
DEFORMATION THEORY OF ONE-DIMENSIONAL SYSTEMS

DANIEL SMANIA

Abstract. Something remarkable occurs with one-dimension dynamical sys-
tems, that is, maps acting on either an interval or circle. Maps are often not
structurally stable, however their topological class is an infinite dimensional
smooth manifold with finite codimension. This implies that the theory of de-
formation of those systems is quite rich. Recent developments suggest that the
study of the existence, uniqueness and regularity of solutions for certain coho-
mological equation is crucial for a better understanding of these phenomena,
and ergodic theory plays an important role in this study.
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1. Topological classes

Dynamical systems arise as models to things that evolve with time. However
rarely your model is indeed exact, but you hope that at least some of the dynamical
properties of your model resists to small perturbations, otherwise modeling itself
would be a waste of time.

Perhaps the best known form of persistence of dynamical properties is structural
stability. We say that a dynamical system f : M →M acting on a topological space
M is structurally stable if a small perturbation g : M → M (on an appropriated
topology on the set of all concerning maps) has the same topological dynamics of
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the original map, that is, there is a homeomorphism h : M →M that conjugates f
and g,

g ◦ h = h ◦ f
and furthermore h is close to identity. That means that f and g are undistinguable
from the topological point of view.

Structural stability is a strong property that is not satisfied by all dynamical
systems. However, it is an important concept in many areas of mathematics and
physics. Hyperbolic maps are an interesting class of dynamics that are structural
stable. Those include Anosov maps and expanding maps acting on manifolds, as
well as horseshoes (see Hasselblatt and Katok [27]) They have a quite complicated
dynamics and yet they are structurally stable.

One may ask whether the conjugacy could be more regular than just a homeo-
morphism for hyperbolic systems. It turns out that is really rare that the conjugacy
is smooth (let say, C1). There are very simple smooth invariants, that is, dynamical
properties that are preserved by smooth conjugacies, but that are not preserved by
homeomorphisms.

Indeed, if we consider a fixed point f(p) = p which is hyperbolic, that is Dpf

is a hyperbolic linear map, then for g close enough to f there is a unique fixed
point q for g close to p, which is also hyperbolic. But a suitable small perturbation
g of f can make the eigenvalues of Dqg to be completely distinct from those of
Dpf . However if a conjugacy h is smooth then those eigenvalues are identical.
Hyperbolic maps may have loads of hyperbolic points, so this is a serious obstruction
for additional regularity of the conjugacies. Indeed under certain circumstances the
marked spectrum of periodic points is a complete smooth invariant (see Shub and
Sullivan [54], Martens and de Melo [44] and Li and Shen [36]). See also de la Llave
[17] and McMullen [46].

So, although small perturbations of a structurally stable map have exactly the
same topological dynamics, the geometric features of the perturbation can be
quite different. Not just the spectrum of a periodic point can change, but also the
Haussdorf dimension of some invariant set, as well as its physical measures.

1.1. Flexibility and ”almost” structural stability in one-dimensional dy-

namics. Could we do a similar analysis of the deformation of the geometry for
maps that are not structurally stable? The set of all maps that are conjugate to a
map f is called the topological class of f , that we will denote by Tf . It is notewor-
thy that finding ”trivial” deformations of a dynamical system f0 can be achieved
with relative ease. We just pick a isotopy of diffeomorphisms ht with h0 = Id and
consider ft = ht ◦ f0 ◦ h−1

t . That is not an interesting kind of deformation since ft
is a priori smoothly conjugate to f0.

However in one-dimensional setting, that is, maps acting on either an interval or
circle, something remarkable happens. Maps are often not structurally stable, but

Often topological classes are a smooth Banach manifold with positive finite codi-
mension.

In particular there is a rich theory of deformations of such dynamical systems,
since we can find many smooth families

(1.1) t 7→ ft
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of maps inside a given topological class. So dynamicaly-defined objects as periodic
points and their multipliers, invariant measures, and so on, also deforms along
such family and we can ask how this occurs and sometimes even quantify it. One
interesting application is linear response theory for physical measures. See Ruelle
[52] and Baladi and S. [6][8].

The most basic question is perhaps how the conjugacies are deformed. If (1.1)
is a deformation in the topological class of f then there is a family of conjugacies
ht satisfying

ht ◦ f0 = ft ◦ ht
and we can ask how smooth is the function

(1.2) t 7→ ht.

If this function is indeed smooth it follows quite easily that many dynamically
defined objects also move in a smooth way. For instance if p is a n-periodic point
of f0 then ht(p) is n-periodic point for ft, so it also moves in a smooth way with
respect to t. Moreover the Lyapunov exponent of this periodic point

t 7→ lnDfn
t (ht(p))

is also smooth.
Furthermore if µ0 is a measure of maximal entropy of f0 then µt = h⋆tµ0 is a

measure of maximal entropy for ft, and for a smooth observable ψ we have that

t 7→ µt(ψ) =

∫

ψ ◦ ht dµt

is also smooth provided (1.2) is regular enough. Similar results for physical measures
(linear response) are more involved (See Baladi and S. [6]).

