ON THE NUMBER OF RATIONAL POINTS OF ARTIN-SCHREIER’S
CURVES AND HYPERSURFACES

F.E. BROCHERO MARTINEZ AND DANIELA OLIVEIRA

ABSTRACT. Let Fqn represent the finite field with ¢™ elements. In this paper, our focus
is on determining the number of Fgn-rational points for two specific objects: an affine

Artin-Schreier curve given by the equation y? —y = x(mqi fim) — ), and an Artin-Schreier
hypersurface given by the equation y? —y =>>"_, aja:j(a:?lj —xzj)— A

Additionally, we establish that the Weil bound is only achieved in these cases when
the trace of the element A € Fyn over the subfield F, is equal to zero.

1. INTRODUCTION

Let F, denote the finite field with ¢ = p® elements, where p is an odd prime. One
important class of curves over finite fields is known as Artin-Schreier’s curves. These curves
are defined by the equation y?—y = f(z), where f(z) € F,[x]. Extensive research has been
conducted on these curves in various contexts, including references such as [0, 7, &, 10, 16].

This class of curves can be generalized to multiple variables, resulting in hypersurfaces
of the form y? —y = f(X), where f(X) € F,[X] and X = (z1,...,2,). The study
of the number of affine rational points on algebraic hypersurfaces over finite fields has
significant applications in coding theory, cryptography, communications, and related fields,
as evidenced by works such as [3, 9, 15, 16].

The first aim of this paper is to calculate the number of Fjn-rational points on the
Artin-Schreier curve C; defined by the equation:

Ciiyl—y=a( —x)— )
where ¢ € N and A € Fyn. We denote the number of affine Fyn-rational points of C; as

Ny (C;).
For each i € N, we introduce the map @; : Fyn — I, defined as follows

Qi : ]Fqn — ]Fq
o Tr(oz(aqi —a)—A),

where Tr : Fjn — F, denotes the trace function. We define N,,(Q;) as the number of
zeroes of @Q; in Fyn. According to Hilbert’s Theorem 90, we can establish the relationship

N (Ci) = q - Nn(Qi)-

Thus, determining N,,(C;) is equivalent to calculate N,,(Q;). Additional details regarding
this fact can be found in [1, 2, 13].

The study of the number of Fyn-rational points on Artin-Schreier’s curves has attracted
the attention of many authors. For instance, Wolfmann determined in [17] the number
of rational points on the curve defined over Fx, given by the equation y? —y = az® + b,
where a € sz, b € Fyk, k is an even special integer, and s has specific properties. Coulter,

in [7], determined the number of [Fy-rational points on the curve " —y = azP" T+ L(z),
where a € Fy, L(z) is a Fp;-linearized polynomial, and ¢ = ged(n, s) divides d = ged(a, s).
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In [6], the authors determined the number of F m-rational points on the curve y?" —y =
'quhH — «, in specific cases when h,n,m are positive integers with n dividing m, and
v,a € Fgm (v # 0). In [1], they provided specific examples of maximal and minimal
curves over finite fields in odd characteristic. They studied the Artin-Schreier curves of
the form y?—y = xS(z), where S(z) represents a [Fy-linearized polynomial, and established
a connection with quadratic forms. In our prior research [5], we obtained a formula for
N, (C;) when ged(n,p) = 1l,using the fact that @; defines a quadratic form to find a
connection between the number of affine rational points with the rank of an appropriate
circulant matrix. This provides an explicit formula for N, (C;) when ged(n,p) = 1.

In this paper, we employ an alternative method that involves determining the solutions
of the quadratic form @); using appropriate permutation matrices. With this approach, we
compute the number N, (C;) without imposing any conditions on ged(n, p). Additionally,
we establish conditions for the Artin-Schreier curve C; in order to be maximal or minimal
with respect to the Hasse-Weil bound.

The second objective of this paper is to determine the number of [Fy»-rational points on
the affine Artin-Schreier hypersurface H,., which is given by the equation

r -
Hr:yq—y:Zajxj(a:?J —xj) — A, (1)

j=1
where a; € F; and 0 < i; < n for 1 < j < r(see section7.1.4 in [12]). We denote by

Ny (Hr) the number of Fyn-rational points on the hypersurface H,. The well-known Weil
bound assures us that

-
INu(He) =" < (g =D ][] d¥¢% =(a—1Dq =, (2)
j=1
where I =3""_, ;.

In this paper, we present necessary and sufficient conditions in order to the hypersurface
H, to be Fgn-maximal or Fgn-minimal, i.e. Ny(H,) achieves the upper or lower bound
specified in (2). Currently, in the literature is always interesting to give a description of
the number of rational points for Artin-Schreier’s hypersurfaces, as well as the conditions
under which these hypersurfaces satisfy the bound given in (2) or other known bounds.

Using the results obtained for the curve C;, we can explicitly determine the number
of rational points N, (H,) and to identify the conditions to achieve the maximality or
minimality of this hypersurface.

The organization of this paper is as follows: Section 2 provides background material and
preliminary results. In Section 3, we compute the number of Fyn-rational points on the
Artin-Schreier curves C; and establish necessary and sufficient conditions for these curves
to be maximal or minimal. In Section 4, we determine the number of F,»-rational points
on the hypersurfaces H, in (1) and derive explicit conditions for these hypersurfaces to be
maximal or minimal.

