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It is well known that in noncentral heavy ion collisions a transient strong magnetic field is generated in

the direction perpendicular to the reaction plane. The maximal strength of this field is estimated to be

eB�m2
� � 0:02 GeV2 at the Relativistic Heavy Ion Collider and eB� 15m2

� � 0:3 GeV2 at the LHC.

We investigate the effects of a strong magnetic field on B and D mesons, focusing on the changes of the

energy levels and the masses of the bound states. Using the color evaporation model we discuss the

possible changes in the production of J=c and �.
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I. INTRODUCTION

As has been pointed out in [1,2], a very strong magnetic
field is produced in noncentral heavy ion collisions in the
direction perpendicular to the reaction plane. The maxi-
mum strength of the magnetic field is estimated to be
eB�m2

� � 0:02 GeV2 at the Relativistic Heavy Ion
Collider (

ffiffiffi
s

p ¼ 200 GeV) and eB�15m2
��0:3GeV2 at

the LHC (
ffiffiffi
s

p ¼ 4:5 TeV).1 This has several interesting
phenomenological implications, which were discussed in
detail in the recent review [3] (see also [4,5]). In this work
we are interested in the effects of the magnetic fields on
charm and bottom production. Some of these effects have
been already discussed in the literature. In [4] a careful
discussion of the evolution of a J=c under the influence of
a strong magnetic field was presented. In [6] the magnetic
conversion of �c into J=c was considered. Here we inves-
tigate the effects of the magnetic field on B and D mesons,
focusing on the changes of the energy levels and of the
masses of these bound states.

In nucleus-nucleus collisions charm is produced mostly
by gluon-gluon fusion. The produced c- �c pair can have
total spin equal to 0 or 1 and all up-down spin combina-
tions are allowed. The pair is produced at a typical time of
tc ’ 1=2mc ’ 0:1 fm. The magnetic field is very strong in
the beginning of the collision, typically until tB ’ 0:2 fm.
Therefore it is reasonable to assume that charm production
is strongly influenced by the magnetic field. The same
argument applies to bottom production. As soon as the
charm quarks are produced they start to interact with
each other and with the other quarks in the environment.
After a while they form bound states, D’s or J=c ’s. The
nature of the quark-antiquark interaction depends on the
nature of the surrounding matter. In very central collisions
the medium is very likely a deconfined system of quarks

and gluons, i.e., a hot quark-gluon plasma (QGP). In the
QGP the quark-antiquark potential is the one gluon ex-
change potential, V / �1=r, which may additionally be
affected by color screening. In these collisions the mag-
netic field is zero on average. When the impact parameter
increases, the formed medium is less dense and the mag-
netic field becomes stronger. In the limit of grazing colli-
sions the magnetic field is very strong, the colliding system
is made essentially of few nucleons and there is no
plasma. In this case the heavy quark–heavy antiquark
potential may be well approximated by the Cornell poten-
tial V / ��s=rþ �r, where �s and� are constants. In [7]
it was shown that this potential reproduces also the gross
features of heavy-light systems, such as the D and B
mesons. From the existing data on xF and rapidity distri-
butions of charm mesons, we know that they are produced
with very low longitudinal momentum (low xF and small
rapidity). Therefore, from the point of view of an observer
at the c.m. system, during the charm pair production, the
magnetic field is approximately constant in space and time
and the pair moves in the field with low velocity and is not
subject to a strong dissociating Lorentz force. Moreover,
since the internal velocity is small the system can be
treated nonrelativistically. While different aspects of
charm production have already been addressed in other
works, here we draw attention to the interaction between
the magnetic field and the spin of the quarks and the
resulting changes in the masses of the bound states.
As it was pointed out in [6], the spin-field coupling

induces M1 transitions, converting spin zero into spin one
states and vice versa. In a quantum field theory approach
this corresponds to the absorption of a photon by a spin zero
particle. In [6] the transition rate �þ �c ! J=c was esti-
mated and found to be small, basically because it turned out
to be proportional to 1=m2

c. In a classical approach this
process would correspond to the energy transfer from the
external magnetic field to �c meson. Here we consider a
similar type of transition, namely the process�þD ! D�.

