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SURE INFERENCE ANALYSIS 

JOSE CARLOS SIMON DE MIRANDA 

ABSTRACT In thil! work we define the new concepts of standard deviation based inferen­

tial sequence, variance based Inferential sequence, Inferential sequence of random 

variables or random vectors and Inferential aequence of real or vector valued sto­

chastic processes that enable us to estimate and draw conclusions about vectors and vector 

valued functioM without knowing any other information about the probabilistic structure of 

these random variables and stochastic proceeses but their inferential sequences. We also define 

m-th order at leaat probability p intervals and bands for vectors and vector valued 

functions. The intervals and bands thus obtained are extremely cautious and thi& load "" to 

call this subject sure inference analyaia. The exiatence of ordera of inference is l\lso suggested. 

h an example an inferential sequence for estimaton defined by integrals of random measurea is 

given. We ,Jso suggest a way of calculating small sample intervals for the mean when we have 

some extra information, i.e., information that cornea from outside the data. 

1. INTRODUCTION 

In thia article the problem to be studied is that of finding confidence intervals for parameters, 

hen: real numbers or real vectore, B.lld confidence b11,11d,, foz- functioDB that may be real or vector 

valued ones. The analysis of inference that will be presented here is one which is extremely cautions. 

It is made in such a way to, as much as possible, avoid doubts and it is in this 8eI1Se that we choose 

the name sure inference analysis. 
The plan of this article is the following. In section 2 we present the first and central definitions 

and theorems for standard deviation based sure inference and variance based sure inference. No 

8Bllumption about the probabilistic structure of random variables or stochastic processes but their 

inferential sequences are made till section 6. Section 3 is devoted to optimization of random sets 

(confidence intervals and bands) for real parameters and real functions. The optimal sets for 

vector parameters and vector valued functions are obtained in section 4. Examples are given in 

sections 5 and 6. Actually, section 6 is used to develop sure inference when some extra information 

is available such 11S relations between mean valtreB and variances {standard deviations) or more 

complete information as distributions of random variables. We also suggest a way of calculating 

small sample confidence intervals for the mean of some random variables. In secti011 7 we close the 

work with some comments. 
We will assume that X : n-+ R is an unbiased estimator for z and that Std (X) = u1• We will 

also assume that we have a sequence of non-negative estimators and finite standard deviations, u,.. 
and u .. for all n ~ 1 such that Ut = Std (X), Un+l = Std (u .. ) and Eu,. = u .. . By Chebychev's 

Key v,onu and phrcuea. inferential -iuence of random variablee or of lltocbutic processes, m-th order at least 

probability p confidence interval or confidence band, non-parametric confidence interval or confidence band, wavelet 

eotimat<>r11. 
The author thank• Our Lord and Savior J .. ua Cbri&t. 
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inequality, for >.1 > 0, we have P{X(w) E [x->.1u1,x+>.1u1]} ~ 1-1/>.t and, equivalently, P{x ¢ 
[X(w)->.1u1,X(w)+>.1u1]} :51/>.?- Analogously wecanwriteP{un '¢ (t1n(w)->.n+1Un+1,<1n(w)+ 
An+JO'n+J]} :5 l/(An+1J2, for all n ~ 1. It may occur, and this is the most frequent situation in 
practice, thllt we don·t know the value of u1 and we use ir1(w), some e!:itimator of u,, and X(w) 
to form confidence intervals for x when the distribution of X : n -+ m. is known. Note that i'r1 is 
not necessarily unbiased. In rnOlit of these situations, after some analysill h118 been doue, we could 
almost conclude that, with probability p, x belongs to the interval [X(w)-ai'r1 (w), X(w)+/30-1(w)] 
for some a, /3 E ffi+. We have said almost conclude because there is uncertainty associated with u1. 
On the other hand there are situations where we know the distribution of some statistic S(X,i'r1,x) 
that allows us to conclude that with probability p, x belongs to the set s-1(X, o-1, -)([a,/3]) when 
P{w E n1a ~ S(X,a1 ,x) ~ B} = p. As an example consider for 1 ~ i ~ n, Y. ~ N(µ,u2

) normal 

n " 
random variables with meanµ andvarianceu2 , X = E Y;/n, u1 = E(Y; -X)2/(n-1), :r: =µ, 

i=l i=l 

and S(X,u1,x) =a T( ~) where Tis t-student distribution. 
We are interested in the situation where not only we don't know the distribution of X but also 

we want to decrease the uncertainty due to the substitution of a1 (w) or o-1 (w) by o-1 • 

Since P{u1 ¢ (ir1(w}- >.20-2,8-1(w) + >.20-2]} :5 1/>.~, we have 

P{a1 :$ o-,(w) + -"•"•} 1 - P{a, > o-,(w) + Aao-a} 

~ 1 - P{u1 ¢ [o-1(w) - >.20-2,6-1(w) + >.20-21} ~ 1 - ~-
2 

Let L(w,>.1,>.2) = >.1(u1(w} + >.2u2), A(w,>.1,>.2) = X(w) - L(w,>.1,>.2) and B(w,>.1,>.2 ) = 
X(w) + L(w,>.1, >.2), 

Let also 

n+ = {w E Olu1 $ &1(w) + .>.20-2}, 
n° = {w E n1x E (X(w)- >.10-1,X(w) + .\1u1]}, 

n 1 {w Enix e [X(w) - L(w, >.i,>.2 ),X(w) + L(w, >.1, >.2)]}. 

Thus we have P(OO) ~ (1 - -/r) and P(n+) ~ (1--4). 
Since L(w,>.1,>.2) ~ >.10-1 when 0-1 ~ 8-1(w)+.>.2u2, we have (n+nn1):::, (n+nOO) and we can 

write 

P{x E [A(w,>.1,.>.2),B(w,>.1,.\2)]} = P(!11) 

~ P(n1 n n+) ~ P(n° n n+) 
0) + 1 1 2: P(O + P(O ) - 1 ~ 1 - ~ - ~-

1 :I 

The inequality above lets us draw such conclusions u: with at least probability ( 1 - ff - -q), 
x belongs to the interval [X (w) - >.1 (0-1 (w} + >.20-2), X(w) + >.1 (8-1 (w) + >.2u2)]. 

In practice, this interval will be replaced by 

[X(w)- >.1(t11{w) + >.:i<12(w)),X(w) + >.1(<11(w) + >.20-2(w))) 

and this substitution induces some uncertainty. In this situation we can almost conclude that, with 

at least probability ( 1 - ff - "1"), x belongs to the later interval. We can continue this process 
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of analyzing the worst CI\Se and obtain probabilities in the form 1 - f: fl for intervals of the form 

[X(w)- Lm(w,.X1, ... , Am). X(w) + L,,.(w, A1 .... ,Am)) where 
i=l 1 

Lm(W,AJ, . . . ,Am) = A1(ui(w) + A2(· ··+ Am-1(0-m-1(w) + AmUm) · ·· )). 

2. DEFINITIONS AND THEOREMS 

The veracity of the following theorem.s is not changed by the substitution of m-th order inferential 

sets for inferential sequences in their hypothesis. 

2.1. Standard Deviation Based Sure Inference. 

2.1.1. Real Random Variables and Stochastic Process. 

Definition 1. A 3-tuple (X, (u,.)i:5,.5,.., (a,.)i 5 ,.5,..) fanned by o random t1ariable X : n _. JR, 

m positive numhera (u,.)1:;;n:,m and m random variables (o-n : 0 --> lR)1:;;n:,m, ia a standard 

deviation based m-th order inferential set for x E m. if and only if 

{i) EX= x, u1 = Std(X), 
(ii) if 1 ::Sn ::Sm -1 then Un+J = Std (a .. ), 
(iii) if 1 ::Sn ::S m - 1 then Ea .. = Un, and Eo-m ;?: Um 
(vi) i/ 1 ::S n ::S m then Un (!1) C ll4. 

Definition 2. A 3-tuple (X, (u,.)nEtl·, (u,.),.Et1·) formed by a random variable X ; 0 -> JR, a 

sequence of poaitive numhera (u,.)neN· and a sequence of random variables (un : n--> 1R)neN·, ia 

a standard deviation based inferential sequence for x E m. if and only if 

(i) EX= x, 0-1 = Std (X), 
(ii) \In E :N• O"n+J = Std (u .. ), 

(iii) \In E :N• Eun = un, 
(vi) \In EN* &n(fl) C JR+. 

We will use the notation (X, u,., u,.) to represent an inferential sequence and, occasionally, we 

will simply say that the sequences u,. and u,. form an inferential sequence for x. Observe that 

this definition implies the fact that all random variables, that is, X and Un, n ~ 1, have finite 

expectations and variances, which is a necessary condition to apply Chebychev's inequality to each 

of them. 

Theorem 2.1. (Standard deviation inferential sequence of random variables' theorem.) 