2. PRELIMINARY RESULTS

In this paper, we use the symbols 1) and 1; to represent the canonical additive characters
of Fgn and Iy, respectively. The quadratic character of I, is denoted as x. The trace
function Tr maps elements from Fy» to F, and is defined as follows:

Tr:Fen —TF,

n—1

z—=r+al+-- 42t
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1 ifp=1 (mod 4);
i if p=3 (mod4).
To determine the number of rational points on the curve C;, we associate the quadratic

We set 7 to represent the function 7 =

form Tr(z(z? — z)) with this curve. By fixing a basis for Fyn over Fy, we can provide its
associated matrix and the dimension of its radical. To achieve this, we need to recall the
following definitions.

Definition 2.1. Consider a quadratic form @ : Fgn — F,. The associated symmetric
bilinear form B : Fgn X Fgn — Fy of Q is defined as follows

Bla, §) = 5 (@0 +6) — Qo) ~ Q(B)).

The radical of the quadratic form @Q : Fgn — Iy is the Fy-subspace defined as
md(Q) = {Oé € ]Fq” : B(O&,ﬂ) =0 fO’I" all 5 € Fqn}.
Furthermore, Q is considered non-degenerate if rad(Q) = {0}.

Let B ={v1,...,v,} be a basis for Fgn over Fy. The n x n matrix A = (a;;), defined as
a;j = B(v;,v;), represents the associated matrix of the quadratic form @ with respect to
the basis B. Notably, the dimension of rad(Q) is given by n — rank(A).

Consider the quadratic forms Q1 : Fgn — Fy and Q2 : Fyn — Fy, where m > n. Let U
and V be the associated matrices of ()1 and @2, respectively. We say that Q1 is equivalent
to Q2 if there exists M € GL,,(IF,) such that

MTUM = (%) € My (Fy),

where GL;,,(F,) represents the group of invertible m x m matrices over F,, and M,,(F,)
denotes the set of m x m matrices over [F,. Furthermore, ()2 is said to be a reduced form
of @ if rad(Q2) = {0}. The following theorem is a well-known result about the number
of solutions of quadratic forms over finite fields.

Theorem 2.2 ([11], Theorems 6.26 and 6.27). Let Q) be a quadratic form over Fyn, where
q s power of an odd prime. Let Bg be the bilinear symmetric form associated to @,

v = dim(rad(Bg)) and Q a reduced nondegenerate quadratic form equivalent to Q. Set
Sa = {x € Fn|Q(x) = a}| and let A be the determinant of the quadratic form Q. Then
(1) If n 4+ v is even

¢ qn—l + Dq(n+v—2)/2(q —1) if a =0, 3
*= gt - Dq(n+v*2)/2 if a #0, ®)

where D = x((—1)"=)/2A).

(ii) If n+ v is odd
n—1 )
_Ja if a =0,
Sa = { qnfl 4 Dq(nJr’l)*l)/2 zf 10 75 0. (4)

where D = x((—=1)"=v=D/2qA).
In particular D € {—1,1}.

We end this section with some basics definitions and results on Gauss sums.

Definition 2.3. Let ¥ be an additive character of Fq and ® a multiplicative character of
Fy. The Gauss sum of ¥ and ® is defined by

GU,®) = > U(x)P().

z€lFY
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Theorem 2.4. [11, Theorem 5.15] Let x be the quadratic character of F. Then
G, x) = —(-7)°Va.

The following lemma establishes a connection between quadratic forms and character
sums, providing valuable insights for our results. It can be derived through a straightfor-
ward computation using Theorem 2.2.

Lemma 2.5. Let H be a n x n non null symmetric matriz over Fy and | = rank(H).
Then there exists M € GL,(F,) such that D = MHMT? is a diagonal matriz, i.e., D =
diag(ay, ag, ..., a;,0,...,0) where a; € Fy for alli=1,...,l. For the quadratic form
F:F} —»F, FX)=XHX" (X=(x1,...,2,) €F)),
it follows that
> (F(X)) = (=1)"CDrbx(6)g 2,

XeFy

where 6 = ay - - - ay.

3. THE CURVE ¢? —y = z(2z? — ) — A

In [5], we establish a formula for computing the number N,,(C1) when ged(n,p) = 1. In
this section, we introduce a method that enables us to compute the number N, (C;) without
imposing any conditions on n and an odd prime p. Consider the basis B = {f1,...,0n}
of Fgn over F, and

B g7 - BT

a qnfl
=72 n (5)

P

We utilize the Hilbert’s Theorem 90 to establish a connection between N, (C;) and the
number of solutions of the equation

Tr((ad — @) = Tr(N), (6)

where « € Fqn and A is a fixed element. Here, N,,(Q;) represents the number of solutions
of Tr(a(a? — a)) = Tr(\) for a € Fyn. By Hilbert’s Theorem 90, we know that

2

The following proposition establishes a connection between Tr(xqi‘Irl —x° — \) and a
quadratic form.

Proposition 3.1. Let f(z) = gl g2 A, where X € Fgn. The number of solutions of
Tr(f(z)) = 0 in Fyn is equal to the number of solutions in Fy of the quadratic form

T
T

(1@ o w)A || =T,
T

where A = (a;;) is the nxn matriz defined by the relations a;; = %Tr(ﬁjq-iﬁl—kﬁfiﬁj—Qﬁjﬁl).