2. The structure of topological classes: a road map

How could we study the smooth structure of a topological class? First we need
to model the space of all possible maps. To give a simple example, consider the set
of all piecewise Cr expanding maps acting on an interval I. One can see this set as
a convex set inside a space of piecewise Cr functions acting onI. That convex set
itself has a smooth structure. See Grotta-Ragazzo and S. [26].

If the topological class Tf of a map f has a smooth structure, then for every
vector v in the tangent space of f in Tf one can find a smooth family ft such that
ft ∈ Tf for every t, f0 = f , v = ∂ft|t=0 and

∂tft = vt,

with v0 = v. In particular since ft is conjugated with f0 there is a family of
conjugacies ht such that

(2.3) ht ◦ f = ft ◦ ht.
The next step is perhaps surprising. As we saw it the conjugacies are not smooth

in general. However often

t 7→ ht(x)

is indeed quite smooth with h0(x) = x. The most well-known situation are Beltrami
paths in holomorphic dynamics, since families of conjugacies are often holomorphic
motions (introduced in Mañé, Sad and Sullivan [42]. See de Faria and de Melo
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[14] for holomorphic motions and other methods in holomorphic dynamics), but it
seems to be a common phenomena in one-dimensional dynamics. So define

αt(x) = ∂tht(h
−1
t (x)).

Of course

(2.4) ∂tht(x) = αt(ht(x)).

It is remarkable that one can find αt a priori, without knowing ht itself. Indeed
one can differentiate (2.3) with respect to t, and obtain

(2.5) vt = αt ◦ ft −Dft · αt.

The argument is simple. Let y = ht(x). We have

∂t(ht(f(x))) = ∂t(ft(ht(x)))

∂tht(f(x)) = vt(ht(x)) +Dft(ht(x))∂tht(x)

vt(ht(x)) = ∂tht(f(x))−Dft(ht(x))∂tht(x)

vt(y) = ∂tht(f(h
−1
t (y)))−Dft(y)∂tht(h

−1
t (y))

vt(y) = ∂tht(h
−1
t (ft(y)))−Dft(y)∂tht(h

−1
t (y))

vt = αt ◦ ft −Dft · αt.

The reader can see that a formal solution αt for this cohomological equation is

(2.6) αt(x) = −
∞
∑

i=0

vt(f
i
t (x))

Df i+1
t (x)

.

If ft is invertible there is an analogous formal solution iterating backwards (see
the next section, where we deal with Anosov maps). As a consequence we see
that if v belongs to the tangent space at f of the topological class of f then the
cohomological equation

(2.7) v = α ◦ f −Df · α
does have a solution, at least formally, given by (2.6) for t = 0. Note that in simple
settings, as for one-dimensional (piecewise) expanding maps, such formal solution
does converge, and we hope that when some hyperbolic inducing is possible, one can
find a actual solution of (2.7) using (2.6). We call α an infinitesimal deformation
of f .

In good situations, if we can solve the cohomological equation along a family ft
we can reverse this argument. We can consider the ordinary differential equation
(2.4) and, if it is uniquely integrable we can obtain a flow ht that indeed conjugates
ft to f0.

So we want to characterize the vectors v tangent to the topological class Tf
studying the existence, uniqueness and regularity of the solutions of the coho-
mological equation (2.7).

There are many regularity conditions for α that imply unique integrability. The
usual Lipchitz condition is one of them, but we are going to see that it is rare that
α is Lipchitz in the hyperbolic setting. Weaker regularities such as Log-Lipchitz
and Zygmund conditions are usually more useful. As a bonus, those regularities
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imply that the conjugacies ht are Hölder and quasi-symmetric, respectively (See
Reimann [51]).

3. A simple example: Anosov maps are structurally stable

Let M be a compact manifold with a Riemannian metric and f : M → M be a
C1 diffeomorphim such that M is a hyperbolic set. We say that f is an Anosov
map. It is well-known that Anosov maps are structurally stable. We provide a
fairly simple proof of this result using a new method that illustrates quite well
some of the main steps in the previous section. We list facts one can prove using
well-known methods in hyperbolic dynamics (see Hasselblatt and Katok [27]).

Theorem 3.1. There is a neighborhood V of f in C1(M) such that every g ∈ V

is an Anosov map. Indeed, there are linear projections

πg
s : TxM → TxM, πg

u : TxM → TxM

on each tangent space TxM such that

A. We have πg
s ◦ πg

u = 0 = πg
u ◦ πg

s .