Let (X, Un, Un) be an inferential sequence for x E IR. If 

Lm(w, ~1, ... , Am)= Ai(u1(w) + ~2(· · · + Am-1(0-m-1(w) + Amum) · · · )), 

A. E R+ /r,r all I ::S i ::S m, m E JN*, then 

m 1 
P{x E [X(w) - Lm(w, A1, ... , Am), X(w) + Lm(w, Ai, ... , Am)]} :?: 1-I: -x:· 

i:•l 
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Proof (By induction.) If m = 1, then 

1 
P{x E (X(w) - ,\1u1, X(w) + ,\1u1)} = 1 - P{x 1/. [X(w) - ,\10-1, X(w) + ,\10-1]} ~ 1 - ~• 

1 

by Chebycbev's Inequality. 
For easy of notation, let A1:(w) = X(w)-L.,(w, .\1, . .. ,,\k) and B1:(w) = X(w)+L1:(w,,\1, . . . , >,,,:). 
Under the assumption that the statement holds form - 1, we have 

P{x E [A.n(w),Bm(w)l} ~ P{x E (Am(w),Bm(w)) A O'm-1 $ O'm-1(w) + A,,.um} 
~ P{x E (Am-1(w), Bm-1(w)] A O'm-1 $ O'm-1(w) + ,\,,.u..,} 

since 
[Am-1(w),B..,_1(w)] C [A.n(w),B,..(w)] 

when O'm-1 $ O'm-1(w) + ,\,,.u,,.. 
Thus, P{x E [A,,.(w),B,,.(w)I} 

~ P{x E (Am-1(w),Bm-1(w)]} + P{um-1 $ O'm-1(w) + >.,,.u,,.}-1 

( 

m-l 1 ) ( 1 ) m 1 ~ 1 - ~ >J + 1 - l2 - 1 = 1 - L ~· 
•-1 1 "m •-1 "i 

since 

If we substitute um(w) for u,,. some uncertainty will be introduced in our analysis. This kind 
of uncertainty may be eliminated If we know the value of u J for some J or some superior bound 
for UJ. 

We observe that by applying this sure inference analysis we can obtain these confidence 
intervals of "at least probability rf', for x whatever the distribution of X Is. Furthermore, this 
analysls ia more conservative then that made if we assume some distribution to construct confidence 
intervals. 

Definition 3. We will call the interval [X(w)-L,,.(w, ,\1, ... ,>.,,.), X)w) +L,,.(w, At, ... ,>.,,,)] on 
m-th order standard deviation btued ot le08t probobilit11 p = 1 - 1::,1 XS confidence interval for x . 

• 
Briefly we will call this intervals sure inference intervals. 
kt random variables are estimators of real numbers, stochastic processes can be understood as 

estimators of ftmctioDS. 
If X : 0 x lR -+ R Is a stochastic process which is an unbiased estimator for the function 

x : m. -+ R, that Is, such that EX and :z: are equal, and we have sequences of non-negative 
estimators (stochastic process in this cRSe) a., : n x R--+ JR, and standard deviations (standard 
deviation functions), O'n : R--+ R for n ~ 1, such that 

0-1 =StdX : R-+lR, 0-"+1 =Std(a.,) and Eu,.=u", 
t _. Std (X(t) : n --+ IR) 
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we can develop a sure inference analysis to obtain "at least probability p" confidence bands in a 

completely similar way to that presented above for random variables. 

From now on, I is simply au arbitrary set. 

Definition 4. A 3-tuple (X, (11,.)neJN•, (o-n)neJN•) formed by a stochastic process X : fl x J--+ IR, 

a .<eqttence of functions (un : I _, IR)neJN• and a sequen1:e of .<torha.,tic processes (o-n : fl x I -+ 
lR.),.eN· is a standard deviation based inferential sequence for x: I--+ lR if and only if 

(i) EX= x, 111 = Std (X), 
(ii) Vn E JN• 11n+I = Std (u,.), 
(iii) Vn E IN° Eon = 11,., 
(vi) Vn E ]N• u,.(n x /) C JR+ . 

Analogously we define m-th order standart deviation based inferential sets for x : I -+ rn.. 

Theorem 2.2. (Standard deviation inferential sequence of stochastic processes' the­

orem). Let (X,11,.,u,.) be an inferential sequence for .r : I --+ IR. Defining for all m E N•, 

L,.,. : n X / X (lR~)m -+ lR+ by 

Lm(w, t, ..\1, ... , ..Xm) = ..\1(a1(w, t) + ..\2( ... + ..Xm-1 (am-1 (w, t) + ..Xmum(t)) ... )), 

we have, for all t E J, and all m E JN•, 
m 1 

P{x(t) E [X(w,t)-L.,.(w,t,>.1, ... ,>.m),X(w,t) + Lm(w,t ,>.1,• . . ,>.m))} ~ 1- L ~-
i-1 ' 

Proof It is sufficient to observ8 that, for each .fixed and arbitrary t, we have as a direct consequence 

of definitions (2) and (4) that (X(t), (11,.(t))nelN•, (o-,.(t))neJN•) is an inferential sequence for z(t) 

and apply Theorem 2.1. • 

Definition 5. We will c:all the set 

(1) {[X(w, t) - Lm(w, t, .\1, ... , .\m),X(w, t) + Lm(w, t, >.1, ... , Am)]lt E J} 

an m-th order standard deviation based at least probability p confidence band. 

Briefly we will call this bands sure inference bands. 

For example, if I = IR, the sure inference band {1) corresponds to the t, x plane region delimited 

by the curves x1(t} = X(w, t)-Lm(w, t, Ai, ... , Am) and x2(t) = X(w, t)+Lm(w,t, >.1, ... , Am) that 

contains the curve X(w, t). If I= R2 , t = (t1 , t2), then the sure inference band (1) corresponds to 

the JR.3 region delimited, in a natural way, by the surfaces (not necessarily continuous) x1(t1,t2) = 
X(w, t1, t2) - L,,.(w, ti, t2, >.1, ... , Am) and x2{t1, t2) = X(w, t1, t2) + L,,.(w, t1, t2, At, ... ,,\,,,) that 

contains the graph of the mapping X: {w} x JR.2 -+ JR, that is, the surface X(w, ti, t2). If I= R"' 

we have analogoWI interpretations. 

2.1.2. Random Vectors and Stochastic Proce:,s Over IR~. We will now study the case of ran­

dom vectors.Let X = (X1, ... ,X9} : n-+ JR.q, Xi : fl -+ JR, 1 ~ i ~ q, and Std(X) 

(Std (X1), •.• , Std (X9)). We define m-th order inferential sets in an .u1alogous way. 
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Definition 6. A 3-tuple {X,{u,.)neN•,(O'n)neN•) formed by a random vector X: n---+ lR.q, a 
.,eqt1e11ce of vectors (un)ne!II• = {0-1,,., ... , O'q,n)neN·, where (u;,n)ne~· i& a sequence of positive 
rmmber.• for all i, I S i Sq, anrl a sequence of mndom vectors (u,. : {l--+ 1R.9)neN•, is a standard 
deviation based inferential sequence for x E IR.9 if atLd only if 

(i) EX = x, u1 = Std (X), 
(ii) Vn E N• "'n+I = Std (u,.), 

(iii) Vn E N• Ea,. = u,., 
(vi) Vn E N" un(fl) C IR.i. 

Theorem 2.3. (Standard deviation inferential sequence of random vectors' theorem.) 
Le.t (X, O'n, D'n) be an inferential sequence for XE lR.9. If 

L,,.,. (w, >.;,1, ... , .>.,i,m) = >.;,1 (u;,1 (w) + >.;,2(· · · + >.;,m-1 (uj.m-t (w) + .>.;,mO'j,m) •· · )), 

.>.;,; E JR: for all l $ j $ q, l Si ~ m, m E N*, then 

q 9 "' 1 
P{x E Il[X;(w)- Lj,m(w,.>.;,1, .. , ,.>.;,m},X;(w) + L;,m(w,>.;.I, ... , .>.;,m)]} ~ 1-LL R' 

j• I ja:1 ~1 3,1 

Proof Observe that for events A,, such that P(A;) = 1 - a; we have P( () A,) ~ 1 - 'E o; as 
;al f•l 

can be easily checked by induction. 
Let A; = {w E Olx, E [X;(w)- L;,m(w, .>.;,1, ... , ).;,m),X;(w) + L;,m(w,.>.;,1, ... ,.>.;,m)]}. From 

Theorem 2.1, for each j, 1 :s; j $ q, 

Thus 

m 1 
P{A;} :2::: 1 - LR' 

isl J,t 

q 

P{x E Il!X1(w)- L;, ... (w, .>.;,1, •.. , .>.;,m), X;(w) + L;,m(w, .>.,,1,• .. ,.>.;,m)I} = 
j-=1 

Definition 7. TI [X;(w)- L;,m(w, .>.;,1, ... , .>.;,m),X;(w) + L1,m(w, >.;,h, .. , .>.;,m)] is called an m­
j:al 

q m 
th order standard deviation based at least probability p = 1 - E ( E fr") confidence R9 -ffltenal 

j=l ia:l J,t 

for x E JR.q. 

We note that the R 9 sure inference interval above does not dependent on the joint distribution 
of X = (X1, ... ,Xp), 
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Definition 8. A 3-tuple (X, (o-n)neJN•, (a,.).,el'I·) formed by a vector valued stochastic process 

X : n x I -+ IRq , a sequence of vector valued .functions (o-n : / -> JR'l)nEl'II· and a .,equence 

of vector valued stochastic processes (u,. : !1 x / -+ JR9)neJN• is a standard deviation based 

inferential sequence for x : I -> IR9 if and only if 

(i) EX= x, o-1 = Std (X), 
(ii) Vn E JN• O"n+I = Std (a,.), 
(iii) Vn E IN• Ean = a,., 
(vi) Vn E JN• a,. (fl x /) C Rt. 

Theorem 2.4. (Inferential sequence of vector valued stochastic processes' theorem). 

Let (X,o-,., a,.) be an inferential sequence for x: I-+ lR9 • Defining for all j, 1 ~ j ~ q, and for 

all m E JN·, L1,m : (1 X J X (JR~r -> lR+ by 

Lj,m(w, t, A;,I,, .. , .>.,,,,.) = Aj,I (uj,l (w, t) + Aj,2(- .. + A;,m-1 (aj,m-1 (w, t) + A;,mO"j,m(t)) ... )), 

we have, for all t E I , and all m E JN•, 
q 

P{x(t) E fl[X1(w,t) - Lj,m(w, t, A;,1, ... , -X;,m),X;(w, t) + L;,m(w, t, Aj,1, . .. , .>.j,m)]} 
j=I 

Proof It is sufficient to observe that, for each fixed and arbitrary t, we have as a direct consequence 
of definitions (6) and (8) that (X{t), (o-n{t))neN•, (an(t))neN•) is an Inferential sequence for x(t) 

and apply Theorem 2.3. • 

Definition 9. We will call the set 
q 

{fl[X;(w, t) - L;,m(w, t, A;,1, ... , A;,m), X1(w,t) + L;,m(w, t, A;,1, ... , A;,m)]lt E /} 

j,a:l 

an m-th order standard deviation based at least probability p confidence band for the 
vector valued .function x. 