1We use natural units (ℏ ¼ c ¼ 1) and the conversion for the
magnetic field is 1 GeV2

ðℏcÞ3=2 ¼ 1:44� 1019 Gauss.
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In this case the transition amplitude is proportional to
1=m2

q, where mq is the light quark mass. In comparison

with the previous case this probability is now much larger.
In the classical language, this corresponds to an energy
transfer from the B field, which is the order of the pion
mass and can thus induce the spin flip. In the heavy ion
reaction considered here the strength of the magnetic
field is of the order of m�. Since the M1 transition is
important, in the presence of the strong magnetic field

the pseudoscalar D0 (¼ 1=
ffiffiffi
2

p ½j"#i � j#"i�) and the vector

D�0 (¼ 1=
ffiffiffi
2

p ½j"#i þ j#"i�) become mixed. At the same
time the spin states (j"#i and j#"i) have different masses,
the former being much lighter than the latter. As it will be
seen, the magnetic field acts as a medium in which the
masses are different from the vacuum masses and some
spin combinations have larger masses than others. In this
medium it becomes energetically favorable to produce
j"#i, which has a mass that decreases with increasing
magnetic field. It will later decay into D0 and D�0. These
considerations taken together suggest the following picture
for D0 and D�0 production, which we will explain in detail
in this work: first we produce slowly moving c and �u
quarks with a certain spin combination, which do not yet
form a meson and which interact immediately with each
other through the potential V and with the B field. Since the
production occurs within the magnetic field some spin
combinations (j"#i and j##i) are favored because they
have smaller mass. These combinations are thus more
easily produced and more abundant. In a dilute hadronic
environment they interact through a Cornell type potential,
evolve in the magnetic field, receiving energy from it, and
eventually materialize as physicalD0 andD�0 mesons. In a
quark gluon plasma they interact with each other through
the Coulomb potential and also with the magnetic field and
with other particles in the hot and dense medium. In many
simulations they dissociate and then later recombine with
other quarks during the hadronization [8].

This text is organized as follows. In the next section we
start with a simplified discussion based on semiclassical
arguments to determine qualitatively the dependence of the
charm meson masses on the magnetic field. In the subse-
quent section, we develop the nonrelativistic quantum
mechanics of the problem, following the textbook treat-
ment given for the hydrogen atom in a magnetic field in [9]
and later refined in [10–12]. We adapt the formalism to a
heavy and light quark system. In our approach the mag-
netic field is treated as an external constant field. We solve
numerically the appropriate Schrödinger equation and
compute the masses of the heavy bound states as a function
of the magnetic field. In Sec. IV we use the obtained
masses in the color evaporation model, to study J=c and
� production. As it will be seen, these changes in the
masses produce visible changes in the production cross
sections. In Sec. V we present a short summary and
concluding remarks.

II. A SEMICLASSICAL APPROACH

Before discussing numerical results, we would like to
gain more insight into the problem using a simplified
semiclassical and analytical treatment, which will be de-
veloped in what follows. The Hamiltonian of a free particle
under the action of the field can be obtained through the
minimal substitution p ! ðp� eAÞ, where A is the vector
potential, which, in Cartesian coordinates and in the sym-
metric gauge is given by A ¼ ð�By=2; Bx=2; 0Þ so that
the magnetic field is oriented along the z-axis. With this
choice we have A2 ¼ B2�2=4, where �2 ¼ x2 þ y2. The
full Hamiltonian is then obtained by including the other
interactions:

H ¼ 1

2m
ðp� eAÞ2 �� �Bþ VðrÞ; (1)

where the second term represents the spin coupling to the
magnetic field (� is the intrinsic magnetic moment) and the

third term contains the central potential, VðrÞ (r¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þz2

p
).