B. v = πg
s (v) + πg

u(v)
C. We have that πg

s : TM → TM and πg
u : TM → TM are continuous.

D. We have that

g ∈ V 7→ πg
s and g ∈ V 7→ πg

u

are continuous.
E. Es

g(x) = πg
s (TxM) and Eu

g (x) = πg
u(TxM) are the stable and unstable di-

rections of g.
F. There are C > 0 and λ ∈ (0, 1) such that

|Dxg
n(πg

s (v))| ≤ Cλn|πg
s (v)| and |Dxg

−n(πg
u(v))| ≤ Cλn|πg

u(v)|
for every n ≥ 0, v ∈ TxM and g ∈ V .

G. There is ǫ0 > 0 such that for every g ∈ V and every x, y ∈M , with x 6= y,
there is k ∈ Z such that d(gk(x), gk(y)) > ǫ0.

Theorem 3.2. Anosov maps are structurally stable.

Proof. Let V be as in Theorem 3.1. Without loss of generality we can assume that
for every g ∈ V there is a smooth path ft, with t ∈ (−δ, 1 + δ), such that f0 = f

and f1 = g and gt ∈ V for every t.
For every (x, t0) define

vt0(x) = ∂tft(x)|t=t0 .

Note that vt0(x) ∈ Tft0 (x)M and

x 7→ vt0(x)

is continuous for every t0.
Define the vector field

αt(x) =

∞
∑

k=0

Dfk
t (f

−k
t (x))·πft

s (vt(f
−(k+1)
t (x)))−

∞
∑

k=0

Df
−(k+1)
t (fk+1

t (x))·πft
u (vt(f

k
t (x)))

Note that

(x, t) 7→ αt(x)
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is continuous and it satisfies

(3.8) vt(x) = αt(ft(x)) −Dft(x) · αt(x).

Given x0 ∈M , we claim that the initial value problem

(3.9)

{

ẏ = αt(y),

y(0) = x0.

has a unique solution y : [0, 1] → M . The existence follows from Peano existence
theorem. To show the uniqueness, note that (3.8) implies

yn(t) = fn
t (y(t))

is a solution of initial value problem

(3.10)

{

ẏn = αt(y
n),

yn(0) = fn(x0).

for every n ∈ Z. Since there is C such that

|αt(x)| ≤ C

for every (x, t) ∈M × [0, 1], it follows that

d(fn
t (y(t)), f

n(x0)) = d(yn(t), yn(0)) ≤ C|t|,
so if y⋆ and y are two solutions of (3.9) we have that

d(fn
t (y(t)), f

n
t (y⋆(t))) ≤ 2C|t|

for every n ∈ Z. But Theorem 3.1.G implies that y(t) = y⋆(t) for t small. That
proves the claim. Denote by ht(x0) the unique solution of (3.9). Then fn

t (ht(x0))
and ht(f

n(x0)) are solutions of (3.10), so

ht ◦ f = ft ◦ ht.
The continuity of

(x, t) 7→ ht(x)

and that ht are homeomorphisms on M can be also obtained using similar argu-
ments. �

Question 3.3. How regular are the infinitesimal deformations αt in this setting?
We believe they are Zygmund, but we are able to prove that only for linear Anosov
maps (See Grotta-Ragazzo and S. [26]).

4. Historical remarks

There are many distinct Riemann surfaces homeomorphic to a given compact
surface M with genus larger than 1. The set of all possible conformal structures
(up to isotopy) on M is called the Teichmüller space of M . It turns out one can
give a differentiable structure (indeed complex analytic) to the Teichmüller space
and we can ask how its geometric properties (for instance the length of a closed
geodesic) changes along a deformation. One can easily argue that the theory of
Teichmüller spaces is one of the most influential developments in XXth century
mathematics. J. Hubbard’s book [29] is a quite good modern book on the subject.
One of the main tools in this theory is quasi-conformal methods.

Teichmüller theory has a wide range of applications, including in the study of
low-dimensional topology, hyperbolic geometry, as well as generalizations as the
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study of moduli spaces in many areas of mathematics, including complex analysis,
algebraic geometry, and geometric group theory.

The representation theory of groups is a branch of mathematics that studies
how groups can be represented as linear transformations on vector spaces. More
formally, a representation of a group G in GL(V ) (or the projective linear group
PSL(V )), where V is vector space is a homomorphism from G to the group of in-
vertible linear transformations on V . This homomorphism is called a representation
of the group, and it associates each element of G with a linear transformation on
V . Of particular interest are discrete representations. For instance, those appear
naturally when we represent a hyperbolic Riemann surface as a quotient space of
the hyperbolic half-plane by the action of discrete subgroups of isometries. Indeed,
the Teichmüller space can be seen exactly as the set of all possible suitable discrete
representations of the fundamental group of the given Riemann surface (see Saito
[53]).