Briefly we will call this bands sure inference bands. 

For example, if we take I = JR and q = 2 then the sure inference band is a tubular neighborhood 

contained in IR.3 of the curve .X(w,t) = (t,X1(w,t),X2(w,t)) which section at tis the rectangle 

(X1(w,t) - L1,m(w, t,A1,1, ••. ,At .m),X1(w,t) + L1,.,.(w,t, A1,1, ... , >-1,m)]x 

[X2(w, t) - L2.m(w, t, A2,1, ... , A2,m),X2(w, t) + Li,m(w, t, A2,1, • • •, >-2,m)]. 

If I = R 2 and q = 2 we can not visualize the band. Whenever we have J = JR', the bands will 

be tubular ueighhorhoods of the surface X (w, t) = (t, X(w, t)) in m_r+q which section at t E 1Rr is 

a q-dimensional parallelepiped. 
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2.2. Variance Based Sure Inference. We will assume that X : 11 --+ R is an unbiased estimator 
for % and that V11r (X) = 11?. We wi11 also RSSUme that we have a sequence of non-negative 
estimators and finite Vl'ltiances, V,. and V,. for nil n ~ 1 such that Vi = Var (X}. V.,+1 = Var V,. 
and EV,,= V,,. By Chebychev's inequality, for ,\1 > 0, wehaveP{X(w) E [x-,\10-1.x+>.10-i]}:?; 
1-1/>.~ and, equivalemly, P{x ¢ [X(w) - >.1111,X(w) + ,\1111]} :5 1/,\f. Let O'n = v'l7,;". 

Since EV,,= Vn, by Chebychev's inequality, P{V,.(w) e [V,.-..\,.+1 ~. V,, +>.,.+1 JV.,+d} ~ 
2 · • ~· ~ 2 1-1/,\n+l and, eqwvaJeuc!y, P{Vn E [Vn(w)- .l.n+1 v Vn+1, V,.(w) + ..\,.+1 v V.,+dJ ~ 1-1/~+1· 

So, we have 

P{un E { / max{O, V,,(w) - >.,.+1 ~}, / V.,(w) + .l.n+1 ~ ]} ~ 1 - 1/,\~+I 

from which P{un :5 / vn(w) + >.,.+1 ~}:?; 1-1/>.!+1 for all n E JN•. 

Proceeding as before we start writing P{x E [X(w)->.10-1, X(w)+>.10-1] /\ 111 S: / Vi(w) + ,\~JV;} : 

1-1/>.~ -1/~ that ill P{x E (X(w)- >.1J v1(w)+..\'l,./Vi,X(w) + >.1 J Vi(,,,)+>.nl~ ~ 
1 - 1/ ,\? - I/,\~ and continue to obtain the conclUBion that with at least probability 1 - f 1/ ),} , 

i=l 
:,; belongs to the interv:a.l [X(w)-: L::,(w,A1, ... ,~),X(w) + L::,(w, Ai, . .. ,Am)] where 

L::,(w,>.1, ... ,An.)= ,\1 /-vi(w) + ~ ✓- -. + >..,._1 J vm-1(w) + An./v.:-

ln practice we will replace L::, by .L::., 

L:;.(w,>.1, ... ,An.)= "1 Vi(w) + >.2 /. .. + >....-1 / v.,._1(w) + >...,./v.,.(w). 

2.2.1. Real Random Variable& and Stochastic Procu11. 

Definition 10. A 9-tuple (X, (V,.)i5,.5m, (i>°,.)i5,.5m) fO!'TTled by a rundom variable X : n --- JR, 
m poaitive number11 (Vnh5n5m and m rundom 1/ariablllll (V,. : n --- R)i:5,.5,,., ill an vari4nce 
baaed m-th order inferential set for z E R if and only if 

(i) EX= x, Vi= Var(X), 
(ii) i/ 1 S: n :5 m - 1 then Vn+l = Var (V,.), 
(iii) if 1 :5 n $ m - 1 then EV,. = V,., and EV.,. ~ Vm 
(vi) i/1 $ n $ m then V,.(n) c JR+. 

Definition 11. A 9-tuple (X,(Vn)neN•,(V,.),.eN•) Jo~ by a random 11ariable X: n --- JR, a 
11equence of positive numb~n (V,.)nelN• and a sequence of random 11ariable.s (V,. l n --- JR),.er,1•, i., 
a variance baaed inferential sequence for x E JR i/ and only if 

(i) EX = x, Vi = Var(X), 
(ii) Vn E w· Vn+I = Var(V,.), 

{ill) Vn E JN" EV .. = V,., 
(vi) Vn E IN" \~.(n) C lR+. 
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We will use the notation (X , V,., V,,) to represent an inferential sequence and, occasionally, we 

will simply say that the sequences V" and \',, form an inferential sequence for x. Observe that 

this definition implies the fact that 1111 random variables, that is, X and Vn, n 2:'. 1, have finite 

expectations and variances, which is a necessary condition to apply Chebychev's inequality to each 
of them. 

Theorem 2.5. (Variance based inferential sequence of random variables' theorem.) Let 

(X, Vn, Vn) be an inferential sequence for x E 1R. ff 

L~,(w,A1, . . . , ,\m) = A1 ✓Vi(w) + ,\2 / .. + ,\m-1 / vm-t(w)+ ,\mffm, 

A; E JR~ for all 1 ~ i ~ m, m E JN•, then 

P{x E [X(w) - L;;,.(w, At , ... . Am), X(w) + L~.(w, At, . .. , Am))} ~ 1 - f ;2 • 

i:i::::1 • 

Proof Substitute J vm-t(w) + A.,,ffm for a,.._J (w)+AmO'm and Lk for L-,. in the demonstration 

of Theorem 2.1. • 

Definition 12. We will call the interval [X(w) - L:;.(w, At, ... , Am),X(w) + L:;.(w, ..\1, .•. , Am)] 
an m-th order variance based at least probability p = 1 - :£::.1 f! confidence interval for x. 

If X : fl x lR - lR Is a stochastic process which is an unbiased estimator for the function 
x : m. - Ill, that is, such that EX and x are equal, and we have sequencee of non-negative 

estimators (stochastic process in this case) vn : n X Ill - JR, and variances (variance functions), 

Vn : JR-+ m. for n ~ 1, such that 

Vi = Var X : Ill --+ lR , V,.+l = Var (Vn) and EV,. = Vn, 
t--+ Var (X(t) : n--+ JR) 

we can develop a sure inference analysis to obtain "at least probability p" confidence bands in a 

completely similar way to that presented above for random variables. 

Definition 13. A 3-tuple (X, (Vn),.EN•, (Vn)nEN•) fonned by a 11tocha.,tic procus X : !1 XI --+ IR, 

a sequence of function., (Vn : I -+ IR)neN· and a sequence of stochastic proce11ses (V,. : !1 x I -

R)neN• i., a variance based inferential sequence for x : I - JR if and only if 
(i) EX= x, Vi = Var(X), 
(ii) 'v'n EN• V,.+1 = Var(V,.), 

{ill) 'v'n E N• EV,. = V,., 
(vi) \/n E :r,r Vn(!l X I) CR+ . 

Theorem 2.6. (Variance based inferential sequence of stochastic processes' theorem). 

Let (X, V,., V,.) be an inferential sequence /01· x : J - Ill. Defining for all m E N•, L!;. : n x I x 

<m.~r-R+ by 

L:;.(w, t,,\1 , ••• ,>.,,.) = >.1 Vi(w, t) + >..2 J. .. + >.m-1 ✓vm-1(w,t) + Amv'YnJtY 
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we have, for all t E /, and all m E JN", 
m 1 

P{x(t) E [X(w,t) - L::,(w,t,,\1, ... . ,\m),X(w,t) + L!:,(w,t,.-\1, ... ,.-\m)]} ~ 1 - L ,\2' 

i=l ' 

Proof It is sufficient to observe that, for each foced and arbitrary t, we have as a direct consequence 
of definitions (11) and (13) that (X(t), ( V,,(t)) .. rn•, (V,, (t))neN') is a inferential sequence for x(t) 
and apply Theorem 2.5. • 

Definition 14. We will call the 11et 

(2) {[X(w, t) - L!:,(w, t, .-\1, ... , ,\,..), X(w, t) + L!:.(w, t, .-\1, •.• , ,\_))It E I} 

an m-th order variance based at least probability p confidence band. 

2.3. Random Vectors and Stochastic Process Over lR.9 • We will now study the case of 
random vectoni. Let X = (X1, ... 1 Xq): 0 .... JR\ X; : n - R, 1 Si Sq, and Var{X) = 
(Var (X1), ••• , Var (X9)) 

Definition 15. A 9-tuple (X, (Vn)nel'<•, (V,.)ne!'f•) formed bv <> rGndom t1ector X : Cl - IR.9 , a 
11equence of 1/l!Cton (V,.)neN• = (V,,,., ... , V9,,.)neN•, where (V;,,.)neN• ill a ,equence of politwe 
numbers for all i, 1 :s; i :s; q, and a .sequence of random vector, (V,. : 0 - JR")neN•, ill a ,iariance 
based inferential aequence for r E lR9 if and only if 

(i) EX = x, Vi = Vm-(X), 
(ii) Vn E JN* v .. +1 ... Var(V .. ), 
(iii) Vn E JIil* EV .. = V,., 
(vi) Vn E lN"' V0 (0) C JRt. 

