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In this paper, we propose a stochastic version of the Hawking–Penrose black hole model.

We describe the dynamics of the stochastic model as a continuous-time Markov jump process of

quanta out and in the black hole. The average of the random process satisfies the deterministic

picture accepted in the physical literature. Assuming that the number of quanta is finite the

proposed Markov process consists of two componentes: the number of the quanta in the black

hole and the amount of the quanta outside.

The stochastic representation allows us to apply large deviation theory to study the asymptotics

of probabilities of rare events when the number of quanta grows to infinity. The theory provides

explicitly the rate functional for the process. Its infimum over the set of all trajectories leading

to large emission event is attained on the most probable trajectory. This trajectory is a solution

of a highly nonlinear Hamiltonian system of equations. Under the condition of stationarity of

the fraction of quanta in the black hole, we found the most probable trajectory corresponding

to a large emission event.

Keywords: Hawking–Penrose model, large deviation principle, rate function, Markov processes.

1. Introduction

A state of a system is not always the result of a quiet and long evolution.
Sometimes a very rare event drastically changes directions of the development. If
randomness is present in the system then the rare event can be studied by large
deviations theory. Large deviations theory is one of the well-developed and often
currently applied parts of the probability theory which gives means for asymptotical
evaluations of the rare event probability.
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Large deviations theory started from the famous Cramér’s article [1]. This work
initiated the elaboration of the new section of probability theory. One of the next
crucial contributions to the theory has been done by S. R. S. Varadhan in [2] where
the notion of the large deviations principle was introduced. The theory is well
developed at present. There exists a fairly large library of books devoted to large
deviations theory, [3–9]. Some of the books contain chapters about applications of
large deviations.

The goal of this paper is an application of large deviation theory to continuous-
time Markov processes whose average describes the deterministic evolution of the
simplest black hole model considered in [14, 15].

In essence, the concept of a black hole as a domain bounded by an event horizon
was discovered by K. Schwarzschild in 1916 [10]. The concept had no connection
with statistical physics until the calculation of a black hole entropy and the discovery
of Hawking radiation, [11–13]. After this discovery, S. Hawking considered the model
containing a black hole and a photon gas in dynamical equilibrium [14]. In more
detail, this dynamical model was developed by R. Penrose [15].

Here, we propose a stochastic version of the Hawking–Penrose model. The study
of the stochastic version black hole model is motivated by the quantum nature of
the black hole emission [14]. Let N be the total number of quanta in the model.
The continuous-time Markov process ξ takes its values from 0 to N and describes
the evolution of the number of quanta in the black hole (the black hole size). It
is formally defined by their infinitesimal generator (12). Since we are interested
in the Hawking radiation we introduce into the model the second component, η,
that counts the number of quanta emissions: any hole reduction by one quanta is
followed by one emission. The evolution two-component process ψ = (ξ(·), η(·)) is
determined by the generator (14). The transition rates of this process correspond to
the laws of black hole physics.

In this paper we study the large deviations asymptotics for a stochastic version ψ
of the Hawking–Penrose model with special attention to the large emission regime.
The emission is a random process that depends on the size of the horizon of
the black hole. Because of the randomness there exists a small probability that
the average radiation flux during a finite time interval became very large. Despite
the small probability, it is strictly positive, thus, such fluctuations will appear with
probability one. Stochasticity of the absorption (when the number of quanta in the
black hole increases by one) process is due to the nonhomogeneity of particle
localizations out of the black hole. The physics that causes these fluctuations is not
discussed here.

We apply the large deviation theory to find the way how a large emission
event occurs. The theory uses an asymptotic approach to the problem. In our case,
we study the asymptotics with respect to the growing total number of quanta N .
Therefore we need to consider the scaled Markov processes ψN = (ξN , ηN ), see
(Eqs. (15), (16)). The large emission event on the time interval [0, T ] is defined in
terms of the scaled process: ηN (T ) > BT , where B is the emission rate.
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Using the large deviations theory, the rate function of the studied stochastic system
is sought. To find the rate function of the studied system at appropriate scaling
we apply the approach developed in [4]. The rate function along the asymptotics
allows one to find the trajectory of the black hole state which corresponds to
the given amount of emission. When the scaling parameter N is going to infinity
the probability is concentrated in every neighbourhood of this trajectory. Finding
this trajectory is reduced to solving a Hamiltonian system of equations (27). In
the considered case, the Hamiltonian system is highly nonlinear and, unfortunately,
finding its solution on the set E (see Eq. (20)) of all trajectories corresponding to the
large emission is a hard problem. We formulate our guess solution as Hypothesis 1.