On this and other circumstances, the set of all possible discrete representations
has a smooth structure and we also can talk about infinitesimal deformations. As
for infinitesimal conjugacies, the earliest reference we know of the concept (using the
term infinitesimal deformations) is in the work of A. Weil on cohomology of groups
[58]. This was very influential, in particular in studies of ”infinitesimal rigidity”.
For instance the work of McMullen on rigidity [47] for certain 3-manifolds and
quadratic-like maps. McMullen first proves rigidity for the infinitesimal conjugacy
and then integrate this to obtain rigidity of the conjugacy. Indeed one can also see
similarities with earlier work on deformations of complex manifolds by Kodaira and
Spencer (see Kodaira [35])

Since its introduction by Mañé, Sad and Sullivan [42] holomorphic motions are
often used to study the dynamics of rational maps, polynomial-like maps, transcen-
dental functions and Fuschian groups. Overall, the deformation theory of rational
maps and holomorphic motions is a rich and important area of complex dynamics.

Cohomological equations appear quite often in dynamics (see for instance Livšic
[37], Avila and Kocsard [3] and de Faria, Guarino and Nussenzveig [16]), and in
particular when dealing with deformations problems. Perhaps some of the earliest
examples are the rigidity of real analytic perturbations of circle diffeomorphisms by
Kolmogorov and Arnold [2] and the already cited work by A. Weil [58], both with
a lasting impact.

In hyperbolic dynamics there is a long line of results on differentiability of topo-
logical entropy and Hausdorff dimension of hyperbolic invariant sets, where infin-
itesimal conjugacies appears (not explicitly with this name). See Katok, Knieper,
Pollicott and Weiss [31]. Indeed, earlier work on structural stability of Anosov dif-
feomorphisms by Moser and Mather uses infinitesimal conjugacies, as in Moser [49].
Infinitesimal deformations and thermodynamical formalism appears in the study of
deformations of compact hyperbolic manifolds in Flaminio [22]. The relation be-
tween infinitesimal deformations and the Weil-Petersson metric is the main theme
in Fathi and Flaminio [20]. Indeed, one can see Teichmüller theory of a compact
Riemann surface as a study of deformations of certain piecewise-moebius maps as-
sociated with a fuschian group, the so called Bowen-Series map [10] (see also Adler
and Flatto[1]). This point of view is essential to McMullen’s [48] interpretation of
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the Weil-Petersson metric as a dynamically defined object. Infinitesimal conjuga-
cies were also used to study the action of pseudo-Anosov maps on representation
groups (see Kapovich [30]).

In Teichmüller theory and complex dynamics (using quasiconformal maps ap-
proach) the differentiation of the conjugacy with respect to the parameter is often
a consequence of powerful results on the analytic dependence (and formulas to its
derivative) with respect to the parameter for solutions of Beltrami equation. That
includes the measurable Riemann mapping theorem and holomorphic motions, so
infinitesimal deformations often do not appear explicitly. In R. Mañé [41] work
on the instability of Herman rings infinitesimal conjugacies play an essential role.
M. Lyubich [40] gave an fairly complete picture for deformations of quadratic-like
maps that were important to understand renormalization of those maps, and there
infinitesimal deformations take the front row. This was the main influence for our
contributions.

More recently Baladi and S. [6][7] studied deformations of piecewise expanding
unimodal maps, mainly to apply it in the theory of linear response of those systems,
and later on in the study of linear response for certain Collet-Eckmann maps.

5. Topological classes and infinitesimal deformations

From now on we will keep ourselves to the one-dimensional setting, where we
are able to give far more complete answers. Suppose for instance that we have a
smooth family ft of piecewise expanding maps acting on an interval I. We can
ask when there are no bifurcations on ft, that is, when ft is always belong to the
topological class of f0. It turns out that

Theorem 5.1 (Characterization of smooth deformations. Grotta-Ragazzo and S.
[26]). Under fairly general conditions the following statements are equivalent

A. ft belongs to the topological class of f0 for every t.
B. For every t the cohomological equation (2.5) has a continuous solution αt.

For k large enough consider the set PEk([a, b],D) of all Ck piecewise expanding
maps on an interval [a, b] whose discontinuities lie exactly on n points in

D = {x1, . . . , xn} ⊂ (a, b)

One can easily model PEk([a, b],D) as an infinite-dimensional Banach manifold.

Theorem 5.2 (Dimension of Topological classes. Grotta-Ragazzo and S. [26]).
For k large enough we have that the topological class of f ∈ PEk([a, b],D) is an
infinite-dimensional smooth submanifold of codimension 2n + 2 in PEk([a, b],D).
The tangent space of the topological class at f is exactly the subspace of piecewise
smooth functions v having a continuous solution α for the cohomological equation

v = α ◦ f −Df · α.
Question 5.3. How far could we generalize this result for other kinds of one-
dimensional maps, such as unimodal maps with non flat critical points, circle dif-
feomorphisms with break points, generalized interval exchange transformations with
finite smoothness?