Theorem 2.7. (Variance based inferential sequence of random vectors' theorem.) Let 
(X, V,., V,.) be an inferential 11equence for x E 1R9. If 

LJ,m (w, ,\;,1, • . ·, ~;.m) = .-\;,1 (V.-;,-1 (_w_)_+-.-\,--,2-✓~- r_ .=.=+=.-\,=-.... =-=1=V=;:~=;.= ... =_=1 {=w=)=+=,\,::·,m::::JV;;:::::,=_,m 

,\;,; E JR~ for all l :s; j ~ q, l :s; i :s; m, m E l'l•, then 

" " ,,. l 
P{x E IJ[X;(w) - LJ.m(w, ,\;,1, •.. , AJ.m), Xj(w) + Lj,m(w, ,\;,1, ... , ,\J,m)]} ~ 1 - LL Xf:'· 

;-1 ;.1 i-1 ,,, 

Proof Substitute Li,m for L;,m in Theorem's 2.3 demonstration. 

q 

Definition 16. fi [X;(w)-LJ,.,.(w, ,\1_1, ••• , A; .... ),X;(w)+L;', ... (w, ,\;,1 , .•• ,,\3,.,.)1 ill called an m­
; .. 1 

q m 
th order variance based at lea.st probability p = 1 - E ( E x½-) confidence 1R"-interval for :r E R 9 • 

j=l i=l , _, 



SURE INFERENCE ANALYSIS 11 

Definition 17. A 3-tv.ple (X, (lf,,)neN•, (Vn)nEIN") formed by a vector valued stochastic process 

X : n x I ---+ IRq, a sequence of vector valued functions (V,. : J ..... !Rq)neIN• and a sequence of vector 

valued stuchastic processes (Vn : !1 x J--. JR9 )neIN· is n. variance based .inferential sequence 

for x : I-+ JRY if and only if 
(i) EX= :t:, Vi = Var(X), 
(ii) '<In E JN* vn+l = Var(Vn), 

(iii) 'vn E N* EVn = V,., 
(vi) Vn EN* Vn(n XI) C IRi. 

Theorem 2.8. (Variance based inferential sequence of vector valued stochastic pro­

cesses' theorem). Let (X, Vn , V,.) be an inferential sequence for x : J-+ JR9 . Defining for all j, 

1 :S j :Sq, and for all m E JN·, L'J,m: fl x J x (lR+r ~ lR+ by 

LJ..,,(w, t, Aj,1, . .. , A;,m) = Aj,1 V;,i(w, t) + Aj.2 .. . + \ .m- l V,.m-1 (w, t) + Aj,m JV;,.,,(t) 

we h.m,e, for all t E /, and all m E ]N*, 

q 

P{x(t) E Il[X;{w,t) - L'J,m(w, t, A;,1, . .. , A;,m), X;(w, t) + L'J,m(w, t, >.;,t, . . . , A;,m))} 
j=:1 

q m l 

~ 1 - LL TI":"· 
;=1 i==l ,,, 

Proof Immediate. 

Definition 18. We will call the set 
9 

{fl[X;(w, t) - L_j',m(w,t,>.;,1, . . . , >.;,m),X;(w, t) + LJ,.,,(w,t , Aj.1, . .. , A;,m)Jlt E /} 

ju! 

an m-th order variance based at least probability p confidence band for the vector valued 

function x. 

We observe that letting A; or >.;,; depend on t E f and substituting ).;(t) for ).; or A;,;(t) for 

A1 ,; on Theorems 2.2, 2.4, 2.6 and 2.8 we obtain new true statements. If we perform the same 

substitutions on Definitions 5, 9, 14 and 18, we obtain at least probability p(t) confidence bands, 

that is, "non-homogeneous" confidence bands. 

3. OPTIMAL INTERVALS AND BANDS FOR NUMBERS AND REAL FUNCTIONS 

Now we are interested in finding the optimal m-th order sure confidence interval or band, 

given BU at least probability level p. Let us start with the simplest case, i.e., that of inter­

vals for x E JR. All m-th order standard deviation based intervals are written as [X(w) -

L,..(w,,\1,-- . ,>.m),X(w) + Lm(w,A1, ... ,>.,,.)] where L,..(w,,\1,- -.,>....) = >.1(<11(w) + ,\2(· ·· + 
m-1 i m 

>.m-1<a ... -1(w) + .>.mo-m) . .. )) = E (IT ,\;)o-;(w) + m A;)o-'" . An estimate for this interval 
i=l j::s:1 i::::m:l 
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is written as {X(w) - Lm(w, Ai, •.. , >.m), X(w) + L.,.(w, A1, ... , >.,..)] where Lm(w, >.1, ... , -\n) = 
m ; 
I:( TI>.,)&,(:.:). The later interval is the one that we can acccss in practice. 
i=l j=l 

Analogously, we write [X(w) - L:;.(w, >.,, ... , >-m),X(w) + L;;,(w, >.1, ... , ,\,.)]. An estimate for 
this interval is written as [X(w) - L::,(w, At, ... , A.,.), X(w) + L:;.(w, >.1, ... , Am)]. 

Definition 19 .. 4n m-th order at least probability p inten,al forx E JR, [X(w)-L,,.(w, ,\,, ... , ,\,,,), 
X(w} + Lm(w,AI, ... , ,\m)] or [X(w) - l:;.(w,>.1, ... ,Am),X(w) + L:,,(w,Ai, ... , >-m)), is optimal 
if it ha., minimum length. 

Theorem 3.1. Let p(m) be the greatest integer leu than t1r equal tom such that b:,;(m)(w) > 0 
and for all j ,p(m) < j :'5 m,u;(w) = 0. 

Thi: optimal m-th order 11tandard deviation based at least prvbability p, p ,f, 1, confidence interval 

for x E JR is written as [X(w)-£m(w, Ai, ... ,>.:,.), X(w)+Lm(w, ,\i, .... >.:,.)] where (>.i, ... , .\:,_) E 
(:JR~ r satisfies: 

\/j, p(m) < j :'5 m, >.j ia an arbitrary pontive real number and (Ai, ... , ~m)) u within the 
.solutions of the .simultaneou.s 111111tem oJJi(m) + 1 equations 

J!(m) l jf(m) , 

L (A )l = 1- p and (-'k)2
( ~)fl A;)&;(w)) "'-y 

k•l • 1•k j=l 

for all k, 1 :'5 k :'5 ji(m), and -y a real constant. 

Proof We search for the minimum of Lm(w, A1, ... , -\n) as a function of A = (A1, ... , ,\,,.) e 
"' (lR~)m subjected to the constraint g,,.(A) = E 1/>.'f :'5 1-p. Since for all w En and i, 1 :'5 i :'5 m, 

ia:1 

&;(w) ~ 0 the function l.,.(w, •) : (JR~)"' C Rm-+ R is non-decreasing in each of its variables~ 
and g,..(>.) is decreasing in each of its variables, the constraint g.,.(.\) :'5 I - p may be replaced by 
g.,.(>.) = 1 - pin our search for the minimum. 

Ji(m) m 

Thus we have :E fr = 1 - p - ( E ½ ). 
i-1 ' imfj(,n)+l ' 

Now, ½<m)(w, ·) : (lR+f<m) C lR.jS(m) -+ lR. ill an increasing function of all of its variables 
>.1' • .. '-'i>(m)• 

Note that Lm(w, >.1, ... , >-m) = 4cmi(w, >.1, ..• , ,\p(m)), that is, this value does not dependent 

on ,\j>(m)+1,···,>.,,., Let a= E ff and 1= (,\I,••· ,>.;;(m)) E (Ill+)J!(m)_ 
i=J5(m)+l ' 

Thus we will assume the constraint 9JJ{m)(A1, .. - ,A;;(m)) = 1-p- a to hold. 
For all panda, 0 ~ (p + a) < 1 the set GJ>+a = {,\!Y;;(m)(..\) = 1 - p - a} C (IR+)"(m) C m_p(m) 

is a ji(m) -1 dimensional 0 00 manifold with empty border and, for all w En, 4cmJ(w, •) is a 0 00 

function. Thus, the critical points of ½(m)(w, ·) under 9;;(m) (,-onstraint satisfy Lagrange's multipli­
ers equation d£:,;(m)(w,>.•(a)) = "Y1(a)d1JJ;(m)(..\•(a)), >.•(a) E (R~)ll(m) and -y1(a) a real constant. 
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Due to &Gp+n = 0. all local minimum points are critical points. Since, _Jim L,r,(m)(w. ~) = oo 
IJ,\ IJ --:,,_ 

if.GP ... " 

there is a glohal minimum for ½(ml under !liicmJC:X) = 1 - p - a constraint and it is within the 
critical points. 

Now. Vo E [O. 1 - p) we have dl.,,(mJ(w, >.*(a)) = 11 (a)d,9js(m)(>.'(a)) and this relation defines 
(>.*(a),,.n(a)) as an implicit function of a which is also C00 in a. 

Thus lim(>.*(11). )1 (a)) = (,\*(O), 'YI (0)) = (>.• ,1'1) is the solution for dl.,,(m)(..i. ,.\') = ,1d!/ji(m)(,\*) 
•-0 

under the constraint !/p(mJ(,\") = 1 - p. 

Suppose O <a< b. The minimum of £i;(m)(w, µ) under the constraint 1/p(m)(/L) = 1 - p- a> 0 
is less then its minimum under the alternative constraint Up(m)(µ) = 1 - p - b > 0 since, if 
µ = (µ1,, .. ,l'p(m)) satisfies !/ji(m)(µ) = 1-p- b thenµ'= (µ1 - 01, ... ,µy;(m) - Ctj;(rn)) satisfies 

Up(m)(µ') = 1 - p- a for some a= (01 1 ... ,ap(m)) E (lR+)P(m) from which 4cml(w,µ') < 
4(m)(w,µ). 