Taking into account the hypothesis we find the solution on the very restrictive set
of trajectories G (see (21) for the definition of the set G). Namely, we assume that
the average hole size is constant and the corresponding emission average is a linear
function. We introduce the concept of stationary emission regime (see Definition 1),
it is, basically, the solution of Hamiltonian system which belongs to the set G. We
prove the following result (see Theorem 1).

For each emission rate B > 0 there exists a mass mB of the black hole
such that the pair of trajectories (x(t), y(t)) ≡ (xB, Bt), t ∈ [0, T ], is the
stationary emission regime. Here xB = mBc

2/E, where E is a total energy
of the system, and

mB ∝
1

3
√
B
,

where the proportionality coefficient is some combination of physical constants.

This relation is new. It describes the correspondence between the size of the
black hole and its emission rate in the large emission regime.

The present work continues our works [22–24], where the similar problems
concerning emission regime were studied. The paper is organized as follows. In the
next section we recall the deterministic picture, Section 2.1, and then we formulate
our stochastic Markov model in Section 2.2. Section 3 is devoted to application of
large deviation theory. In this section, we derive the rate function (25). In Section 4
we provide the corresponding Hamiltonian system (27), we formulate the main
result, Theorem 1, and the proof. Section 5 concludes the paper.

2. Hawking–Penrose black hole model

The goal of this paper is to propose and study a stochastic version of the
Hawking and Penrose black hole model introduced in [14, 15]. The model in our
considerations has two constituents: the black hole and a cloud of photons. A part
of the photons is located in the hole, the remaining photons are free and located
in a box with reflected boundaries. There exists an exchange of photons between
the cloud and the hole: emission and absorption. This exchange we describe by
a Markov process with discrete phase space.
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Before the construction of stochastic model we recall the Hawking–Penrose black
hole model accepted in physical literature.

2.1. Deterministic picture

Let V be a volume with mirror boundaries containing radiation with total
energy E. Some amount of the energy e is absorbed by the black hole. The black
hole emits a radiation by the Hawking process. It means that the amount of the
energy in the black hole depends on time.

REMARK 1. In this subsection we assume that the values of E, e and m take
real values. Further, when we will consider the random version, the values of E, e
will be discrete.

The Schwarzschild radius of the black hole equals

R =
2Gm

c2
=

2G

c4
e,

where m = e/c2 and G is the gravitational constant. The radius R depends on the
energy e of the black hole. We denote the coefficient connecting R and e by a,

R = ae, (1)

where

a =
2G

c4
. (2)

The energy e satisfies the balance equation,

de

dt
= Wabs −Wem. (3)

In this equation the power absorbed by the black hole is

Wabs = cA
1

4

E − e

V
, (4)

where
A = 4πR2 (5)

is the horizon area, and the factor 1/4 appears by geometrical reasons, see [19].

REMARK 2. (i) The factor 1/4 in (4) reflects the fact that the absorbed power
falls into black hole at some angle θ to the surface. The absorbed power is
proportional to cos θ . An average value of cos θ on the hemisphere 0 ≤ θ < π/2
equals to 1/2. Additional factor 1/2 appears because we have to consider only rays
directed towards the surface [16, Vol. 1, Chapter 45].

(ii) Here we ignore the gravitational light deflection. An elementary discussion
of the gravitational light deflection as a consequence of the equivalence principle is
given in [17, Vol. 1, Chapter 14].

(iii) Considering of the light deflection gives (27π/4)R2 instead of πR2 (see
[18, Chapter 12, Section 102: gravitational collapse of spherical body, p. 338]).
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Using (1) and (5) we obtain

Wabs =
πc

V
a2e2(E − e). (6)

The black hole emission Wem was calculated in [20] (Eq. (146))

Wem = σAT 4,

where

T =
h̄c

4πR

is the Hawking temperature and σ is the emission constant (see [20, Eq. (146)]). Note
that the emission constant σ does not coincide with the classical Stefan–Boltzmann
constant [19]. Using expressions of A and R via e we obtain

Wem = σ
(h̄c)4

(4π)3a2

1

e2
.

Let

b =
h̄c

4πa
, (7)

then

T =
b

e
.