Proof. Given x € Fyn, we can express it as ¢ = Z;‘Zl Bjxj, where x1,...,z, € F, are
coefficients with respect to the basis B. The equation Tr(f(z)) = 0 is equivalent to

S f@) =o. (7)
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Expanding this expression, we obtain

k

S fa)? = nz_:l(zn: ﬁj$j>qk (zn:(ﬁlqz - 5l)x1>q — Tr(\)
k=0 =1

k=0 j=1

= Zn: (Z Bl B - Bfk)>$ﬂl = Tr(A).
k=0

n n—1

k i+k k

The relation Z (Z 8] (ﬁlq+ — B )) zjz; = Tr(\) is obtained from (7). By sym-
ji=1 \k=0

metrizing this expression, we observe that

it+k_  k

n—1
gtk 1 i i
= 5(] 51 (B! ¢ 4 grttedt 2) = =Tx(B? B+ B} B; — 28;61) = ajy,
J 92 J
and the result follows. OJ

The matrix A in Proposition 3.1 can be expressed as

1
A= 5(141 + Ay — 2A3),

where Ay = (Tr(8Y 1)), A2 = (Tx(8;8{ ));1 and A = (Tr(B;,));4. Let P be the n x n
cyclic permutation matrix defined by

01 0 0
00 1 -0

P: :...'.....: ’
00 0 1
100 0

and note that P~1 = PT. Tt follows that A; = B(P)T BT, Ay = B(P)BT, and A3 =
BBT, where B is defined in (5). Hence, we have A = 1 BM,, ;BT where

M,; = (P")" —2Id + P", (8)
i.e., the matrix M, ; = (m;,;) is given by
2 if =1,

mj; =141 if |7 —1| =1;
0 otherwise,

with the convention that the rows and columns of the matrix are indexed from 0 to n — 1,
ie,0<5,0<n—-1.

In order to compute the number of solutions of the quadratic form defined by matrix
A, we will consider an equivalent matrix obtained by using the matrix M, ;. We will
then compute the character of the determinant of this equivalent matrix. We begin by
considering the case ¢ = 1.

3.1. The case i = 1. The following proposition provides us a method to choose a suitable
basis B that simplifies the calculation of y(det(A’)), where A’ is a reduced matrix of A.

Proposition 3.2. Suppose that p|n. Then there exists an element B € Fyn \ Fy such that

1

B+ —28=0.

Proof. In fact, we are going to prove that there exists 8 € Fgp C Fgn. For that, it is enough
to show that the dimension of the subspace consisting of the roots of the polynomial

L(z) = ged(z?" — z, 29 + 2~ 2x)
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is at least two. From Theorem 3.62 in [11], it suffices to show that
I(z) = ged(aP — 1,2 + 2P~ = 2),
has degree 2, because deg(L(z)) = ¢4¢2((*)), We have
deg(ged(a? — 1,z + 2P~ — 2)) = deg(ged(a? — 1,27 — 2z + 1))
= deg(ged((z — 17, (z — 1)2)) =2

This proves the proposition. ([l

According to Proposition 3.2, we can choose the basis B in such a way that 5, = 1 and
Bn_1 = B, where (3 satisfies

n—1

B1+67" —28 =0,
which is equivalent to

BT — 267+ 5 =0. (9)
The above equation implies

(BT =B)1=p1—p. (10)

In particular, we have 89— € F,. From now on, we fix the basis B = {31, 52, ..., Bn—2, 5, 1}.
The following proposition determines the rank of M, ; and the determinant of one of its
reduced matrices.

Proposition 3.3. The rank of the n x n matriz M, = PT —2Id+P over F, is given by
n—1 if ged(n,p) =1
n—2 if ged(n,p) =p.

In addition, if ]\4,’171 denotes the principal submatriz of M, 1 constructed from the first
rank(M,,1) rows and columns, then M}, | is a reduced matriz of My 1 and

;o (=)™ if ged(n,p) = 1;
det M, , = { (1)1 if ged(n,p) =p.

Proof. Let us denote M,, as the matrix:

rank My 1 = {

21 0 0 0 0
1 -2 1 0 0 0
0 1 —2 0 0 0
M, = RS S
0 0 0 .. =21 0
0 0 0 1 -2 1
0 0 0 0 1 -2

1 if (i,5) € {(1,n), (n,1)};

We observe that Mn,l = Mn+Rn, where R, = (rm-) with Tij = {O th .
otherwise.

If we define
100 ... 00
010 .. 00
U= cee
000 .. 10
111 .11
then we have
21 0 0 00
1 -21 .. 0 00
01 -2..0 00
My,—_110
UMp U = |« oo o =< o)
0 0 0 “2 10
0 0 0 1 —20
0 0 0 0 00

We claim that L, 1 = det(M,_1) = (=1)""'n for n > 1. To prove this, we expand the
determinant of M, _; along the first row and obtain the recursive relation

L, 1=-2L,_9— L,_3forall n> 4. (11)
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This implies that the sequence Ly ;> satisfies the recurrence relation (11). Since
Ly =3 and L3 = —4, it follows by induction in n that L, 1 = (=1)""!n.

Furthermore, if ged(n, p) = 1, it follows that L, 1 = (=1)""!n # 0, which means that
the rank of M, is n — 1. This implies that the rank of M,, ; is also n — 1.