Question 5.4. Are the topological classes connected? Are they contractible?

Question 5.5. Can we endow the topological class with an interesting complex
analytic structure?
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There are previous results on the smooth structure of topological classes, as the
work by Lyubich [40] on quadratic-like maps. The connecteness of the topological
classes of (real) quadratic-like maps follows from the Riemann Measurable Mapping
Theorem and the quasisymmetric rigidity of those maps, a deep result by Lyubich
[39] and Graczyk and Światek [24]. The proof that the hybrid class of quadratic
(a sort of complexfication of the topologival class) is contractible is a more recent
result by Avila and Lyubich [4]. We also cite the work of Goncharuk and Yampolsky
[23] for analytic circle diffeomorphisms.

There are also recent results on the structure of topological classes of real analytic
one-dimensional maps by Clark and van Strien [12]. All these works crucially em-
ploys complex dynamics methods. In contrast, we use real dynamics and specially
ergodic theory. In Baladi and S. [6] there are some related results for piecewise
expanding unimodal maps.

6. The regularity of infinitesimal deformations

Turns out that α is continuous, however one can asks if it is more regular than
that. Since the conjugacies are often not Lipchitz, α can not be Lipchitz itself.

Let f be a C2+β expanding map on the circle and v : S1 → R be a C1+α function.
So there is an unique bounded function α : S1 → R satisfying

v = α ◦ f −Df · α.
The solution α is given by the formula

α(x) = −
∞
∑

i=0

v(f i(x))

Df i+1(x)
.

We have

Theorem 6.1 (de Lima and S. [18]). For δ ∈ R close to zero we have

α(x + δ)− α(x) = δ
(

N(x,δ)
∑

i=0

φ(f i(x))
)

+O(δ),

where

φ =
Dv +D2f · α

Df

and N(x, δ) is the unique positive integer that satisfies

1

|DfN(x,δ)+1(x)| ≤ |δ| < 1

|DfN(x,δ)(x)| .

This looks quite technical, however the main consequence is that there is a deep
connection between the regularity of α with the dynamical behavior of the Birkhoff
sum of an observable φ. It immediately follows that

Corollary 6.2 (de Lima and S. [18]). The infinitesimal conjugacy α is a Zygmund
function, that is, there is C such that

|α(x + δ) + α(x − δ)− 2α(x)| ≤ C|δ|.
Remark 6.3. In particular α is Log-Lipchitz, that is, there is C > 0 such that

|α(x + δ)− α(x)| ≤ −C|δ| log |δ|
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for small δ (see Zygmund [60]). The Log-Lipchitz continuity implies that (2.4)
is uniquely integrable, since α satisfies the Osgood condition for unique integra-
bility. Indeed the Zygmund condition in dimension one implies that the flow is
quasisymmetric (See Reimann [51]), so the conjugacies are quasisymmetric.

Remark 6.4. The observable φ has a very odd-looking formula. However it has a
simple but deep meaning. Indeed, suppose that ft is a smooth family of deforma-
tions of f0 = f , that is, we have conjugacies ht ◦ f = ft ◦ ht with ht(x) = x. So
ht(x) is the smooth continuation of x, in the sense that the (topological) dynamics
of ht(x) with respect to ft is exactly the same than the dynamics of x with respect
to f . Let ∂tft|t=0 = v. If we want to see how the Lyapunov exponent changes
along this deformation, one can easily see that

∂t lnDf
k
t (ht(x))|t=0 =

k−1
∑

j=0

φ(fk(x)).

For piecewise expanding map there are known obstructions for α to be Zygmund,
but we have the following

Theorem 6.5. Every infinitesimal conjugacy α is Log-Lipchitz continuous, that is,
there is C > 0 such that

|α(x + δ)− α(x)| ≤ −C|δ| log |δ|
for small δ.

Remark 6.6. It is known [26] that for piecewise expanding maps for which some
discontinuities have simple dynamics there is an obstruction for α to be Zygmund.
In particular the topological class and the quasi-symmetric class can be distinct.
The distinction between those classes was already observed for for certain circle
diffeomorphisms with Liouville rotation number [2], dissipative Lorenz maps by
Martens, Palmisano and Winckler [45] and critical circle maps by de Faria and
Guarino [15]. This is in contrast with a similar situation for real-analytic quadratic-
like maps when α is always Zygmund (Lyubich [40]).

Question 6.7. Characterize the obstructions for α to be Zygmund for various
classes of maps such as piecewise expanding maps, circle diffeomorphisms and
Lorenz maps.