We obtain (see (3))

de

dt
= a1a

2e2E − e

V
− a2a

2 b
4

e2
, (8)

where
a1 = πc, a2 = 4πσ. (9)

This equation can have a stationary solution if the equation

a1e
4(E − e) = a2b

4V (10)

has a solution. The condition for it is

44

55
E5 ≥

a2

a1

b4V. (11)

If this inequality is strict, then Equation (10) has two solutions. One of them
corresponds to the stable and another to the unstable black hole [15].

2.2. Stochastic picture

In this section we propose a discrete version of the system outlined above.
Moreover, we impose stochasticity on the system.

As in the previous section, E is the total energy in the volume V , and e is the
part of E which is assumed to be contained in the black hole. The discreteness
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assumes that the total energy E is split in quanta. Let N be the total number of
quanta, then the energy ε of each quanta is

ε =
E

N
.

From now e is also a discrete variable. Later on, E is fixed while N is growing.

The volume V splits into two parts: the black hole interior and its exterior. An
arbitrary positive part k = 1, 2, . . . , N of the quanta can be absorbed by the black
hole, and be contained in it. The energy of the black hole is e = kε if k quanta
are in the hole.

2.2.1. Markov process

The dynamics consists of the emission and the absorption of the quanta by
the black hole. This dynamics we construct as the continuous-time Markov process
ξ(t), t ∈ [0, T ] with the state space N = {1, . . . , N}. The state of the process is
interpreted as the number of quanta into the black hole. The transition rates of ξ(t)
are defined as the following:

If ξ(t) = k > 1, then the rate of the transition k → k − 1 (the emission rate)
equals to

Wem

ε
=
a2a

2b4

E3
N
N2

k2
.

If ξ(t) = k < N , then the rate of the transition k → k + 1 (the absorption
rate) equals to

Wabs

ε
=
a1a

2E2

V
N
k2

N2

(

1 −
k

N

)

.

Thus, the generator of the jump Markov process ξ(t) is

Lf (k) = N
a1a

2E2

V

k2

N2

(

1 −
k

N

)

[f (k + 1)− f (k)]

+N
a2a

2b4

E3

N2

k2
(1 − δ(k − 1))[f (k − 1)− f (k)]. (12)

Here δ(k) = 1 for k = 0, and δ(k) = 0 otherwise.

REMARK 3. We introduce the term 1 − δ(k− 1) which does not allow the black
hole to evaporate completely.

We further use the following notation

µ = a2a
2b4/E3,

λ = a1a
2E2/V .

(13)
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2.2.2. Markov process with emission

Next, we consider the joint process ψ = (ξ, η), where the second component
η(t) counts the number of quanta emissions from the hole during the time interval
[0, t], t ≤ T . The process η(t) takes its values in Z+, and it is nondecreasing
process. The initial value η(0) = 0, and we suppose that ξ(0) is uniformly distributed
on N. Therefore, the generator of the joint process is

Lf (k,m) = λN
k2

N2

(

1 −
k

N

)

[f (k + 1, m)− f (k,m)]

+ µN
N2

k2

(

1 − δ(k − 1)
)

[f (k − 1, m+ 1)− f (k,m)] , (14)

where k ∈ N, m ∈ Z+.

Considering the large deviations of the black hole emissions during the time
interval [0, T ] we should scale (ξ(t), η(t))

ξN (t) =
ξ(t)

N
, ηN (t) =

η(t)

N
. (15)

In this scaling we study the large emission when N → ∞.

The joint process ψN (t) = (ξN (t), ηN (t)) takes its value in DN =
(

1
N
N × 1

N
Z+

)

.
Since DN ⊂ D = [0, 1] × R+ for every N we will say that the processes ψN takes
their values in D.

The process ψN is the jump process with two types of jumps:
(

1
N
, 0

)

and
(

− 1
N
, 1
N

)

. Let (xN , yN ) ∈ DN . Then the infinitesimal operator of ψN is

LψNf (xN , yN ) = λx2
N (1−xN )N

[

f

(

xN +
1

N
, yN

)

−f (xN , yN )
]

+µ
1

x2
N

N

(

1−δ
(

xN −
1

N

)) [

f

(

xN −
1

N
, yN +

1

N

)

−f (xN , yN )
]

.

(16)

Let (x, y) ∈ D and a sequence (xN , yN ) ∈ DN be such that (xN , yN ) → (x.y).
Assuming differentiability of f we obtain a limit

L∞f (x, y) = lim LψNf (xN , yN ) = λx2(1 − x)
∂f

∂x
+ µ

1

x2

(

∂f

∂y
−
∂f

∂x

)

.