In the case ged(n, p) = p, we define the matrix V' as

100 ... 0 0 0 0
010 .. 0 0 00
ST
000 0 1 00
123 7 n=3-2 -1 0
000.. 0 0 0 1
We observe that V' is invertible, and by matrix operations, we have
My, | 0 0
VUM, UV =|"0---0 | 0 0
0---0 0 0

Therefore, L,—2 = (—1)""2(n — 1) # 0, and the rank of M, is n — 2. Thus, the result
follows.
O

Using the notation in Proposition 3.3, we can express A as follows

M,y |0
1BU-! < ; . 5 ) (U—HTB" if ged(n,p) = 1;
A= Mo | 0 0
sBUT'VTLL 0.0 | 0 0 | (VHTWHTBT if ged(n,p) = p.
00 | 00

Now, we will determine the determinant of a reduced matrix of A. This requires the use of
the following proposition, which tell us about the quadratic character of the determinant
of BBT.

Proposition 3.4. Let B = {f1,052,...,0n—2,5,1} be a basis of Fyn over Fy and B the
matriz defined in (5). Then

1 if nis odd;
x(det(BBT)) = { Z_f ot

—1 ifn is even.
Proof. We want to determine the determinant of BB”. The matrix BB can be expressed
as

Tr(67) Tr(ﬂng) o Tr(B18n)

Tr(B261) Tr(B o Tr(B2fn

g [T TR T

Te(Bnfr) Tr(BpBa) -+ Te(Br_y)
Since Tr(B;3;) € Fy for 1 < i, j < n, we have that BBT € GL,(F,). It is important to note
that while BBT € GL(F,), the individual matrices B and BT do not necessarily belong to
GL(F,). Hence, we cannot directly compare the quadratic character X(det(BBi)) with

x(det(B))?, because the latter does not make sense if det(B) is not in F,. Let o : F, — F,
be the Frobenius map, that is o(a) = af, and let B = (¢; ;) with 1 < 4,5 < n, where
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gt
cij=p; . We have

det(B) = Z (_1)sign(7)017(1) -+ - Cnr(n)
TESn

_ Z (_1)sign(7)5¢117(1)*1 o B%T(n)*l

TESn

Then
O'(det(B)) _ Z (_1)Sign(7—)ﬁif(l) . Bzf(n)
TESTL
_ Z (_1)sign(7)6(11p(7(1>)_1 _ .'ngw(n))—l
Tesn
= (—1)%#"() det(B)
where p~! is the permutation (1 2 3 - n) Since
(1 23 -+ n)=1n)(In-1)---(13)(12),

we have that (—1)%8"#) = (—1)"~1. Therefore, det(B) € F, if and only if n is odd. In
conclusion
1 if n is odd;

—1 if nis even.

X(det(BB")) = {

]
Proposition 3.5. The rank of the n x n matriz A over Fy is given by
-1 ifged(np) =1
rank A = { n—2 if ged(n,p) = p,
BiiM,_1B}, if ged =1
and a reduced matriz of A is given by A’ = 3 _H %,1 Z,f ged(n, p) " where the
Blan—QBll lf ng(nvp) =D,

matrices Biy = (b ) and By = (l;“g) are given by

1 n—1

k—
=0 -5} for 1<l k<n-—1
and
Bg,k‘ _ qukfl + kﬁlqn72 _ (k + 1)/8;1n71 fO/,n 1 S l7 k: S n— 2
In addition,
1) x((-2)"'n) if ged(n,p) =1;
det A/ = ( _ _ 7 . ’ )
x(det &) { (1P (D)™ 12772)) if ged(n.p) = p.

Proof. We will divide the proof into two cases, based on the value of ged(n,p), using the
notation introduced in the proof of Proposition 3.3 for the matrices M,,, U, and V.

(1) If ged(n,p) = 1. In this case, we have that

ol My 1|0 _INT BT
A=3BU ( 2 0)(U 7B
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and
n—1 n—2 n—1 n—1
51 B 5gn71 6? B Bgnfl ﬂgn72 B 5gn71 g'nfl
Bo=B3  B3—B3 By =83 3
BUil = : .. DR :
n—1 n—1 n—2 n—1 n—1
BT g1 B g e
0 0 0 1
Bi1 B
_ 7 12
(o (12)
n—1
G
Bqn—l
where By = 2‘ and By = (0 0 0). From (12), it follows that
IBqn—l

det(BU™!) = det(B11) and we have that
x (det(B11Mp—1B1)) = x(det(BBT) det(M,_1))

Since

B
By

-4
4

Bia

n—1

BuM,_1Bl, 0

= (=)™ x((=1)" ')

)

(M
).

T
Bll
T
B12

T
BQl

qn—l
n

it follows that A has %BnMn,lBﬂ as a reduced matrix. Additionally, we have
x(det(Bi1My—1Bi;) = (=1)" 1 - x((=2)"""n),
where the last step follows from (13).

1
A= §BU_1V_1

M, | 0 0
0---0 [ 00
0---0 | 00

where the matrices U~V ~! and BU'V~! are given by

Uty =

1 0 0 - 0
0 1 0 - 0
0 0 0 i
0 0 0 0
1 2 3 .. -3
2 -3 —4 - —(n-2)

and BU'V~1 = (b ;) where

ﬁlqk_l + kﬁ[qn—Q _ (k; + 1)5lqn—l

n—1

n—2
bk =4q-6] +5/

n—1

0
0

0
1
-2
1

0
0

==

0
0

—ooo: -

(2) If ged(n, p) = p, we have the expression for the matrix A as follows

(v B,

if1<li<n,1<k<n-—2

ifl1<i<nk=n-—1;
if1<i<n,k=n.

We observe that the only non-zero entry in the last row is b, , = 1. In order to
determine the entries in the (n — 1)-th row, we need the following result.