Thus W<' will assume the constraint 

to hold. 
N dk ( .\) (B½(m)(<0,>.) 8~ (<0,>.)) d (.\) (-2 -2 ) d Bi'if(ml( X) ow, p(m) w, = BA, ' ... ' ... , ; B;;(m) = J;f • ... ' >{(m) an ~ w, = 

Ji(m) i J>(,.,..) i 

¾.-< E ( TI >.,)&,(w)) = E ( TI >.,)a;(w). 
• ia&l j=l i=k :;~ 

p(m) i 

Thus, (>.k)2( E ( TI >.;)u;(w)) = -2,-1 = 'Y for all k, 1 ~ k ~ p(m), and>.• = (>.i, ... , -';(m)' ... , >.:,) 
i=k j=l 

with >.;, p( m) < i ~ m arbitrary real positive numbers. • 

Theorem 3.2. Let p(m) be the greatest integer !us than or equal to m such that Vp(m)(w) > 0 

and for all j, p(m) < j 5 m, V;(w) = 0. 
The optimal m-th order variance based at least probability p, p i- 1, confidence interval for x E R 

is written as [X(w) - L::..(w, >.i, ... , ~). X(w) + i:;,(w, >-i, ... , ~)) where (>.j, ... , >.:,.) E (R+r 
6atisfies: \/j, p(m) < j 5 m, >.; is an arbitrary positive real number and (>.j, .... -';(m)) is within 

p(m) 
the solutions of the simultaneoU6 system ofp(m) + 1 equations E ~ = 1 - p and 

i.-,1 \A•J" 

k 
(>.k)2( n ,\)~m,k(w, Ai,•·•,).,.,..) 
--~•=~1'-------- ---- ='"( 

k-1 
2.t TT Am,,(w,>.1,••·,J.m) 

i=l 
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where n,,.,1(w, >.1, ••• , Am}= V,(w) + >-1+1 / ... + >-m/Vm(w) /orl ~ l ~ m, Jar all k, 1 ~ k ~ 
p(m), and"( a real constant. 

Proof It suffiCf'.~ to observe that 

and 

Note that the void product is equal to one. 

For 2"" order sure inference analysis we have the following closed form for optimal intervals. 

Theorem 3.3. The optimal ,rd order atandard deviation baaed at leo,t probabilit11 p confid= 
interval for x E R u [X(w) - .l;(w), X(w) + L;(w)] when! ~(w) = >-i(u1(w) + >.;u2(w)), >-i = 
✓ 11-:t&~)•-i • 

2 j 

Proof By Theorem 3.1 for ~m) = 2 we have fs + f's = 1 - p, >.f }:( TT >.;)u;(w) = 'Y and 
1 2 i.-J fal 

2 i 2 

~ EC n >.;)u,(w) = 7 which .-educes to >-i = (l- ~fll-1 and >.i(u1(w) + -'2u2(w)) = ~(.X2)o-2(w} 
i•2 J•l p 

thus 01(w) + .\2&2(w) = >.2((1-p),\~ - l)&2(w) from which 

~1 ((w)) + 2>.2 = (1 - p)>.~ 
u2 w 

3 2>.2 r 
>-2- -- - -- =0. 

1-p 1-p 

• 
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We remind that the roots of the cubic equation x3+px+q = 0 are x = ~ -q/2 + J(q/2)2 + (p/3)3+ 

~ -q/2 - J(q/2)'i. + (p/3)3 • Thus 

.x;- 3 
_ r + (- r )2 

_ (- 2 )3 
-L ,J _ r _ ( r )

2 
( 2 )3 

- 2(1 - p) 2(1 - p) 3(1 - p) ' ~ 2(1- p) 2(1 - p) - 3(1 - p) 

I 
If &2(w) = 0 then we have L ~ = 1 - p from which -Xi = ~ -

k~ 1 v•~ 

Theorem 3.4. The optimal !1!"1 order variance based at least probability p coofidence inter­

val for x E lR is (X(w) - L2•(w), X(w) + il"(w)) where £2• = -Xi Vi (w) + )..2J'V2(w) , )..j = 
✓ (~·)• 

(1-,)1i;P-i 1 

and r = V1(w)/JV,(w) for V2(w) t- o. If V2(w) = o then L2°(w) = (1/.,;r=p) Jv1(w). 

Proof Immediate for Pcm) = 1 and for Pcm) = 2 we have -1y + fr = 1 - p and 

>.j ✓Y1(w) + >-2~ >,.~(>.1>.2)~ 

{2)(1) ✓ ~ 
22 \ij(w)+-X2yY2(w) 

that reduces to -X¥ = (i-:iiH and 2,\¥(V1(w) + -X2JY2(w)) = ,\~JV2(w). Thus 

2~{Vi(w) + -X2JV2(w)) = ((1 -p))..~ - l)>.iJV2(w) 

2{r + .\2) = >.2((1 - p)~ - 1) 
~ 3>.2 2r 0 

- (1 - p) - (1 - p) = 
and the result follows. 

Observe that we can define a function A• : [0, I] >< n-+ (R+)m where A(p,w) is the vector, in 

some situations one of the possible vectors, A"(p,w) E (R+>'" that makes the interval [X(w) -
lm(w,A•(p,w)),X(w)+Lm(w,A"(p,w))) have minimum length at probability levelp. Analogously 

we define A"*. 
,. "' t 

Now, we tumour attention to sure inference bands. Define now Lm(w,t, )..1, ••• , >.,,.) = 2:( TI .>.;)a;(w, t) 
i-1 ;-1 

and L:;.(w,t, Al,• .. ,>.,,.)= .\1 J v.cw,t) + .\2 / · · + >.,,.Jvm(w,t). 
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Definition 20. An optimal m-th order nt least probability p band for x : J --+ JR i., a band 
{[X(w, t)-L,.,(w,t, ,\1, ... , .\,,.), X(w, t)+L,..(w, t, A1, ... ,-Xm)]Jt E /} nr {[X(w, t)-L:;..(w, t, At, .•. ,,\,,.) 
X(w, t) +L::,(w, t, .\1, •.. ,-Xm))lt E I} such that for 11ll t E J the corresponding intervals are optimal 
at least probability p interval., for x( t). 

Theorem 3.5. Let for each t E /, p(t. m) ~ thF gf'f'atest integer le.~s th11n or equal tom such that 
O';;(t.m)(w, t) > 0 and for all j, p(t, m) < j $ m,o-;(w, t) = 0. 

The optimal m-th order standard de,riation based at least probability p (p-/ I} confidence band 

for x: J--+ JR is written a., {[X(w, t)- L...,(w, t, -Xi, ... , >.~),X(w,t) + lm(w, t, >.i, .... ~))It E I} 
where (,\i(t), .... ~(t)) E (lil~}'n satisfies, for all t, 1/j, p(t,m) < j $ m, .\;(t) is an arbitrary 
positive real number and (-Xi(t), ... , ~(t,m)(t)) is within the solutions of the simultaneous 11ystems 

ofp(t, m) + 1 equations: 

J(t,m) l Jl(m) i 

:E (,\ ( ))2 = 1 - p arid (.X,.(t))2( :E (Il >.j(t))u,(w, t)) = -y(t) 
k=l k t i-k jsl 

for all k, l ~ k ~ p(t, m), and -y(t) a real constant for each t. 

Proof Direct application of Theorem 3.1 for e11eh t e J. • 

Theorem 3.6. Let for each t E J, p(t, m) be the greatest integer leu than or equal tQ m .auch that 

VJf(t,m){w,t) > 0 and for all j, p(t,m) < j :5 m,V;(w,t) = 0. 
The optimal m-th order variance based at least probability p (p 'F 1} confidence band for 

:,; : J ---, JR is written as {[X(w, t) - l::,(w, t, >.i, ... , ,\~), X(w, t) + L!:,(w, t, >.i, ... , .\:_)lit E I} 
where (.\i(t), ... ,,\~(t)) E (JR~)'" sati,fiu, for all t, Vj, p(t,m) < j ~ m, AJ(t) is an arbitrary 
pollitive real number and (.Xi(t), ... , ~(l,m) (t)) is within the solution, of the llimultaneow systems 
o/p(t,m) + 1 equations: 

where am,1(w, t, A1(t), ... , .\,..(t)) = V,(w, t) + -X1+1(t) J. .. + >..,.(t)✓Vm(w,t) for 1 :5 l :5 m, for 

pll k, 1 $ k :5 p(t, m), and -y(t) a real constant for each t. 

Proof Direct application of Theorem 3.2 for each t E /. • 

Theorem 3.7. The optimal I!"' order .,tandard deviation balled at least probability p confidence 
band/or:,;: I-+ 1R. is {[X(w, t)-L2(w, t), X(w, t)+L;(w, t)]lt E J} where L;(w, t) = .\i(t)(u1(w, t)+ 

A;(t)u;(w, t)), >.i(t) = ✓ {l-p)A~Wn•-1 , 

( 
r(t) ) 

2 
( 2 ) 

3 
• r(t) 

2(1 - p) - 3(1 - p) + 2(1 - p) - ( 
r(t) )

2 ( 2 )3 
2(1-p) - 3(1-p) 



SURE INFERENCE ANALYSIS 

and r(t) = 0-1 (w, t)/o-2(w, t) for o-2(w, t) I- 0. If &2(w, t) = 0 then Li(w, t) = (1/ '\l"f=p)a1 (w, t). 

Proof Consequence of Theorems 3.3 and 3.5. 