Let
S =

{

(x(t), y(t)) : [0, T ] → D
}

(17)

be Skorohod space, it means that the paths x(·) and y(·) are continuous from the
right and have limits from the left. This space is equipped with the Skorohod
topology [21]. Let also C1 ⊂ S be a subset of pairs of absolutely continuous
functions (x(·), y(·)) such that x(t) ∈ [0, 1] and y(t) ∈ R+ is nondecreasing with
initial y(0) = 0. The process ψN induces a measure on S.



8 E. PECHERSKY, S. PIROGOV and A. YAMBARTSEV

The operator L∞ can be considered as an infinitesimal generator of a deterministic
dynamics, described by the following ordinary differential equations

dx

dt
= λx2(1 − x)− µ

1

x2
θ(x), (18)

dy

dt
=µ

1

x2
θ(x), (19)

for (x, y) ∈ C1, where θ(·) is the Heaviside step function whose value is zero for
negative arguments and one for positive arguments, we set θ(0) = 0. Note, that Eq.
(18) coincides with the Eq. (8). Eq. (19) counts an amount of emitted energy.

For large finite N the paths of a random process ψN fluctuate around the
solutions of (18) and (19). The probabilities of these fluctuations are governed by
the rate function I (x(·), y(·)), which we define in the next section about the large
deviation theory. Here we outline the role of the rate function I . The probability that
the process ψN is close to a path (x(t), y(t)) (here (x(t), y(t)) does not necessary
be the solution of (18) and (19)) has a rough exponential asymptotics

Pr
(

ψN (t) ≈ (x(t), y(t)), t ∈ [0, T ]
)

≍ exp
{

−NI (x(·), y(·))
}

as N → ∞. The sign ≈ means that the process ψN is located in a neighbourhood of
the path (x(t), y(t)), and the neighbourhood is shrinking to this path with growing N .

3. Large deviations

To find the probability of the large emission on [0, T ] we use large deviation
theory. It is especially useful when looking at the asymptotic probability of rare
events. We describe the large deviation approach in terms of the system studied
here. The large emission from the black hole on interval [0, T ] we determine as
the event

EN =
(

(ξN (·), ηN (·)) ∈ S : ηN (T ) ≥ BT
)

,

where B > 0. The first component ξN is irrelevant in this event, the same for the
values of ηN (t) for t < T except for t = T , where ηN (T ) ≥ BT . Let

E =
{

(x(·), y(·)) ∈ C1 : y(T ) ≥ BT , y(0) = 0
}

. (20)

Further we will consider a more restrictive event GN ⊂ EN which is related to
the so-called stationary emission regime, see Definition 1 below. In the definition
of GN , strong restrictions on the first component ξN (t) are introduced as well. To
this end we consider a following subset G ⊂ C1,

G =
⋃

c1∈[0,1]

⋃

c2≥B

{

(x(·), y(·)) ∈ C1 : x(t) ≡ c1, y(t) = c2t
}

⊂ E. (21)

Note that both E and G depend on B, but we omit it in notation.
Then, for a given δ let Uδ(G) be a δ-neighbourhood of G in Skorokhod topology

on the space S. Finally, the set GN,δ we define as follows

GN,δ =
(

(ξN (·), ηN (·)) ∈ Uδ(G)
)

.
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Thus, the path (ξN (·), ηN (·)) belongs to GN,δ if there exists a trajectory (x(·), y(·)) ∈ G
such that ξN (·) ∈ Uδ(x(·)) and ηN (·) ∈ Uδ(y(·)).

The asymptotics of the probabilities of Pr(EN ) and Pr(GN,δ) as N → ∞ is the
subject of the large deviation theory. The large deviation theory states the existence
of the functional

I (x, y) : C1 → R+,

such that I (x, y) = ∞, when (x, y) /∈ C1. In the large deviation theory, the functional
I is called the rate function which was mentioned in the previous section. The
properties of rate function are well described in the literature (see, for example,
[4]).

Applying the large deviations theory [5] we can find the logarithmic asymptotics
of Pr(EN ) and Pr(GN,δ), that is

lim
N→∞

1

N
ln Pr(EN ) = inf

(x,y)∈E
I (x, y),

lim
δ→0

lim
N→∞

1

N
ln Pr(GN,δ) = inf

(x,y)∈G
I (x, y).

