the sure inference intervals for its mean are calculated
as before.

Now we will consider examples where we know the distribution of Y. This information will be
used for constructing sure inference intervals under knowledge of distribution.
Theorem 6.4. Let Y be a Poisson distributed random variable with mean pu (Y ~ Poisson(u));
Yivoo¥n be on iid. sample of Y, Z = (T, 0), X = Z/n, Ve = (1) (nps) ond Uy, =
()" Z. For ey € (0,1) let AT = A{ (1) and Af = A (1) be such that P{nu — A\ JAE < Z' <
ny + XY A} = 1 — oy, where Z' ~ Poisson(ny), and M = A is minimum. Form > 1, let
Amt1 = Amp1{Cm41) be such that P{Z' > npp — Amy1/PE} = 1 = sy Then, for allm € IN*,
we have )

z A =7 A = =
Poue B Z+X Z+"'+Am\ﬁlﬁ,;+—1—; Z4 20\ Z+-- -+ A /1yl
Zl—za;.

i=1
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Proof Since Y ~ Poisson(u) we can use Theorem 6.1 with v = 1 which yields the infer-
ential sequence X,V,,, V.. Observe that 2 = Z?=1 y; is Poisson distributed and we have
Z ~ Poisson (nu) ~ Z'. Now we proceed as in theorem’s 2.1 proof. Noting that we have freedom
to choose asynunetrical intervals and that

P{X e Vi + /\T\/‘_’;]} = P{Z € [np — AT np,np + /\T\ﬁm} =1-m
and, for all m € IN*,

A 1\*" 1\ iy
P{Vm + Amt1vV Vims1 2 V,,.} = P{ (;) Z> (;) np — Al \I.f (;) 71/.[}

= P{Z >nup —/\,,.4.1\[@} =1-am41;

we have

f L — F—————
P{ye [X—/\i"\f\/l+Az\/+---+Am\/Vm,X+)\1‘\fﬂ+)\2\j+~-+/\,,,\/V,,. }
ZI—ZLX,'.
i=]

Now, substituting Z/n for X, V,-, 1< j <m-—1and Vi, for their expressions, the result follows.

The theorem above furnishes an m-th order sure inference interval for the mean of a Poisson
distributed random variable. Let us call it sure inference interval under knowledge of distribution.
This interval is approximated for practical purposes by

zZ A/ e =7 X . =
——-—\:Z+/\2\Z+~~-+Am\/Z,—-+—~ Z+X\Z+ -+ AuVZ|.
n n n n

We observe that one might think that theorem 6.4 is useless, since we could have simply stopped
at the first order inference to obtain

Z N —Z XN
(3) P{ue [;_T‘/"”"E+_n-‘/"“ }—1~a1,
which reduces to

ue‘\,-"’m—(%),\/ﬁ@(%) \,

n

where ja, b} = (a,b) U (b, a), with probability 1 — ay, i, probably (with probability 1 — az) the
smaller interval with the higher assured probability level within the former intervals; but this is
not the case from a statistician’s point of view. First, in practice, it is common not to know
exactly what the distribution of the data is; 50, assuming that the data is a realization of a Poisson
distributed random variable is something that has to be checked, a task that will require, for a
reasonable confidence level, some minimum size for the data set. Second. if we have some clue,
for example from mathematical modelling of the situation under study, that the distribution is



26 JOSE CARLOS SIMON DE MIRANDA

approximately a Poisson one, it may be wiser not to assume it to be exactly a Poisson distribution
and use the exact relation (3) but prefer instead to use higher order inferential intervals.

So, for small smnple from Poisson or Poisson like distributions the use of at least second order
sure inference intervals may be appropriate.

Now let Y ~ Gamma( a B) be a gamma distributed random variable. Its density function is
written as f(y) = Lﬁ_I(T for y > 0 and f(y) = 0 for y < 0, for positive real constants a and
3. We remind that u = of and 0% = af? Observe that for 8 = 1 we have u = a = 0 and we
are under theorem’s 6.1 hypothesis. On the other hand, if @ = 1 then p = f = @ and theorem 6.2
may be applied.

Using the same notation as in theorem 6.4 we write the following theorems.

Theorem 6.5. Let Y ~ Gamma(y,1) and Z' ~ Gamma(np,1). Then, for all m € IN*, we have

Z A/ e - ———
P{ye {;—-'—:— KZ-i~/\'z\)f’rZ+"--!»Am np,—f—+:\1~:-\/z+)‘2vz+ +z\m\/7—7_ﬁ]}
21-Y o

i=1
Proof Just note that Z ~ Gamina(ny, 1) and follow the steps on theorem'’s 6.4 proof. -
Theorem 6.6. LetY ~ Gamma(l,p) = exp(u) and Z' ~ Gamma(n, ). Let also X = Z/n, o =
(32)" wandom = ()" 2. For} and 7 defined by P{ns (1~ 2) < 2/ < mu (14 2%) } =
1—o, for which A} — A is minimum and Apmy1 such that P{Z’ Znp (1 - %-&1)} =1—0mt1
for allm € N*, we have

e 33 3) )
1o (-2 @) )

Zl_zai-

i=]

Proof Observe that Z ~ Gamma(n, 2} and follow the steps in theorem’s 6.4 proof with appropriate
modifications from variances to standard deviations. »

The corresponding “practical” intervals obtained by substituting Z for nu in both intervals
above may be used for small sample inference of the mean for Y ~ Gamma(y, 1) and Y ~ exp(u).

7. CONCLUSIONS

In this article we propose an analysis of inference that is based on the principle of systematically
doubting all assumptions that are made and all intermediate results that are obtained in the path
to the main conclusions we want to draw from the information we have. This approach may
generate a series of questions about the assumptions, the intermediate results and also about their
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possible answers in a cyclic way and we will want to answer these questions in & most conservative
way. We do so in order to obtain secure and cautious conclusions. These conclusions avoid to the
maximum extent, while it is still convenient, all doubts. Clearly, we will want to use all relevant
available information.

As a matter of fact, we have presented a procedure for calculating confidence intervals. This was
done for situations under which either we caumot ur we do not want to asswine any distribution for
the data as well as for situations where we know some extra information that comes from outside
the data as, for example, mode!l assumptions relating means and variances, means and standard
deviations or even the distributions of the random variables.

Typically, as an intermediate answer is also an affirmation to be questioned and checked, this
procedure generates an infinite sequence of questions of the same type. One way of capturing
this feature is the use of inferential sequences. This analysis of inference will always assume the
worst case to draw conclusions, i.e., as if the inference situations were such that they were always,
as much as they could possibly be. against the conclusion we want to arrive at. This feature is
reflected in the construction of sure inference intervals and sure inference intervals under extra
information.

We observe that this work suggests the existence of orders of inference. In this line, information
that comes form outside the data, like knowing the distribution of a random variable, knowing
the value of ¥ = VarX/EX for non negative random variables, knowing a bound for some of the
moments of a random variable, or other hypothesis or assumptions, may be regarded as an infinite
order inferential statement since, informally, it brings certainty to our analysis which can not be
reached by finite order inference.

This article is a first collection of definitions and theorems that fit in this general idea of sure
inference analysis.
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