17 

Theorem 3.8. TM optimal I!"' order variance ba3ed at least probability p confidence band for :r; : 

I - IR is {[X(w, t)-i2•(w, t),X(w, t)+L2•(w, t)lt E J}] where iit(w. t) = >.i(t) V1(w, t) + >.;(t)✓¼(w, t), 

·( ) - ✓ (>.;(t))' 
At t - (l-pj(>,; (t))"-1' 

,.( ) , r(t) 
"2 t = - -+ 

(1-p} ( 
r(t) )

2 
( 1 )

3 
• r(t) 

(1 - p) - (1 - p) + (1 - p) - ( 
r( t) ) 

2 
( 1 ) 3 

(1- p) - (1 - p) 

Proof Consequence of Theorems 3.4 and 3.6. 

4. OPTIMAL INTERVALS AND BANDS FOR VECTORS AND VECTOR VALUED FUNCTIONS 

In this sectlon we are interested in finding optimal IR9-interval5 for vector values and optimal 

bands for JR"-valued functions. In the previous case, that of IR1
, there was no other sellllible 

way of defining an optimal interval but claiming that it must have minimum length and extend 

this property, in a point-wise manner to bands. Note that we are only dealing with symmetrical 

intervals. Now for .IR9
, q 2:: 2 there la Er-dom in chooeing optimal criteria. For example we could 

say that an 1R9-interval is optimal if its volume (Lebesgue measure) is minimal, or if the lll1Ill of it.a 

edges is minimum, or choose weights for each coonlin11te interval to form an "weighted volume" 

to be minimized. This situation may happen in practice since it is possible that some of the 

coordinates are more important than others and demand a better resolution on their VRlues. 

• m ; 

Let L;,m(w,..\;,1, ... ,..\;,m) = E(TI -\;,1)&;,,(w) and 
i-1 1=1 

lj,,,. = Aj,l V,,1(w) + ,\;,3 ✓- · · + Aj.m JV,,m(w). 

Definition 21. Let M : 1R9 --+ JR+ be a function. An m-th order at lea&t probability p confi-

q t . 
dence interval for :t E R9, n [X;(w) - j,m(w, ,\;,1, .. . , A;.m), X;(w) + L;, ... (w, -\;,1, • • •, ,\;,m)l (or 

;-1 
q n IX;(w)-t;, ... (w,-\;,1, ... 1 -\;,m),X;(w) +tj, ... (w, A;,1, •.. ,..\;, ... )]) U ,aid to be M-optimol if and 

j=l 

only if M(L1,m(w,-\1,1, ... , ..\1,m}, .•• , 19,.,.(w, ,\,1, .. •, Aq,..,)) (or M(Li,m(w, -\1,t, • • •, ..\1,m), • • •, 

L;,m(w, Aq.1, ... , Av,m))) U minimum. 

Clearly we are interested in functiona M that are non-decreasing in all of its variables. 

It is important to note that the concept of M-optimality is quite general. For example, let 

l = (l1 , . . ,,l9) E R 9, L = (Li, ... ,£9) E (JR+)9 and ..\1 = (,\;1, ... ,-\;,m) E (R~r, 1 S j Sq, 

,\ = (,\1 , ••• ,-\q). If{µ,: BR,-. R+-ll E R9 } is a cla.s.s of Borel measUJ"es then minimizing F: 
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lR.q x (lR.+)9 _. JR+ given by F(l, L) = µ,(f1i=l[li-L;,l;+ L11), forl = X(w) and L; = l;,m(w, >.;) 
(or LJ = L';,m(w, >.;)), 1 ::5 j $ q, with respect to>. is the same us minimizing M: (Rt) --+ JR+ 
giYe11 by M(>.1 , ••• , Aq) = F(X(w), L) with respect to>.. That is, for optimal criteria as general as 
choosing Borel measures that may depend on the point X(w) for meru>uring the IR.q symmetrical 
intervals TT:=t [X;(w)- L,(w, >.;), X;(w) + L;(w, ,\;)], we can choose Rn appropriate function M to 
accomplish the same minimization work. 

Let (X,<1,.,u,.), and (X, Vn, Vn) be inferential sequences for x'. 

Theorem 4.1. Let M : (lR+J9 -> JR+ be a C1 function t1Jhich is no"!l-decreasing in all of its 
variables. Define, for all j, P(;,m) as the greatest inte_qer less than or equal to m &uch that 

a;.r,(J ,n,l (w) > 0 and for all k, P(j,m) < k :5 m,u;,i,(w) = 0. 
TIie M -optimal m-th order standard deviation ba3ed at least probability p, p I- 1, confidence in­

q 

terval for x' E JR9 is written as TI [X;(w)-l;,m(w, >.1,1, ... , >-;,,,.),X;(w)+ l;,m(w, .\1,1, ... , >.j,m)l 
i=l 

where (.XJ,1 , ••• ,>.;_m) E (JR+Jm satisfies, for all j, 1 ::5 j ::5 q: 

For all k such that Pc;,m) < k :5 m, >.j,m is an arbitrary positit>e 1-eal number and ( >-;,1 , ... , ,\j,JJu.•>) 
9 

is within the solution., of the simultaneous system of ( E P(;,m)) + 1 equations: 
j:sl 

and 

"llu,'"> ; BM 
(,\;,1)2 { L (JI Aj,.1:)8-;,;(w))~Cx) = 'Y, 

i=I k=I x, 

x = (xi, ... , Xq) (x; = L;,m(w, .x;,l> ... , .x;, ... n for all j and 1, 1 '.5. j '.5. q, 1 $ l $. P(j,m) and 'Y a 
real constant. 

Proof Follow the steps of Theorem's 3.1 demonstration. Let 

1,(q,mj = (tl,m, • • • 1 tq,m} : {l X (JR.+)"'9 -+ (JR.+)q, 

L(q,m](w, ,\1,1, • • •, A1,m,. • •, Aq,1, • .. , A9 ,m) = 

(.l1,m(w, A1,1,, •., A1,m), ... , lq,m(w, Aq.l, ... , Aq,m)). 

Note that Mo Lfq,m](w, ·) is non-decreasing in all of its variables and that the continuity of 

the implicit function argument is still valid since M is a C1 function. Let g(X) = E E ~. 
jam:1 i:a) j,W. 

X = (>.1,1, ... , Aq,m) E (lR+Jmq. 
q -

Now, Lagrange's equation is written d(M o L(q,mJ(w, -)) = '"ndg. Thus E ~ 0£i••"' = -y1 ~ 
k=l., '' 1 ~ 

that reduces to (>.;,1)3!¥,- ~J;.7 = -2'Yt =; since Lk.,n docs not depend on >.;,1 for j ,f, k. 
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m i P(;,mJ i 

LJ ,..(w, Aj.1' .... ,\i m) = })TI Aj,k)ai,i (w) = L (fI A;,.r,)a-;,;(w) and 
i=l k=l i--=l k:l 

from which 

Theorem 4.2. Lrt .M : (lR.+)9 -+ JR+ be a C1 function which is non-decreasing in all of its 

variables. Define, for all j, Pc;,m) as the greatest integer less than or equal to m such that 

V;,l'c;.•>(w) > 0 and for all k, P(;,m) < k 5 m, V;,k(w) = 0. 
The M-optimal m-th order variance based at least probability p, p cl 1, confidence interoal for 

q l . 
x E 1Rq is written as ,TT [X3 (w)- j,m(w,),,1,1, ... ,),,;,m),X;(w) + Lj,m(w,.A;,1, ... ,),,;,m)l where 

J=! 

(),;,1, ... , ,\j,m) E (JR:)"' satisfies, for all j, l 5 j 5 q: 
For all k such that Pu,m) < k 5 m, >-;,m i& an arlntrary positive real number and (Aj,l • ... , A.i,Pc;.->) 

9 

is within the solutions of the simultaneous system of ( ~ .P(j,m)) + 1 equations: ,,., 

where .6.;,m,1(w,.A1,1, .. . ,A;,m) = A;,1 V;,1(w)+>.,,1+1 J. .. +>.;,m✓V;,m(w), X = (x1,,,.,xq), 

x; = LJ.m(w, >.;,1, . .. , A;,.,,.) for all j and l, 1 5 j 5 q, 1 5 I 5 .P(j,m) and 'Y a real constant. 

Proof Analogous to Theorem's 4.1 proof. 

ff the criterium of minimum is that of minimum volume of confidence interwls them we can use 
q 

M = JJ z j. From proctical instances, it may occur that some of the variables are more important 
jzl 



20 JOSE CARLOS SIMON DE MIRANDA 

q 
than others. In this situntion we Cl\ll use weighted volumes and define M = TI x;1 , for a, > 0 

j=I 
real constants that inclic11te the weights associated to each m11gnitucle. 

q 
Theorem 4.3. If M = TI r'J1, the 111 -optimal m-th order standard deviation based at least prob-

1~• 
ability p, p =f I, confidem:e inter11al may be obtained from the solution., of the system: 

Pc,..") s q ,. 

a;(Aj.1)2( L ( TI Aj,k)o-;,;(w)) fl (Ln,m(w, >...,1, · · · ,>...,m))0
• 

----•~=~l _ k=--'-l ~ ____ n_z_ l _____ ___ _ _ =
7 

L;,,..(w, Aj,1, ... , A;,m) 

for all j and l, l ~ j Sq, 1 SI 5. P(;,m) and 7 a real constant. 

q 
Proof Direct application of Theorem 4.1 for M = fl ,,,;, 

;-1 

9 
Theorem 4.4. If t.he M = TI x;1 , the M-optimal m-th order t1ariana: based at least p, p =f l, 

1zl 
confidence inten,,al may be obtained from the solutiona of the system: 

9 Jl(I, ... ) 1 

L L (,\ _ )2 = 1 - p and 
;:::sl 1-1 3,l 

~l =7 
21( .n A;, .. ,.,(w, A;,1, ... '..\;,m))Lj, ... (w, ,\;,1, ... ',\;,m) 

•=l 
for all j and l, 1 S j Sq, 1 S l S Pc;,m) and 'Y a real constant. 