For quarks we have

�� � B ¼ �g

�
q

2m

�
s �B ¼ �qB�z

2m
(2)

where q and m are the quark charge and constituent mass
respectively and �z ¼ �1 is the spin projection along the
z direction. For simplicity we choose p ¼ pẑ and hence
p �A ¼ 0, which eliminates one cross term in (1). For a
system of two particles interacting with each other and inde-
pendently with the magnetic field (1) can be immediately
generalized to

H ¼ p2
1

2m1

þ p2
2

2m2

þ ðq1BÞ2�2
1

8m1

þ ðq2BÞ2�2
2

8m2

þH s þ �
~�1: ~�2

m1m2

þ VðrÞ; (3)

where

H s ¼ �q1B�
ð1Þ
z

2m1

� q2B�
ð2Þ
z

2m2

: (4)

In the above expressions r ¼ j~r1 � ~r2j and ~r1 and ~r2 are the
coordinates of the particles with respect to the center of mass,

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q
, �2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

q
and VðrÞ is the quark-

antiquark central potential. In a strong magnetic field, the
spin-spin interaction can be ignored. We are considering the
mesonsD,D�,B, andB�, where (1) is the heavy quark and (2)
is the light quark. For hydrogenlike systems, we can use the
approximationm1 � m2,m1 � p1, r2 � r1 ’ 0 and�2 �
�1 ’ 0. Then, r2 ¼ r,�2 ¼ �,p2 ¼ p and the reducedmass
is � ’ m2.
In order to obtain a qualitative understanding and esti-

mate the order of magnitude of the effect of the strong
magnetic field on heavy quark bound states, we shall use
the semiclassical approximation. We use the uncertainty
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relation p � r� 1 to replace p by 1=r. With these approx-
imations (3) becomes

Eð�Þ ¼ 1

2�ð�2 þ z2Þ þ
ðq2BÞ2�2

8�
� q2B�

ð2Þ
z

2�

þ Vð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
Þ: (5)

Since the magnetic field does not affect directly the motion
along the z direction, we shall, for simplicity fix the z
coordinate and choose z ¼ 0. Following the discussion in
the introduction, we shall use the Cornell potential [13] and
its particular case, the pure QCD Coulomb potential, for
the quark-antiquark interaction:

Vð�Þ ¼ �	

�
þ ��þ C; (6)

where 	 and � are the effective coupling and the string
tension, that can be extracted from lattice calculations and
from phenomenological analyses of heavy meson spectros-
copy. While 	 and� are flavor independent, the constant C
is adjusted to reproduce the mass of the lowest state of each
heavy meson family. For (c- �u) we have m1 ¼ mc with
q1 ¼ 2e=3 and m2 ¼ m �u with q2 ¼ �2e=3. For (b- �d) we
have m1 ¼ mb with q1 ¼ �e=3 and m2 ¼ m �d with q2 ¼
e=3. Minimizing E with respect to � we find the equilib-
rium radius, �0, and the energy of the lowest bound state
Eð�0Þ. The mass of the system is given by

M0 ¼ m1 þm2 þ Eð�0Þ: (7)

In order to finish our semiclassical calculation of the
ground state energy, we would like to estimate the expec-
tation value of the spin term in (5) in D0 states, i.e.,
hD0jH sjD0i. However, as mentioned in the introduction
this estimate is not well defined for pure D0 or D�0 states,
since the interaction term between the spin and the mag-
netic field changes the sign of the spin wave functions,
converting D0 into D�0 and vice versa. Indeed, using the
spin wave functions,

jD0i ¼ 1ffiffiffi
2

p ðj"#i � j#"iÞ (8)

and

jD�0i ¼

8>><
>>:
j ""i;ms ¼ 1
1ffiffi
2

p ðj "#i þ j #"iÞ;ms ¼ 0

j ##i;ms ¼ �1

(9)

and the spin Hamiltonian (4) it is easy to show that

H sjD0i ¼
�
� q1B

2m1

� q2B

2m2

�
jD�0i: (10)