(22)

Looking for the rate function I (x, y) in our case we follow the method of
Feng and Kurtz [4]. The rate function, according to this method, is constructed
by a Hamiltonian H . In first step, the nonlinear Hamiltonian has to be found: for
(x, y) ∈ D (see (16))

(HNf )(x, y) :=
1

N
exp{−Nf (x, y)} × LψN exp{Nf (x, y)}

= λx2(1 − x)

[

exp

{

N

(

f

(

x +
1

N
, y

)

− f (x, y)

)}

− 1

]

+ µ
1

x2

(

1 − δ(x −
1

N

) [

exp

{

N

(

f

(

x −
1

N
, y +

1

N

)

− f (x, y)

)}

− 1

]

.

It is assumed in the above expression that 0 < x < 1 and N is large enough. Then

lim
N→∞

(HNf )(x, y)

= λx2(1−x)
[

exp

{

∂

∂x
f (x, y)

}

− 1

]

+µ
1

x2

[

exp

{

−
∂

∂x
f (x, y)+

∂

∂y
f (x, y)

}

− 1

]

.

(23)

Using the notation

̹1 :=
∂

∂x
f (x, y), ̹2 :=

∂

∂y
f (x, y),

we obtain from (23) the Hamiltonian H of the system

H(x, y, ̹1, ̹2) = λx2(1 − x)[e̹1 − 1] + µ
1

x2
[e−̹1+̹2 − 1]. (24)
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To define the rate function for the considered system we introduce paths (̹1, ̹2)
on [0, T ]; (̹1(t), ̹2(t)) ∈ R

2. Then the rate function is obtained as (see (24))

I (x, y) =
∫ T

0

L(x, y)dt =
∫ T

0

sup
̹1(t),̹2(t)

{

̹1(t)ẋ(t)+ ̹2(t)ẏ(t)

− λx2(t)(1 − x(t))[e̹1(t) − 1] − µ
1

x2(t)
[e−̹1(t)+̹2(t) − 1]

}

dt, (25)

where

L(x(t), y(t)) = sup
̹1(t),̹2(t)

{̹1(t)ẋ(t)+ ̹2(t)ẏ(t)−H(x(t), y(t), ̹1(t), ̹2(t))}

is Legendre transform of Hamiltonian H (24). Recall that (x(t), y(t)) ∈ C1.

4. Result

Our goal is to study how the large emission occurs. To this end, on the set E
of all trajectories that correspond to the large emission we have to find a trajectory
where the infimum

inf
(x,y)∈E

I (x, y) (26)

is attained (see (20) for the definition of the set E). Note that on the set E there
are not any constraints on the fraction of quanta in the black hole.

Since the rate function I is the nonlinear integral functional which integrand is
the Legendre transform of Hamiltonian (24), the extremals of (26) should satisfy
a Hamiltonian system



































ẋ = λx2(1 − x) exp{̹1} − µ
1

x2
exp{−̹1 + ̹2},

ẏ =µ
1

x2
exp{−̹1 + ̹2},

˙̹ 1 = −λ(2x − 3x2)[exp{̹1} − 1] + µ
2

x3
[exp{−̹1 + ̹2} − 1],

˙̹ 2 = 0,

(27)

with suitable boundary conditions. The system (27) is the Euler–Lagrange equation
for integral functional I (x, y), see (25). Due to the high nonlinearity of the system
(27) we cannot find the solution, but we guess that the minimum is attained on the
trajectory which belongs to the set G. Thus, the main goal would be the following
result which will be formulated as the hypothesis.

HYPOTHESIS 1. For any B > 0 there exists xB such that the functions

xB(t) ≡ xB ∈ [0, 1], yB(t) = Bt, t ∈ [0, T ]
attain the infimum in (26)

I (xB, yB) = inf
(x,y)∈E

I (x, y).
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Unfortunately, a proof of this statement is very complicated. But if we restrict
the infimum (26) on the set G, then the proof becomes an easy task, see Theorem 1.
The infimum on the restricted set G ⊂ E,

inf
(x,y)∈G

I (x, y), (28)

also gives the asymptotic behaviour of the large emission probability with restrictions
on the value of the number of quanta in the black hole, see (21) for the definition of
G. Namely, in this case the quanta number satisfies periodic boundary conditions on
the time interval [0, T ]. Moreover, in Theorem 1 we find the relationship between
the size of the black hole and the size of large emission. Before formulating the
next theorem, we introduce the following definition.