Proof Direct application of Theorem 4.2. 

Lets turn our attention to optimal bands. Note that now we have much more free<lom for ow­
choice of optimwn criteria, since for each point t e J we can choose an M function t.hat will define 
an optimal interval as.-;ociated to that particular point. 



SURE INFERENCE ANALYSIS 21 

Definition 22. Let M: Jx1R'1 --+ 1R+ be a function. An m-th order at least probabilityp confidence 

band for x : I -+ IR.9, 
q 

{fl[X(w, t) - i.;,m(w, t, A;,1, ... , ..\1.m). X(w. t) + l.;,m(w, t, A;,t, ... , A;,m))lt E /} 

j=I 

q 

{or {fl[X(w, t) - Lj.m(w, t, ..\1,1, ..•. ..\;.m), X(w, t) + Lj'_,,.(w, t, ..\;,1, ... , ..\;,m)Jlt E I}) 
j•l 

i., M-optimal if for each and every t E /, the interval 

q 

fl[X(w, t) -L;,m(w, t, ..\;,1, ... ,..\1,m), X(w, t) + L;,m(W, t, A;,1, ... , Aj,m)] 
j=l 

q 

{or fl[X(w, t) - LJ,,,.(w, t, ..\j 1, ... , ..\_;.m), X(w, t) + LJ,m(w, t, ..\;,t, ... , ..\;,m)]) 
j=I 

is M ( t} •optimal. 

Clearly we are interested in functions M : I x 1R9 -+ 1R+ such that for all t E J M(t, •) is 

non-decreasing in all of its variables. 

Theorem 4.5. Let for all t E J, M(t, ·) : (ffi+)9 -+ 1R+ be a 0 1 function which non-decreasing in 

all of it8 variables, Let for all t E I and for all j, P(t,j,m) be the greatut integer lua than or equal 

tom au.ch that u; Pt > (w, t) > 0 and for all k, P(t; m) < k :S m, &; •(w, t) = 0. 

The M -optimal ~'Ji order standard deviation ~d at least probabiliti, p, p # 1, confidenre band 
q • • 

for:,;: I-+ lR.9 ia written as { TI [X;(w, t)-L;,m(w, t, ..\j,J• ..• , A;,m),Xj(w,t)+L;,m(w,t,..\;,1, ••. , A;,,,.)) It E 

j=l 

l} where (A;,1 , ••• ,..\;,m) = (..\;,1 (t) ... . ,..\;,,,.(t)) E (m.+r satisfies, for all t and/or allj, 1 $. j $. 

q: 
For all k such thatP(tJ,m.} < k 5 m, ..\j,.,.(t} is an arbitrary positive real number and (..\;,1(t), ... , ..\;,P(ti,••> (t)) 

ia within the solution6 of the simultaneous system of ( t P(t.;,m)) + I equations: 
j=l 

x = (:z:1,, .. ,:z:9), :z:; = L;,,.,.(w, >.;,;, ... , >.j,m) for all j and I, l 5 j $ q, 1 5 I $. P(tJ,m) and -y(t) a 

real constant for each t . 

Proo! Apply Theorem 4.1 for ea.eh t E J. • 
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Theorem 4.6. Let for all t E J, M ( t, •) : (lR+ )q ..... lll+ be a C 1 function which i$ non-decreasing 
in all of its variableJ. Let fCJ1' all t E / and for all j, ji11,;,m) be the greatest integer less than or 
equal tom such that V;,P<•,i•=>(w,t) > 0 cmdfor cdl k, P(t .j,m) < k::; m, 'V;.1:(w,t) =0. 

The i\,J-optimal m-th order variance based at least probability p, p f- 1, confidence band for x : 
q • • 

I - IRq is written as { TT [Xj(w, t) - LJ',,,.(c..:, t , >-j.1, . . . , >-;,.,.),X; (w, t) + LJ,,,,(w, t, >-;,1, ... , >-j,m)l 
j=l 

where (>.~ 1, ... , ,\* ) = (>.,~ 1(t), ... , >.,• m(t)) E (Ill:)"' .,ati.sfies, for all t and for all j, 1 :$ j :$ q: J, J,ffl I I 

For all k such thatp(tJ,m) < k ~ m, >.;_m(t) is an arbitrary positive real number and (>.;,1 (t}, ... , 
q 

>.~.JS (t)) is within the solutions of the simultaneous system of ( E P(t,j,m)) + 1 equations: 1. U ,J,01,) J-=1 

q P(,.; .... , l 

L L (>.;.1(t))2 = 1 - p and 
;-1 l=I 

t11here a;,m,1(w, t, >.;,1, ... , >.;,m) = >.;,1(t) V;,1(w,t) + >.;,1+1(t) ✓- · · + >.;,m(t)✓'V;,m(w, t), x = 
(xi, ... ,xq), x; = li,m(w, t, >-j,1' ... 'x;,m) for all j and l, 1 ::; j ::; q, 1 ::; I ::; P(t.;,m) and 
1'( t) c real constant. 

Proof Apply Theorem 4.2 for each t E I. • 
We observe that we could have made the at least probability p confidence level vary over I. 

Taking p: I-+ [O, 1) a function that assigns to each point tin I an at least probability level p(t) 
we can, substituting p(t) for p, rewrite Theorems 4.5 and 5.6 and obtain two corresponding new 
theorems for the C&Be where the at least probability level may not be constant on the set I. This 
new statements are true because everything that relates to I iii done in a pointwise manner. 

5. AN EXAMPLE 

In this section we will construct an inferential sequence for the case where the unbiaaed estimator 
X of x can be written as an stochastic integral with respect to a special type of random meBBure. 

Let { be a non-negative random measure with state space X, a complete separable metric space. 
Let also D be the diagonal set {(x,x)lx E X} c X 2 and ir1 the first projection 1r1 : X2 -+ X, 
ir1(x,y}=x. 

Definition 23. A random measure{ is said to satisfy assumption A if and onl11 iJ E(exe)(AnD) = 
E{,r1(A n D) for all A E Bx• Borel set of X2 • 

Definition 24. A random mea.wre { is said to MtisfaJ assumption B if and onl11 if (Ee x Ee)(D) = 
0. 
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Definition 25. A random measure { is said to satisfy assumption C if and only if VA, B E Bx 

(An B = 0-+ Cov(E,(A),{(B)) = 0). 

Theore1u 5.1. Let A E Bx be a bounded Borel set and f : X -+ IR be Borel measurable arid bounded 

over bounded sets. Suppose that { samfies Msumptions .A, B and C and that X = f fdl;, : f! -+ Ill 
• • A 

i.s m1 ,mbia.ml estimator for z. Then (X, V,., V,.), tL-hert' I'., .,,, J.,, /2" cl{ and V,, = E f
11 

p• dE,, is 

an inferential sequence of random variables for x. 

Proof 

(i) EX = X by hypothesis. 

Var (X) = E( { fd{)2 
- (E / /d{)2 = E( { J ® fd{ x d{) - (1 f Ed{)2 

}A }A }A, A 

= r 1 ® tE(de x di;.) - r , ® J(Ede> x (EdO 
}A. IA• 

= f /®/Cov(dl;,,dl;.)+ f f®/E(dE,xclE,)- { f®f(EdE,)x(EdE,) 
JA'-D JA2nD JA'nD 

= 0 + L ! 2 Edi;.+ 0 = EV1 = Vi-

(ii) Substituting 12• for fin item's (i) argument we have Var V,. = E(JA / 2" dl;.)2-(E JA p• dl;,)2 = 
I A u2• ) 2 Edi;,. Thus Var V,. = I .. 12•+• Ed{ = V,.+I · 

(iii) EV,.= V,. by construction. 
(vi) \lw En V,.(w) = f.-t / 2" ds(w) ~ 0 since / 2" (,i,} ~ 0 for all ,i, EX. 

• 

Some estimators used in point processes intensity function estimation are special cases of the one 

presented above. For a detailed example of inferential sequence of random variables and inferential 

sequence of stochastic processes for the estimation of real values and functions accompanied by 

the presentation of some inference bands, see de Miranda and Morettin (2003). 

6. SURE INFERENCE WITH EXTRA INFORMATION - APPLICATJONS TO SMALL SAMPLE 

CONFIDENCE INTERVALS FOR THE MEAN 

The examples that follow illustrate the use of sure inference in situations where we have 110me 

information on the random variables distribution. 
In Theorems 6.1 and 6.2 we construct variance based and stand11rd deviation based inferential 

sequences for the mean of non-negative random variables. 

Theorem 6.1. Let Y : f!1 --t lR+ be a non negative random variable. Defirn! v E R by Var Y = 
vEY; µ = EY, and suppose J/1, .•• ,y,. is an i.i.d. sample of Y. Then X = (E:,.1 Yi) /n, Vm = 

cr-o • c2--11 
(;) µ and Vm = (;) X is an inferential sequence forµ. 

Proof (i) EX= (.~:;=1 EY)/n =µ;Var X == ¼Va.rY = ;;EY = ~µ = V1. 

{ .. ) V ·(II.. )- (.!!.)(2M+l_2)., x- (")(2M+1_1) _ V. 
11 ai .,. - " var - ;;: µ - m+I· 
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( ... ) EV.. ("')'2'"-ll EX V. 111 na = ;; = m• .. 

(iv) Since Y is non-negative, so is X and, consequently, V,,. for all m E JN•. 
Theorem 6.2. Let Y : 0 1 -+ JR+ be a non negative mndom variable_ Define II E JR by Std (Y) = 
11EY: I'= EY and auppose y1, ••• ,y,. is an i.i.d. sample of Y. Then X = U:::::_,1 y,) /n, Um = 

( -y::) "' 1, ,md Om = ( '7,,) m X is a standard deviat·wn ~,e,l infere11tiul at:quen<:e forµ. 