Claim: 37 =189 — (1—1)B, for | > 2.
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We will prove this by induction. For [ = 2, the result follows from (9). Let us
assume that the claim is true for some k > 2. Then, for [ = k + 1, we have:

U = (B7)1 = (kY — (k— 1)B)?
= kBT~ (k — 1)p"
= 2k — kB — (k — 1B
= (k+1)8" ~ k5,

Thus, the claim holds for [ = k+ 1, completing the induction step and proving the
claim.

From this relation, we can prove that the only entries non-null of the (n — 1)-th
row of the matrix BU~1V ! are bp—1,n—1 and by,—1 . In fact, using that ged(n, p) =
p, we have that

n—2

BT = (n—2)B9 — (n—3)8 = —28% + 38

and

n—1

BT = (n—1)B1 — (n—2)8 = —B9 + 28.

Therefore the entries b, for 1 <k <n — 2 are given by

1 n—1

buo1p=pB7 " +187 7 = (k+1)84

= (k=1)p% = (k= 2)B + k(=287 + 38) — (k+ 1)(=B7+ 2B)
=0,

and the entry b,_1,—2 is

n—1

bn—l,n—l - _Bq"—Q + /Bq
=261 35— 57+ 28

=81 .
Consequently
0 ifl<k<n-2
boix =987 ifk=n—1
8 if k=n,

and we obtain that

M,_
0
0

O O

A= %BU*V—1 (

1 B | By Muo | 0 0 Bf | BY,
=5\ 5 p1—p B 0---0 | 0 0 gr| #1-8 B
2 0 1 0---0 | 0 0 12 0 1

Blan—2Bﬂ

o
o
o
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n—1 n—2 n—1
sl =Bt B 00 0
where (By2)T = : and By = < 00 .- 0 ) This
qnfl qn72 n—1
—9 = Bn—a Bnoa
implies that ! " !
Bll * *
- 1
x(det(Bi1)) = x gr_pdet| 0| -85
0 0 1

=X (m 1_ 3 det(BU—1V—1)>
=y <Bq_1 3 det(B)> :

From the previous analysis, we can conclude that a reduced matrix of A is given by
BnMn,gBﬂ, which has a rank of n — 2. We can now evaluate the quadratic character of
the determinant of this matrix, i.e.,

X (det (Blan_QBﬂ)> =y ((5(1 17 5>2 det(BBT) det(Mn_2)>
= (=) x ((=n)"1),

where we use Propositions 3.3 and 3.4. Therefore, the proposition is proven. U
The following definition will be useful to determine N, (C;).
Definition 3.6. For each o € IF; we define
qg—1 ifa=0;
Ea = .
-1 otherwise.
From Theorem 2.2 and Proposition 3.5 we have the following theorem.

Theorem 3.7. Let A € Fyn and n a positive integer. The number Ny,,(C1) of affine rational
points in an of the curve determined by the equation y? —y = x4 — 22 — X is

¢" — x(2(=1)2nTr(\))g+2/2 if ged(n,p) =1 and n is even;
N, () = "+ aﬁ(A)X((—1)("*1)/2n)q(”+1)/2 if ged(n,p) =1 and n is odd;
nivl q" — sﬂ(A)X((—l)"/z)q(”H)/z if ged(n,p) =p and n is even;
q" + )((2(71)nTigTr()\))q(”‘*'S)/2 if ged(n,p) =p and n is odd.

This theorem allows us to determine when C; is minimal or maximal with respect the
Hasse-Weil bound, as we show in the following corollary.

Theorem 3.8. Consider the curve C1 given by
Criy? —y=a9 — 22 -\
Then Cy is minimal in Fgn if and only if one of the following holds:
a) Tr(A\) =0, 2p divides n and ¢ =1 (mod 4);
b) Tr(\) =0, 4p divides n and ¢ = 3 (mod 4).

Moreover, Ci is mazimal in Fyn if and only if Tr(X) = 0, 2p divides n, 4 does not divide
n and ¢ =3 (mod 4).
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Proof. The result follows from Theorem 3.7 and the fact that the genus of C; is g =
a(g=1)

R O
3.2. The curve y? —y = az(xqi — x) — A with ¢ > 1. The following proposition pro-
vides information about the rank of the matrices M, ; and the quadratic character of the
determinant of one of its reduced matrices.

Proposition 3.9. Let i,n be integers such that 0 < i < n and M, ; as defined in (8). Set

n

d = ged(i,n) and I = 5. The rank of the n x n matriz My, ; is

_ ] n-d if ged(l,p) = 1;
rank M, = { n—2d if ged(l,p) = p.
In addition, the matrices
M| 0 0 0 M/, | © 0 0
- 0 | M| O 0 . 0 [M/,] 0 0
My, = ) , ) and M, ; = ’ (14)
0 0 0 | M 0 0 0 Ml,,l

are an equivalent matriz and a reduced matriz of M, ;, respectively, where Ml’71 is as the
matriz given in Proposition 3.3.
The determinant of the matriz My ; is (—1)'2" if n = 2i and, otherwise we have that

(=D if ged(l,p) = 1;
det My = { (=" if ged(l,p) = p.
Proof. For convenience, let us enumerate the rows and columns of the matrix M, ; from 0

ton —1. Suppose that n is even and ¢ = 5. In this case, the matrix M, ; can be expressed
as follows

-2 if k=1,
ak,l: 2 ifk—-1=0 (mod %),
0 otherwise.
Let us denote D% =2 Id%, where Id% is the § x 5 identity matrix. It follows that

_ *DnQ‘DnQ . . _Dn2 0
M,y 2 = < D,/ ‘ D > that is equivalent to ( 0 o)

Therefore

rank M, » = g =17 and det Mé,g =(—2)2 = (=2)" #0.