7. Statistical properties of infinitesimal deformations

In the setting of the previous section (expanding maps acting on the circle) one
may ask if either Zygmund or Log-Lipchitz regularities are sharp. Could α be
Lipchitz? it turns out it is not. The key is Theorem 6.1. It says that the regularity
of α is deeply connected with the statistical properties of the observable φ. Indeed

∫

φ dµ = 0,

where µ is the absolutely continuous f -invariant probability. Denote

σ2(φ) = lim
n

1

n

∫

(

∑

k<n

φ ◦ fk
)2

dm.

Theorem 7.1 (de Lima and S. [18]). The following statements are equivalent
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A. σ2(φ) > 0.
B. There is a periodic point p such that

∑

k<n

φ(fk(p)) 6= 0,

where n is the period of p.
C. There is ℓ > 0 such that

lim
δ→0

µ
(

x ∈ S
1 :

α(x + δ)− α(x)

σ(φ)ℓδ
√

− log |δ|
≤ y

)

=
1√
2π

∫ y

−∞

e−
t
2

2 dt

D. α is not a Lipchitz function on any subset with positive Lebesgue measure.
E. α is a continuous and nowhere differentiable function.

There is more general but similar result for piecewise expanding maps of the
interval in Grotta-Ragazzo an S. [26][25].

Remark 7.2. The condition B is generic on v. Indeed one can easily see that
∑

k<n

φ(fk(p))

depends only on the values of v along the the orbit of the periodic point p. From
this one can conclude after a short argument that the linear functionals

v 7→ ψp(v) =
∑

k<n

φ(fk(p))

are linear independent when p runs over all periodic orbits. So the subspace of all
v such that

∑

k<n

φ(fk(p)) = 0

for all periodic points p has infinite codimension. See Grotta-Ragazzo an S. [26] for
details.

Remark 7.3. One can obtain a Law of Iterated Logarithm if A-E holds.

8. Derivative of α in the distributional sense

The results in the previous section on the modulus of continuity of an infinites-
imal deformation are indeed a consequence of a deep connection with the ergodic
behaviour of the piecewise expanding map f . In fact we have

Theorem 8.1 (Grotta-Ragazzo and S. [26]). There is g ∈ L∞(m) such that

Dα = g +

∞
∑

k=0

φ ◦ fk

in the sense of distributions.
That is, for every C∞ function ψ with support in the interior of I we have

∫

αDψ dm =

∫

gψ dm−
∑

k

∫

φ ◦ fkψ dm.

To be fair, one needs to be more careful with the convergence of the r.h.s. if f
does not have an unique absolutely continuous mixing invariant measure, but we
address these details in [26].
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Question 8.2. Could we have similar results in higher dimension for structurally
stable maps and flows?

Question 8.3. Could we have similar results for not necessarily expanding maps,
as non-uniformly expanding maps as unimodal Collet-Eckermann maps?

9. Pseudo-Riemannian metric in the topological class

C. McMullen [48] reinterpreted the Weil-Petersson metric in Teichmuller space
using thermodynamical formalism on Bowen-Series maps and indeed defined a sim-
ilar metric in the space of expanding Blaschke product. We can do something
analogous (see Grotta-Ragazzo and S. [26]).

Indeed, let vi, with i = 1, 2, be vectors in the tangent space of the topological
class at a piecewise expanding map f . Then there are log-Lipchitz vectors αi

satisfying the cohomological equation. Let

φi =
Dvi +D2f · αi

Df
.

Then
∫

φi dµ = 0

for every absolutely continuous f -invariant probability µ, and we can define the
pseudo-metric on the tangent space of f as

σ2
f (v1, v2) = lim

n→+∞

1

n

∫

(

n−1
∑

k=0

φ1 ◦ fk
)(

n−1
∑

k=0

φ2 ◦ fk
)

dm.

One can check that is is well defined. We call it pressure pseudo-metric following
Bridgeman, Canary, Labourie, Sambarino [11]. It is a quite weird definition, but
this pseudo-riemannian metric on the topological class has deep connections with
the dynamics. For instance

Theorem 9.1. Let ft, t ∈ [0, 1], be a smooth curve of orientation preserving ex-
panding maps on the circle. Suppose that its length in the pressure metric is zero,
that is,

∫

σft(∂tft, ∂tft) dt = 0.

Then f0 is smootly conjugate with f1.

Proof. In this case σft(∂tft, ∂tft) = 0 for every t. So the Hölder function φt is
ft-cohomologous to zero, that is, there is a Hölder function ψt satisfying

φt = ψt ◦ ft − ψt.