Proof {i) EX=µ; Std (X) = 81vf> = j,:µ = u1• 

(ii) Std(om) = (1:)"' Std(X) = (1:)m+l JI= Um+l· 
(iii) Ea.,, = ( 'Tnr EX= um. 
(iv) Immediate. ■ 

Theorem 6.3. Under the same hypothesis and notation as in theorem 6.1 (or 6.2), let a = 
T( y1 , ••• , y,.) + c, where T is a linear tranafonnation, T = ( c1, ... , c,.), and c i., a real con-

. . • UTU'm .,(2"'-l) stant, be an unbiased estimator for a parameter a E JR. Then, a, Vm = n<••• 1_1) µ and 
. urn•··.,<•""·') • ...IITII""'._ • ~ . . . th V,., = n(•"'·•-•i X (or a, Um=~µ, u,,. = ~X) is an inferential .tequence for e 
parameter a. 

Proof For variance based inference. 
(i) Ea.= n; Var(a.) = Var(T(y1,--•,t1n) +c) == (E;'..1 ~)VarY = IITll 2vµ = V1. 
.. • nrn•-+• .,<•"'+'-•> 1ra•-· .,<•"'+> -I) 

(11) Var(V,,.) = nW"-•I Var X = nl•M-11 µ = Vm+l• 
(iii) and (iv) immediate. 

For standard deviation based inference. 
{i) Std(ii) = Std(T(111,, .. ,y,.)) = v""IIT"""'H2r.V:-:-ar-:-:Y = JITllvµ= UJ, 

.. . ~ "f~+• (11} Std (u,,.) = ~Std (X) = n,.. µ:::: Un+J• 

(iii) Md (iv) immediate. ■ 

Since we don't know the distribution of Y, the sure inference intervals for its mean are calculated 
as before. 

Now we will consider examples where we know the distribution of Y. This information will be 
used for constructing ,ure inference interval, under knowledge of diatribution. 

Theorem 6.4. Let Y be a Poiason dutributed random variable with meanµ (Y ~ Pois.ton{µ)); 
lll,••·,t/n be an i.i.d. sample o/Y, Z == (E:'_1 y;), X =s Z/n, Vm = (¼)r (nµ} and V.,. = 
(¼ )20

~ Z. For 01 E (0, 1) let ,\1 = ,\1(01) and >.t = .>.t(o1) be such that P{nµ - .\1 y'nµ :5 Z' :5 
rtµ+ .>.t y'nµ} = 1 - 01, where Z' ~ Poisson(nµ), and ,\i - ,\1 ii minimum. Form ,:: 1, let 
,\,,.+1 = ,\m+1(om+1) be .tuch that P{Z',:: nµ- ,\m+iv'n[:i} = 1 - Om+l· Then, for all m E JN•, 
we hat1e · 

P{µE [~--'! Jz+.\2 Jz+ ... +.\,,.vn[i,~+,\I ✓Z+.\2Jz+- .. +,\m/4]} 
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Proof Since Y ~ Poisson(µ) we can use Theorem 6.1 with 11 = 1 which yields the infer­

ential sequence X , v;,. , Vm, Observe that Z = L~=I y, is Poisson distribute<l and we have 

Z ~ Poisson(111,) ~ Z'. Now we proceed as in theorem's 2.1 proof. Noting that we ha,·e freedom 

to choose asy111111etrical intervals and that 

P{X E ~' - >.1 #i,1• + >.f .JVi°]} = P{ Z E [nµ - .\11/"nµ,nJ• + >.f ,.'nµ]} =- I ·- n 1 

and, for all 111 E JN•, 

P{Vm + Am+1JVm+1 ~ Vm} = P{ (~) r Z ~ (¾)r nµ->.m+I / (¾) 2

,.'" nµ} 

= P{ Z ~ 11µ - Am+1Jiiji'} = 1-am+li 

we have 

P {µ E [x - >-t / V1 + >-2 ✓+ ·· · + >.=...rv,:,X + .\1 ✓½ + >.2 ✓+ · · · + >-m...rv.:]} 
m 

~ 1- :Eu,. 
i=l 

Now, substituting Z/n for X, V;, 1 ~ j ~ m-1 and Vm for their expressions, the result follows. 

The theorem above furnishes an m-th order sure inference interval for the rnean of a Poisson 

distributed random variable. Let us call it sure inference interval under knowledge of distribution. 

This interval is approximated for practical purposes by 

[ ~ - >.! ✓ Z + >.2 ✓ Z + · · · + Am ..fz, ~ + >.~ ✓ Z + >.2 ✓ Z + · · · + >.,,. Jz] . 
We observe that one might think that theorem 6.4 is useless, since we could have simply stopped 

at the first order inference to obtain 

(3) P{µ € [~ - >.! ✓rfji,~ + >.~ ✓rr;;]} = l-a1, 

which reduces to 

where ja, bj = (a, b) U (b, a), with probability 1 - a1, i.e., probably (with probability 1 - a2) the 

smaller interval with the higher assured probability level within the former inte.vals; but this is 

not the case from a statistician's point of view. First, in practice, it is common not to know 

exactly what the distribution of the data is; so, asswning that the data is a realization of a Poisson 

distributed random variable is something that hBB to be checked, a tBBk that will require, for a 

reasonable confirliance level, some minimum size for the data set. Second. if we have some clue, 

for example from mathematical modelling of the situation under study, that the <listrihution is 
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approximately a Poisson one, it may be wiser not to assume it to be exactly a Poisson distribution 
and use the exact relation (3) but prefer instead to use higher order inferential intervals. 

So, for small smnple from Poisson or Poisson like distributions the use of at least second order 
sure inference iutervals may be appropriate. 

Now let Y ~ Gamma(a, /3) be a gamma distributed random variable. Its density function is 
~, ·· 1 - Ji/ff 

written !IS J(y) = v ,n\ai for y > O and f(y) = 0 for y $ 0, for positive real constants a and 
/3, We remind that ,, = o/:J and u2 = o./;P. Obsen·e that for {3 = 1 we haYe µ = <l = u2 and we 
are under theorem's 6.1 hypothesis. On the other hand, if o = 1 thenµ= fJ = r, and theorem 6.2 
may be applied. 

Using the same notation as in theorem 6.4 we v1rrite the following theorems. 

Theorem 6.5. Let Y ~ Gamma(µ, 1) and Z' ~ Gamma(nµ, I). Then, for all m E IN", we have 

P{µ.e [~ - >.! J z+>.2 J z+ .. +>.,,.Jnµ,~+ :i z+>.2 J z+--+>..,,,foli} 

Proof Just note that Z ~ Gamma(nµ, 1) and follow the steps on theorem's 6.4 proof. 

Theorem 6.6. Let Y ~ Gamma(l, µ.) = exp(µ) and Z' ~ Gamma(n, µ). Let also X = Z/n, Um = 

(-j;:)m µ and um= ( -j;.)"' !- For>.t and>.1 definedbyP{nµ (1- $i:) $ Z' $ nµ (1 + i)} = 
1 - 01, for which >.t - >.1 i8 minimum and Am+J such that P { Z' 2:: nµ ( 1 - >,,rn')} = l - Om+J 

for all m E N*, we hattt: 

P{µe [~(1-l(1+ ;(1+ Jn(-•(l+ ~(~))···)))), 
~(1+ ~(1+ ;(1+ Jn(--·(l+ ~(~))···))))]}, 

Proof Observe that Z ~ Gamma( n, µ) and follow the steps in theorem's 6.4 proof with appropriate 
modifications from variances to standard deviations. 

The corresponding "practicar intervals obtained by substituting Z for nµ in both intervals 
above may be used for small sample inference of the mean for Y ~ Gamma(µ., 1) and Y ~ exp(µ). 

7. CONCLUSIONS 

In this article we propose an analysis of inference that is based on the principle of systematically 
doubting all assumptions that are made and all intermediate results that are obtained in the path 
to the main conclusions we want to drl\W from the information we have. This approach may 
generate a series of questions about the assumptions, the intermediate results and nlso about their 
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po55ible answers in a cyclic way and we will want to answer these questions in a most conservative 

way. We do so in order to obtain secure and cautious conclusions. These conclusions avoid to the 

nmximum extent, while it is .,till conve11ie11f., nil doubts. Clearly, we will want to use all relevant 

available information. 
As a matter of fact, we have presented a procedure for calculating confidence intervals. This was 

done for situations under whicl1 t!ithe1 we cmmot or Wt! <lu uot w1,ut to ~ume auy distril,utiou for 

the data as well as for situations where we know some extra information that comes from outside 

the data as, for example, model 38.'lumption.-; relating means and variances, means and standard 

deviations or even the distributions of the random variables. 
Typically, as an intermediate answer is also an sffirmation to be questioned and checked, this 

procedure generates an infinite sequence of questions of the same type. One way of capturing 

this featw·e is the use of inferential sequences. This analysis of inference will always assume the 

worst case to draw conclusions, i.e., as if the inference situations were such that they were always, 

as much as they could possibly be. agninst the conclusion we want to arrive at. This feature is 

reflected in the construction of sure inference i11tervals and sure inference intervrus under extra 

information. 
We observe that this work suggests the existence of ortlers of inference. In this line, information 

that comes form outside the data, like knowing the distribution of a random variable, knowing 

the value of 11 = Var X/ EX for non negative random variables, knowing a bound for some of the 

moments of a random variable, or other hypothesis or assumptions, may be regarded as an infinite 

order inferential statement since, informally, it brings certainty to our analysis which can not be 

reached by finite order inference. 
This article ls a finit collection of definitions and theorems that fit in this general idea of sure 

Inference analysis. 
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