The states jD0i and jD�0i are not eigenstates of H s.
A basis of eigenstates of H s is given by j""i, j#"i, j"#i
and j##i. With these states, we can compute expectation
values of H s with the approximations described above:

h"#jH sj"#i ¼ h##jH sj##i ¼ þ q2B

2m2

; (11)

h#"jH sj#"i ¼ h""jH sj""i ¼ � q2B

2m2

: (12)

Whenwe produce the state (c- �u),q2 ¼ �2e=3 and (11)will
lower the energy (5), while (12) will raise it. This shift in the
mass becomes more pronounced at higher values of the
magnetic field. The expressions (11) [or (12)] are inserted
into (4), which is then [together with (6)] inserted into (5).
The latter is finally inserted into (7) to give themasses of the
states as a function of the magnetic field. These functions
are plotted in Figs. 1 and 2, with (7) normalized by the
corresponding vacuum masses. Analogous considerations
hold for the (b- �d) states, which are also shown in the figures.
Figure 1(a) shows the favored spin combinations, while
Fig. 1(b) shows the disfavored ones. As can be seen, the
spin interaction can modify the mass of these states. These
results are in qualitative agreement with the relativistic
calculation presented in [14] for light mesons.
In the figures, we can see a significant mass change in

the region of the LHC (eB� 15m2
� � 0:3 GeV2), which

can result in a change of the quarkonium produced cross
section. For strong magnetic fields the states with higher
masses are effectively suppressed. In what follows, we will
study the lower energy states j##i and j"#i in the case of the

FIG. 1 (color online). Masses of the q �q systems interacting through the Cornell potential as a function of the magnetic field. (a) (c- �u)
(j"#i) and (b- �d) (j#"i). (b) (c- �u) (j#"i) and b- �d (j"#i).
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(c- �u) system. In Fig. 1 we show the results for the
(c- �u) and (b- �d) systems with the Cornell potential and in
Fig. 2, with the QCD Coulomb potential.

With this simple model we predict that the (rising or
falling) behavior of the mass with the magnetic field can be
attributed to the spin. As will be seen in the next section,
this prediction is also in remarkable quantitative agreement
with the numerical solution of the Schrödinger equation.
This simple behavior of the bound state mass might change
if the light quark mass would be significantly changed by
the magnetic field. Indeed, in [15] it was shown that the
magnetic field induces the generation of a dynamical mass
for the light quarks, which turns out to be always smaller
than the constituent quark mass used in potential model
calculations, such as the one presented here. Therefore, we
shall treat the constituent quark mass as a constant.

We could extend our model to the study of the J=c .
However, in this case the ‘‘hydrogenlike’’ approximation is
no longer valid, since both the quark and the antiquark
have the same mass. The potential is no longer central (due
to the lack of factorization of center of mass and internal
motion) and the algebra becomes a bit more cumbersome.
A simple estimate can be made by replacing the mass m2

(or�) by the reduced mass of the c- �c system, which is now
much larger and hence suppresses the spin effects. As
expected, the change in the bound state mass is less than
5% and will be neglected in what follows.

III. NUMERICAL SOLUTION

In this section we solve the Schrödinger equation for the
Hamiltonian (3) with the same approximations used be-
fore, except for the momentum, which is now the standard
momentum operator. In cylindrical coordinates the vector
potential has components A
 ¼ B�=2, A� ¼ Az ¼ 0 and

the magnetic field is in the z direction. The Hamiltonian
can then be written as

H ¼ � 1

2m
r2 þ q

2m

�
B�

2

�
2 � qB

4mi

@

@

� qB�z

2m
: (13)

The Schrödinger equation is given by

� 1

2m

�
1

�

@

@�

�
�
@c

@�

�
þ 1

�2

@2c

@
2
þ @2c

@z2

�

� 1

2
i!H

@c

@

þ 1

8
m!2

H�
2c � qB

2m
�zc ¼ ðE� VÞc ;