Let p be a n-periodic point of f0. Let ht be the continuous family of homeomor-
phisms such that

ht ◦ f0 = ft ◦ ht,
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with ht(x) = x. Then ht(p) is a n-periodic point of ft and

∂t ln(Df
n
t (ht(p))) =

n−1
∑

k=0

∂t ln(Dft(ht(f
k
0 (p))))

=
n−1
∑

k=0

φt(ht(f
k
0 (p)))

= ψt(ht(f
n
0 (p))− ψt(ht(p)) = 0.

for every t, so the multiplier of the analytic continuation of the period point p
along this family ft is constant. From this one can prove that the conjugacy ht is
absolutely continuous. It follows Shub and Sullivan [54] that ht is smooth (see also
Martens and de Melo [44] and Li and Shen [36]) �

By a similar argument one can show that if f0 and f1 are smoothly conjugated
then there is a smooth path with zero length between them.

Question 9.2. What are the geometric properties of this pseudo-metric, as its
sectional curvature and its (likely) lack of completeness?

Regarding this question, there is some results in Lopes and Ruggiero [38] and in
Pollicott and Sharp [50] in similar settings.

10. Deformations and Renormalization

There are interesting cases, mainly in one-dimensional dynamics, when a conju-
gacy is surprisingly much smoother than expected. In those cases the conjugacy is
indeed C1 either in the whole or at least on part of the phase space, as on a dy-
namically meaningful Cantor set. It is the phenomena of rigidity and universality,
that occurs for dynamical systems that are far from the hyperbolic setting, as cir-
cle diffeomorphisms (Herman [28], Yoccoz [59], Khanin and Sinai [33], Goncharuk
and Yampolsky [23]), circle homeomorphims with break points (Khanin, Kocić and
Mazzeo [32], Cunha and S. [13], and more recently Berk and Trujillo [9]), general-
ized interval exchange transformations (Marmi, and Moussa and Yoccoz [43]), and
infinitely renormalizable unimodal (Sullivan [56], McMullen [47] and Lyubich [40]),
critical circle homeomorphisms (see for instance Khmelev and Yampolsky[34] and
Estevez, de Faria and Guarino[19]), and multimodal maps (S. [55]).

Renormalization is the key to those results. For all these classes of dynamical
systems one can define a renormalization operator acting on the corresponding
maps. The renormalization operator is a dynamical system acting on dynamical
systems.

To keep the exposition as simple as possible, consider the most classical of all
renormalizations, the period-doubling renormalization, introduced by Feigenbaum
[21] and Coullet and Tresser [57]. Consider an even unimodal map f : I → I,
with I = [−1, 1] and quadratic critical point. We say that f is period-doubling
renormalizable if there exists an interval J = [−β, β] ⊂ I so that

- The interiors of J and f(J) are disjoint.

- f2(J) ⊂ J .

- f2(∂J) ⊂ ∂J.
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f f2

JJ

ββ −β−β

Rf

Figure 1. Construction of the renormalization operator.

If we look to the map f2 : J → J , we see that it is also a unimodal map defined
in this small interval (see Fig. 1). We can obtain a unimodal map in the original
interval [−1, 1] defining the map

Rf : [−1, 1] → [−1, 1]

as

Rf(x) = − 1

β
f2(βx).

The map Rf is called the period-doubling renormalization of f . The operator R
acts on the set of renormalizable unimodal maps. We would like to understand its
dynamics.

The renormalization Rf of a unimodal map f could be renormalizable again,
so we could define R2f . If R2f is renormalizable again, we could define R3f and
so on. If Rnf is defined for every n we say that f is infinitely period-doubling
renormalizable. What happens with Rnf when n goes to infinity?

The following result, which puts together contributions by Sullivan [56], Mc-
Mullen [47] and Lyubich [40], describes the dynamics of the period-doubling renor-
malization operator:

Theorem 10.1. The renormalization operator has the following properties.

A. There exists a unique unimodal map f⋆ satisfying

Rf⋆ = f⋆.

B. In an appropriate space of functions the renormalization operator is a smooth
operator and f⋆ is a hyperbolic fixed point with codimension one stable man-
ifold.

C. The connected component of the stable manifold of f⋆ is exactly the topo-
logical class of f⋆.

10.1. Infinitesimal deformations and Renormalization. One of the many
challenges in this result, solved by Lyubich [40], is to find a suitable space of maps
(indeed germs) where R acts as an complex analytic operator, and show that the
topological class of f⋆ is a codimension one manifold there. Indeed, this result
explains the universality of the infinite sequence of bifurcations that appears in
families of unimodal maps. To be more precise, a quadratic-like map

f : U → V
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is a complex analytic map with just one (quadratic) critical point, where U and
V are topological open disks on C satisfying U ⊂ V . Due to a result by Douady
and Hubbard we know their dynamical behaviour is quite similar to a quadratic
polynomial. The filled-in Julia set K(f) of f is the non empty compact set

K(f) = ∩kf
−kV.