This completes the proof for the case n = 2i. For the remaining cases, we will first
establish that it suffices to consider the case where ¢ = d. Subsequently, we will construct
a block diagonal matrix consisting of d matrices of the form M;;, where n = [ld.

We observe that any permutation p : Z, — Zy induces a natural action on Fy through
the following map:

p: Fy — Fy
(’Uo,...,’l)n_l) — (Up(O)w"?Up(n—l))'
This action is associated with an invertible matrix M), defined by
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Conversely, for any permutation matrix R, there exists a permutation p’ : Z,, — Z, such
that M, = R. In particular, we observe that the map P* determines the permutation

R/ S/
z = z+41.
Consider the map
0 :2y — L
a+— ai
where a € Z, is an element satisfying ged(a,n) = 1. Since a and n are coprime, 0 is a

permutation. Furthermore, § induces a matrix M,, and the matrix M,P*M ;! corresponds
to a permutation of Z,, given by

Somod Hz)=6(m(671(2)))

= §(mi(a12))
=0(a 1z +19)
=z + ai.

We know that the congruence ai = u (mod n) has a solution if and only if d divides
u. Since d = ged(i,n), there exists a € Z, such that § o m; 0 67 1(2) = 2 + ged(i, n).
Therefore, we can replace ¢ with d without loss of generality. For each z € Z,, by the
Euclidean Division Algorithm, there exist unique integers r and s such that 0 < s <[l —1
and 0 <r < d — 1 satisfying z = sd + r. Let us consider the map

p: Ly, — D,
sd+r — s+lr.
Claim: The map ¢ is a permutation of the elements of Z,. Let us suppose that there
exist distinct elements z1 and z2 in Z,, such that ¢(z1) = ¢(22). By the Euclidean Division,
there exist 0 < 51,89 <l —1and 0 < 7q,r7o < d—1 with z; = s1d + r1 and 25 = sod + 79.
Then we have

(15)

o(s1d+11) = @(sed+12) & s1+1lrp = sa+1lrg & 51— s9 =1(ra —11).

Since 0 < 1,89 < [ — 1, the above equation implies that s; = so = 0 and 1 = ro = 0.
However, this contradicts the fact that z; # z5. Therefore, ¢ is a permutation.

We will utilize the permutation ¢ to rearrange the rows and columns of P?%—2Id+ (Pd)T
and obtain the block diagonal matrix Mn,i with d blocks. Applying the permutation ¢ to

this matrix, we obtain the permuted matrix ¢(P¢ — 2Id + (Pd)T).
Let us observe that ¢ o mg 0 ¢~ ! defines a permutation 6 : Z, — Z, given by
0(z) = pomgop l(z) = pomlp™ (s +rl))
= pomg(sd+r)
=p((s+1)d+r)
=(s+1)+rl,
where z = sl +r with0<s<[—-1and 0 <r <d-—1. We obtain that

M, <(Pd)T _oId+ Pd) M;' = M.

In fact, the product of the permutation matrix M, for (Pd)T —2Id +P? and Mg L maps

the nonzero entries of M, 4 to the nonzero entries of Mmd. In the case when k = j, writing
k=s+riwith0<s<l—1land0<r<d-1, we have

0(akk) = Q(st1)4rL,(s+1) 1l = QO(k),0(k)1
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which implies that the new matrix will have ay, = —2. If aj p1q = 1, with k = s+ rl and
0<s<l-1, we have

Ok ktrd) = O(s41)4rl, (s42)4r1 = QO(k),0(k+d)>
which implies that ay ;1 = 1 when considering the indices modulo /. The same procedure
applies to ap4qr, as it is the transpose of aj riq. The other entries are zero and their
images are also zero. Therefore, we obtain the matrix in (14).
Using Proposition 3.3 and the fact that the matrix ]\an,i is a block diagonal matrix with
d blocks equal to the matrix M; 1, we can determine the rank of M, ; and the determinant
of the reduced matrix M,/” In conclusion, we obtain that

[ (-1Y)d=n—d if ged(l,p) = 1;
rank M, ; = { (l—2)d=n-—2d if ged(l,p) = p,
and
et dp = (D) = (i ged(lp) = 13
e -1\4 n— .
(=11 = (=1 if ged(l,p) = p.

O

From Proposition 3.1, we know that the matrix associated with the quadratic form
Tr(z(x? — 1)) is given by

A= %B((Pi)T —2Id+P)B" = %BMM-BT

where B is defined in (5). By applying Propositions 3.5 and 3.9, we obtain the following
result.

Corollary 3.10. Let i be an integer such that 0 < i < n. Set d = ged(i,n) and | =
The rank of the n x n matriz A = 2B((P")” — 2Id + P")BT, where a € Fgn, ts given b
cank A— 174 ff ged(l,p) = 1,
n—2d if ged(l,p) = p.
Let A’ be a reduced matriz of A. Then
(=" x((=2a)" %) if ged(l,p) = 1;
(=)™ x((—a)*2")  if ged(l,p) = p.