DEFINITION 1. For a constant B > 0, the path (xB(t), yB(t)) is called a stationary
emission regime if

1. there is a constant xB such that xB(t) ≡ xB, t ∈ [0, T ],
2. yB(t) = Bt, t ∈ [0, T ],
3. the path (xB(t), yB(t)) is extremal of I with the boundary conditions xB(0) =

xB(T ) = xB and yB(0) = 0, yB(T ) = BT .

In Theorem 1, we consider a family of all stationary emission regimes (see
Definition 1) which depends on the parameter B. The theorem finds the relation
between B and the value of constant xB in the stationary emission regime.

THEOREM 1. For sufficiently large B > 0, there exists a unique constant xB
which is the root of the equation

B

1 − xB
− 2µ

1

x3
B

+ λ(2xB − 3x2
B) = 0, (29)

such that the path x(t) ≡ xB , y(t) = Bt is the stationary emission regime. We have
xB → 0 as B → ∞ with the asymptotics

xB ∼
3
√

2a2a2b4

E

1
3
√
B
.

Proof: From the definition of the stationary emission regime we obtain that










































0 = λx2
B(1 − xB) exp{̹1} − µ

1

x2
B

exp{−̹1 + ̹2},

B =µ
1

x2
B

exp{−̹1 + ̹2},

˙̹ 1 = −λ(2xB − 3x2
B)[exp{̹1} − 1] + µ

2

x3
B

[exp{−̹1 + ̹2} − 1],

˙̹ 2 = 0.

(30)



12 E. PECHERSKY, S. PIROGOV and A. YAMBARTSEV

From the fourth and second equations of (30) it follows that ̹1 and ̹2 do not
depend on time. Besides, the following equality

λx2
B(1 − xB)e

̹1 = µ
1

x2
B

e−̹1e̹2 = B, (31)

where ̹1 ≡ ̹1 and ̹2 ≡ ̹2, follows from the first and second equations of (30).
We obtain from these equations

xB

[

λxB(1 − xB)e
̹1 − µ

1

x3
B

e−̹1e̹2

]

= 0. (32)

Next we prove the equality

λx2
Be

̹1 − 2µ
1

x3
B

+ λ(2xB − 3x2
B) = 0. (33)

To this end we use the third equation of (30) which we rewrite in the following
way,

−2λxB(1 − xB)e
̹1 + 2µ

1

x3
B

e−̹1e̹2 + λx2
Be

̹1 − 2µ
1

x3
B

+ λ(2xB − 3x2
B) = 0.

Using now (32), we obtain (33). Substitute in (33) the value of e̹1 = B/(λx2
B(1 − xB))

from (31) to obtain Eq. (29). It is the equation to find xB via B. Assuming now
that B → ∞ we obtain from (29)

xB ∼
(

2µ

B

)
1
3

since λ is a constant and xB ∈ [0, 1].

REMARK 4. The asymptotics of xB is determined only by the µ which depends
only on the emission constant σ and the coefficient in the Hawking’s formula for
the temperature.

5. Conclusion

The paper considers a black hole model proposed by Hawking [14] and investigated
by Penrose [15]. In addition to the deterministic picture of the black hole dynamics
([14, 15]), the random dynamics driven by a continuous-time Markov process on
a finite observation interval [0, T ] is introduced. Two characteristics of the black
hole are studied in the course of this dynamics: (i) the size (volume) of the black
hole at every current moment of the observations, and (ii) the accumulated value of
Hawking emission from the beginning of observations up to the current moment.

The stochasticity permits to consider very rare events that can happen during
the stochastic dynamics of the black hole. Here we considered the case when the
value of the emission flux by far exceeds the average value. The probability of
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this event was studied from the large deviation point of view. The dynamics of the
black hole size at this event is very different from the average.

The main result was obtained under the additional assumption that the average
size of the black hole does not change in the observation time interval under
consideration, in which the Hawking emission flux is very large. We proved that
the size of the black hole under these assumptions is proportional to B−1/3, where
B is the total emission over the observation interval [0, T ]: the greater the total
emission B, the smaller the hole size.

The construction considered in this work is a Markov random process that
describes the stochastic dynamics of a black hole: absorption of matter and Hawking
emission. The physics of these phenomena (absorption and emission) is hidden in the
stochastic nature of the process. There are many suitable possible Markov processes.
We considered a class of Markov processes which average satisfies deterministic
behaviour in physics. However, the behaviour of the system under rare events might
be very sensible to a chosen stochasticity.
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