We have

Theorem 10.2 (Lyubich [40]). The topological class of a quadratic-like map f

with connected filled-in Julia set is a codimension one manifold in a suitable space
of quadratic-like maps. Futhermore the tangent space of the topological class at f is
the set of all complex analytic functions v defined in a neighborhood of K(f) such
that there is a quasiconformal vector filed α satisfying

(10.11) v = α ◦ f −Df · α
in a neighboorhood of K(f) and ∂α = 0 on K(f).

Indeed, Avila, Lyubich and de Melo [5] were able to show that for quadratic-like
maps that are real on the real line, if K(f) has empty interior (the most interesting
case) and v is real in the real line then v is tangent to the topological class if and
only if one can find a Zygmund vector field α that satisfies (10.11) on the orbit of
the critical point.

10.2. Action of DR on infinitesimal deformations. Renormalization theory
for maps with critical points (as unimodal maps) had an extraordinary development
in the last decades. However there is one area that resisted almost every attack.
Most of the results are only proved for real analytic maps since one needs complex
dynamics methods (quasiconformal methods) in an essential way. Similar results
for unimodal maps of the form |x|β + c, where β 6∈ 2N, are yet out of reach, besides
almost every expert agreeing that those results must also hold for these class of
maps.

We must compare this with the study of piecewise expanding maps, circle dif-
feomorphisms and generalized interval exchange transformation, for which real dy-
namics alone is sufficient to attain significant advancements.

In S. [55] we prove the hyperbolicity of the renormalization operator acting
on infinitely renormalizable multimodal maps using an infinitesimal approach. In
particular the main intermediate result is

Theorem 10.3. Let f be a multimodal map with quadratic critical points, infinitely
renormalizable with bounded combinatorics. Then

sup
k≥0

|Df (Rkf) · v|∞ <∞

if and only if the cohomological equation (10.11) has a Zygmund solution α.

Here Df (Rkf) denotes the derivative of the operator

f 7→ Rkf.

So the study of hyperbolicity of the operator was reduced to the study of the
existence and regularity of the solutions of this cohomological equation. While the
proof of the Theorem 10.3 also relies on complex dynamics methods, it places the
study of solutions to cohomological equations in a central position, just as is the
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case for renormalization results for circle diffeomorphisms and generalized interval
exchange transformations. We believe that this is the path toward a more unified
approach to renormalization in one-dimensional dynamics.

We end this survey with a result that was used for unimodal, multimodal [55] and
even Fibonacci renormalization but whose proof is so simple that it can be easily
adapted for all cited classes where renormalization appears. It says that having a
solution for the cohomological equation indeed makes the action of the derivative
of the renormalization operator much easier to understand.

Theorem 10.4. Let f be a unimodal map that is period-doubling renormalizable
on the interval [−β, β] and v such that there is a solution α for the cohomological
equation (10.11) over [−1, 1]. Then

Df (Rf) · v = α̂ ◦ Rf −D(Rf) · α̂
on [−1, 1], with

α̂(x) =
1

β
α(βx) − 1

β
α(β)x.

Note that if we know something on the regularity of α on [−1, 1] one can easily
deduce the (lack of) growth or contraction of Df (Rkf) · v along iterated renormal-
izations. For instance if f is infinitely renormalizable and α is Zygmund on [−1, 1]
then it easily follows that

sup
k≥0

|Df (Rkf) · v|C0[−1,1] <∞.

If α is β-Hölder this will give us a upper bound for the growth of the norm of
DRk

f · v.
One of the problems to adapt the methods we used for piecewise expanding maps

in the renormalization setting is the lack of hyperbolicity of infinitely renormalizable
maps. The physical measure of an infinitely renormalizable unimodal map has zero
entropy. Baladi and S. [8] were able to use tower inducing techniques to study
the existence and regularity of the solutions of (10.11) for certain Collet-Eckmann
unimodal maps, but those maps are non-uniformly expanding, so they are far more
hyperbolic than infinitely renormalizable maps.

Question 10.5. Study the existence, regularity and uniqueness of solutions of the
cohomogical equation (10.11) for increasily less hyperbolic one-dimensional maps
such as Misiurewicz maps, Collet-Eckmann maps, Benedicks-Carlesson maps, mul-
timodal maps satisfying some summability condition, maps with parabolic point and
(let´s hope so) infinitely renormalizable maps (unimodal, multimodal, generalized
interval exchange transformations).

We pose this question for real maps with finite smothness and arbitrary non flat
critical points. We believe that at least for maps with some hyperbolicity ergodic
theory methods and in particular towers/inducing will be crucial. We also believe
that Question 10.5 will be the central technical step to study the smooth structure
of the topological class of such maps (Questions 5.3 and 5.4).
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