Proof. Let suppose that ged(l,p) = 1, because step for the other case is essentially the
same. The result follows from

n
E.
Y

x(det(A")) = {

1 a .- d T
det(A') = det (§M,,1) det(BBT),
and
x(det(A) = y ((2a)ld—ddet(Ml,1)d) (det(BBT)).
By applying Propositions 3.5 and 3.9, we obtain the result. ]
By Theorem 2.2 and Propositions 3.1 and 3.9 we have the following theorem.

Theorem 3.11. Let n,i be integers such that 0 <i <n and put d = ged(i,n) and | = 7.
If n = 24, the number N, (C;) of affine rational points in ]F?In of the curve determined by

the equation y4 —y = 271 — 22 — \ is

No(Ch) = q" — x((=1)+D/2Tr( X)) gBi+D/2 if i is odd;
T emopx((R1)72)g* if i is even.
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If n 5 2i, the number of affine rational points of C; is

q" — x(2(=1)= D2y () 14) g(nHd+1)/2 if ged(l,p) =1 and n+d is odd;
N (C) = q" + sTr(,\)X((—1)(”_d)/21d)q("+d)/2 if ged(l,p) =1 and n+d is even;
e q" — (—1)%x(2(=1)(TD/2Tr(N))g(nt2d+1)/2 if ged(l,p) =p and n is odd;
q" + (—1)‘15%()\))(((—1)”/2)q(”+2d)/2 if ged(l,p) =p and n is even.

Remark 3.12. The curve C; has genus g = (q_Tl)qi. The Hasse-Weil bound of C; is given
by
n n+2i
[Nn(Ci) —¢"| < (¢ —=1)g >
Using Theorem 3.11, we can determine the conditions when the curve C; is maximal (or
minimal) with respect the Hasse-Weil bound.

n

Theorem 3.13. Let n,i be integers such that 0 <i <n, set d = ged(i,n) and | = % and
n # 2i. The curve

C,;:yq—y:x(xqi—ac)—)\
is mazimal in Fon if and only if Tr(X) = 0, n is even p divides l, i divides n, n # 2i and
(=) ((—=1)"2) = 1. The curve C; is minimal in Fyn if and only if Tr(\) = 0, n is even,
p divides 1, i divides n, n # 2i and (—1)dx((—1)”/2) = —1.

4. THE NUMBER OF AFFINE RATIONAL POINTS OF THE HYPERSUFARCE
q — q i ) A
Y —y—Z] 1%%( — ) —
Using the results derived in the previous section, we can now determine the number of
affine rational points of Artin-Schreier’s hypersurface H, defined by the equation:

T .
eyl —y =Y ajwj(z] —xj) = A
j=1
where a; € F; and 0 < i; < n for j € {1,...,7}. According to Theorem 5.4 in [11], we

have the following result for a character 1) of Fyn

_J0 if u # 0;
Z Plue) = {q” if u=0.

Using this result we can compute the number N,,(H,) as follows

q"Nn(Hr) = Z Z Z Z (G a]m] *l‘j)*yq+y*)\

CEIFqn $1€Fqn .Z’»,»EFqn ye]Fqn

=grtrp N Y ¢<C <Z%fﬂj($§ij—%)—k>> D vle(—y'+y)

cEFYy 21€Fn @ €Fgn y€EF n

e 3 e [T S 0 (e (et —2)) X wlet-st+0)
c€F%y j=lz;€Fm yEF,n

_ grtn 4 Z —c)) H Z ¢( (a]xj )) Z 1/}( ( C))
c€Fy j=lxz;€Fmn yEFn

(16)
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We observe that

n—1

>y (=" +o)) = {g" g —oms

yEFgn

Since ¢?"' — ¢ = 0 if and only if ¢ € Fyn-1, we can conclude that the inner sum in (16)
has non-null terms only if ¢ € IF,. From the theory of characters over finite fields, we have

that (—c\) = (Tr(—c))) = P(—cTr(N)) (see [11] equation (5.7) in page 191), therefore,
we have that

Na(Hy) ="+ 3 =N [T 30 @ (eay (5" ). (17)
cely j=lz;€Fyn
The following theorem gives explicit formulas for N, (H..).

Theorem 4.1. Let i1,...,i, be positive integers such that 0 < i; < n. We define d;j =
ged(ij,n) and lj = d%' Let X = {ly,...,l;} and Y = {ly41,...,1;}, where ged(lg,p) = 1
forly € X and ged(lg,p) =p forly €Y.

Let H, be the hypersurface given by the expression

r .
yl —y = Zaja:j(a:‘j] —zj) — A
=1

where X € Fyn and a; € Fy. Let us define

Dl:idjy DQZ i dj, leﬁl;lj. Al:ﬁa;lidj andAgzﬁa?.
j=1 7j=1 7j=1 T

j=F+1

Let A = A1As. In the case X = @ we set L1 =1, A1 = 1, and in the case Y = & we
set Ay = 1. The number Ny (H,) of affine rational points of H, in F;‘H s given by

qrn + (_1)D2Ts(nr—D1—2D2)X((_1)D2AL1)Eﬂ(A)q% Zf nr— Dy is cven:
nr+Dq+2Do+1
g+ (_1)D2+17_8(m"—D1—2D2+1)X(2(_1)D2AL1TT(>\))Q712 2 if nr — D1 is odd.

Proof. From (17) we obtain that

Nt =+ Y d =N ] 3 o (e, (myet” =2p)). ()

ceFy j=lz;€Fn

We can divide this product into two parts: one from 1 to 7 and the other from 7+ 1 to r.
We use Corollary 3.10, for the matrices A; = %B((P’)T —2Id+PHBT,1<j<r. In

this case,
vank A; — n—d; ?f ged(ly,p) =1,
n—2d; if ged(l,p) = p.

