

INFLUÊNCIA DO NAFION SOBRE A ESTABILIDADE E FUNCIONALIDADE DE PROTEÍNAS IMOBILIZADAS

Beatriz Bertin

Thiago Bertaglia, Lindomar Jose C. Albuquerque, Frank N. Crespilho

Prof. Dr. Rafael Neri Prystaj Colombo

Instituto de Química de São Carlos, Universidade de São Paulo

bia.bertin@usp.br

Objetivos

Compreender os efeitos na atividade e estrutura enzimática a partir da imobilização com o ionômero Nafion®, pela combinação de ensaios eletroquímicos e espectroscópicos.

Métodos e Procedimentos

Considerando seu comportamento bem definido na literatura, escolheu-se a enzima álcool desidrogenase (ADH) como proteína modelo, imobilizando-a em quatro condições de Nafion®: i) 5% não neutralizado (Sigma-Aldrich); ii) 5% neutralizado com NaOH; iii) 2,5% não neutralizado (1:1 Nafion® 5% e água) e iv) 2,5% neutralizado (1:1 Nafion® 5% e tampão fosfato); com o pH igual a 7 e 2 para as condições neutralizadas e não neutralizadas.

Nos ensaios eletroquímicos, foram utilizados eletrodos de fibra flexível de carbono, tratados por oxidação química.¹ A enzima foi imobilizada por adsorção em 100 µL de solução 8 mg mL¹ por 24 horas, seguido da adição de 10 µL de Nafion® e secagem a vácuo.

A atividade catalítica foi avaliada por cronoamperometria, em +0,6V em tampão fosfato pH 9 com 6 mM de NAD+, sob adição de etanol P.A. (substrato), com eletrodo de Pt como auxiliar e Ag/AgCl/Cl-sat como referência. Já para determinação estrutural,² foram realizadas análises de µFTIR (Bruker Vertex

70v FTIR, com detector MCT). As amostras foram preparadas pela adição de 2 μL da solução de ADH (8 mg mL⁻¹) sobre uma placa recoberta com Au, secando a vácuo por 25 minutos antes da deposição de 2 μL de Nafion®, seco nas mesmas condições. Os espectros foram coletados de 4000 a 500 cm⁻¹, obtendo a composição estrutural a partir da deconvolução da banda de Amida I (1700 a 1600 cm⁻¹).

Resultados

Segundo o modelo cinético de Michaelis-Menten, pelas correlações concentração de etanol e os valores de obtidos, foram calculadas corrente constantes K_M e k_{cat} (Fig. 1.A e 1.B). Seus mostram que condições valores as neutralizadas (pH 7) são mais sensíveis a adição de etanol, com menores valores de K_M e maiores de k_{cat}, indicando um favorecimento do mecanismo reacional para a formação de produto. Além disso, foi observado que nas condições mais concentradas (5%) ocorreu uma perda de eficiência catalítica, sendo esse processo intensificado na condição ácida (pH 2). Isto indica que ambos os parâmetros propostos (pH e concentração) interferem na atividade enzimática, sendo a condição mais branda (pH 7 e diluído) a mais adequada para imobilização proteica visando sua performance catalítica.

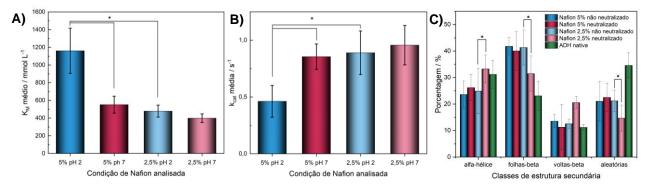


Figura 1. Valores das constantes (A) K_M e (B) k_{cat} para diferentes condições de imobilização. (C) Composição de estrutura secundária calculada para cada condição de Nafion® proposta.

Estes resultados são condizentes com as determinações de estrutura secundária obtidas (Fig. 1.C), na qual se observa uma predominância de estruturas α-hélice nas condições neutralizadas. 0 aue poderia justificar uma maior mobilidade estrutural, assim possibilitando uma interação favorecida entre enzima substrato а e consequentemente, melhores parâmetros catalíticos.

Conclusões

Os estudos mostraram que tanto concentração de Nafion® quanto o pH das soluções utilizadas afetam estrutura а enzimática, por conseguinte afetando a atividade catalítica da enzima. Neste caso, as condições neutras apresentam predominância de estruturas α-hélice, possibilitando maior mobilidade estrutural e melhores parâmetros de atividade catalítica, enquanto as condições não neutralizadas induziram maior porcentagem de estruturas indefinidas e de folhas-β, indicando desnaturação parcial, o que é reforçado nos valores de K_M e k_{cat}. Essas observações destacam a importância de um bom

planejamento experimental para garantir a manutenção da estrutura proteica e, consequentemente, as condições ótimas de sua atividade biocatalítica, destacando a sutiliza no manuseio destes sistemas.

Os autores declaram não haver conflito de interesses.

Agradecimentos

Os autores agradecem à FAPESP (2022/09120-8, 2021/05665-7 e 2018/22214-6).

Referências

- [1] Pereira, A., et al. Bioelectrooxidation of Ethanol Using NAD-Dependent Alcohol Dehydrogenase on Oxidized Flexible Carbon Fiber Arrays. J Braz Chem Soc 28. (2017)
- [2] Mendes, G. R., *et al.* Exploring Enzymatic Conformational Dynamics at Surfaces through μ-FTIR Spectromicroscopy. *Anal Chem* **95**. (2023)
- [3] Artner, C. et al. Effects of interactions between SPEEK or Nafion ionomers and bilirubin oxidase on O2 enzymatic reduction. *Electrochim Acta* **426**. (2022)