Let A; be a reduced matrix of A;. Then

(=) ((=2)"41) if ged(ly,p) = 13 |
()" %x((=1)n=%2m) if ged(ly, p) = p.

Combining this result with Lemma 2.5, we can obtain the following expressions

x(det(47)) = {
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-

ﬁ >ow (Caj (l’j(?ﬁ?ij *Ij))) =

j:1 x E]Fqn

(~1) D) 0= ()i ((=20,)" ) g2
1

<.
Il

n7t+Dy

— (_1>s(nf—D1)Ts(7Lf—D1)X((_2c)nf—D1AlLl)q 5

and

H Z ’l/) (caj (I‘j(xgij —$j)>> _ H (_1)(s+l)(n—2dj)7_s(n—2dj) ((—l)n_djx((—l)"_dj (2caj)n—2dj) qn—(n—2dj)/2

j=F+la;€F m j=i+1

_ (_1)577,(7‘7?)7D2Tsn('rff)72sD2X((_l)n('rff)fDQ (QC)TL(Tii)AQ)q% .

Using the given expressions in (18), we obtain the following result

~ nr+Dq+2Dgy
Nn(Hr) _ qrn — (_1)s(nr—D1)—D2Ts(nr—Dl—QDz) Z w(—CTI‘()\))X((—l)DQ(—QC)nr_DlALl)qi?
ceFy
(19)

We will now proceed with the proof by considering two cases.
(1) If nr — Dy is even, then x((—2c)""~P1) = 1. Substituting this in (19), we have

No(Hy) = ™ = (=1)P2rsm=Di=2D2) (C1)DP2 ALy ) g™ 37 (—eTr(N)

ceFy
_ (P Dy (1) P2 AL (g = 1) i Tr(A) = 0
(—1)P2ps(r=D1=2D2)\ (—1)P2 AL g™ 372 (<1) if Tr(A) #0

nr+D1+2Dgy

= (~1)Pers N ()2 AL ey 2
(2) If nr — Dy is odd, then x((—2¢)”~P1) = x(—2c). Substituting this in (19), we

have
™ s— s(nr— - nr+Dy 42Dy ~
Nu(Hr) = g™ = (=1)" P2 =120y (1) P2 AL g 2 > d(—cTr(V)x(c)
ceF;
(=1)°~ P2 =D1=2D2) (L) P AL )T ST (o) if Tr()) = 0
_ CGF;
(~1)* P2 D22 ()P AL TY(N))g T E S B(—eTr(W)x(—¢Tr(N) if Tr(A) # 0
CEF;
o if Tr()\) = 0
T\ (=1)* Papsnr=Di=2Da)y (9~ 1) P2 AL T (A))g " R 2 Ga(wh,x) if Tr(A) # 0.

Applying Theorem 2.4, which states that Gl(@, x) = —(—7)°y/q, we obtain the
following expression

Nn(Hr) o qrn _ (_1)D2+17_s(nr—D1—2D2+1)X(2(_1)D2AL1TT()\))q

nr+D1+2Dgo+1
2

The well-known Weil bound tells us that

T
INa(Hr) =" < (¢~ 1) [[d"a"? = (¢ — 1)g™F
j=1
where I = Z§:1 ij. By Theorem 4.1 this bound can be attained only if in the case nr — D1
is even and Tr(\) = 0. Besides that, we would need that 21 = D; + 2D, that only occurs
if Dy = 0 and i; = d;j for j € Y. Using this fact, we obtain the following result, that
assures us when the hypersurface H, is maximal or minimal.
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Theorem 4.2. Let H, : y? —y = Zaj:nj(x?lj —xj) — A with A\ € Fgn, a; € F; and

0 <i; < n and satisfying the same conditions as in Theorem 4.1.
The hypersurface H, attains the upper Weil bound if and only if one of the following
holds

e Tr(\) =0, Dy =0, nr is even, i = d; for all j €Y, (nr —2D3)s = 0 (mod 4)
and (—1)P2x((-1)P2ALy) = 1,
e Tr(\) =0, Dy =0, nr is even, z] =dj forallj €Y , (nr—2D3)s =2 (mod 4)

1=
and (~1)P2x((~1)P2AL,) =
The hypersurface H, attains the lower bound if and only if one of the following holds
o Tr(\) =0, Dy =0, nr is even, ij = dj for all j € Y, (nr —2D3)s = 2 (mod 4)
and (—1)P2x((-1)P2ALy) = 1;
o Tr(A )—O Dy =0, nr is even, z] =dj forallj €Y , (nr—2D3)s =0 (mod 4)
and (—1)P2x((~1)*2 AL,) =

Example 4.3. Let ¢ = 5%, n = 30. We consider the Artin-Schreier hypersurface given by

2 3 6
H:yl —y=z1(z] —a1) +22o(zd —x9) + z3(zd — z3).

Following the notation of Theorem 4.2, we have that i1 = d1 = 2,15 = dy = 3,13 = d3 = 6,
l1 =15,l1o =10,l3=5, Dy =24+34+6=11, A=1 and Ly = 1. Moreover,

(nr—2D3)s =(90—-22)-2=0 (mod 4),

(=1)P2x((-D)P2AL) = (-1)'"x((-D') = ~1.
It follows from Theorem 4.2 that H is Fgso-minimal.
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