(14)

wherem is the light quark mass and!H ¼ jqBj=m. We can
make the following ansatz for the wave function:

c ð�; z; 
Þ ¼ �ð�; zÞeim

: (15)

Considering only the ground state of the system, which is
azimuthally symmetric, we have m
 ¼ 0. We then insert

(15) into (14) to find

� 1

2m

�
1

�

@

@�

�
�
@�

@�

�
þ @2�

@z2

�
þ 1

8
m!2

H�
2�

� qB

2m
�z� ¼ ðE� Vð�; zÞÞ�: (16)

We solve the above equation numerically with a method
described briefly in Appendix A. We assume a constant
magnetic field and we use the Cornell potential with the
parameters chosen so as to reproduce the experimental
masses of the (c- �u) and (b- �d) systems in vacuum
(eB ¼ 0). They are mc ¼ 1:37 GeV, mb ¼ 4:79 GeV,
mu;d ¼ 0:20 GeV, 	 ¼ 0:506 and � ¼ 0:1695 GeV2.

Moreover we need to use the constants C ¼ �0:516 GeV
for (b- �d) and C ¼ �0:544 GeV for (c- �u) to obtain the
measured values mB0 ¼ 5279:50� 0:30 MeV and mD0 ¼
1864:80� 0:14 MeV. As mentioned in the introduction the
Cornell potential should be relevant for less central colli-
sions. For the more central ones we expect that the produced
pair will interact in a deconfined medium and hence the
quark-antiquark potential can be approximated by a QCD
screened Coulomb potential. As a check of our numerical
method we will compare results obtained with a pure
Coulomb potential with the analytical predictions resulting
from theKarnakov-Popov equation [10]. This equation gives
the energy levels for the hydrogen atom in a strong magnetic
field and it can be adapted formesonswith a light and a heavy
quark, as discussed inAppendix B. The numerical results for

FIG. 2 (color online). Masses of q �q systems interacting through the QCD Coulomb potential as a function of eB. (a) (c- �u) (j"#i) and
(b- �d) (j#"i). (b) (c- �u) (j#"i) and b- �d (j"#i).
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the mass (scaled by the vacuum value) as a function of the
magnetic field can be seen in Fig. 3.

The theoretical uncertainties of these results can be

estimated considering the errors in the main parameters

of the calculation, which are the reduced mass � (which is

essentially the light quark constituent mass), the strong

coupling 	, and the string tension �. Using the current

values found in the literature, we varied each parameter

between a maximum and a minimum keeping the others

fixed. The results are shown in Fig. 4. From the figures we

can conclude that the mass reduction effect is very robust

and the amount of reduction may change by up to 15% for

different parameter choices. We close this section empha-

sizing that we observe a mass reduction in the (c- �u)
(j"#i) states, both in analytical and numerical calculations.

Once formed these states may evolve to form D or D�

mesons. This reduction is not observed in c- �c states. The
mass change in the open charm states may affect the
production of hidden charm (J=c ). While, in the presence
of a magnetic field, it remains equally difficult to produce a
J=c , it becomes easier to produce D- �D pairs, which now
have smaller masses. This idea can be implemented in a
straightforward way with the help of the color evaporation
model (CEM), in which the D mass appears explicitly.
Similar considerations hold for the bottom sector. In the
next section we investigate quantitatively how these mass
changes modify the J=c and � production cross sections.

IV. HEAVY QUARKONIUM PRODUCTION
IN THE COLOR EVAPORATION MODEL

The color evaporation model is very popular [16–18]
and enjoys a great phenomenological success. Nowadays

FIG. 3 (color online). Masses of the quark-antiquark systems as a function of the magnetic field. Numerical results obtained with
the Cornell potential (solid lines), with the QCD Coulomb potential (dotted lines) and the analytical results obtained with the
Karnakov-Popov equation (dotted-dashed lines). (a) (c- �u) (j"#i). (b) (b- �d) (j#"i).

FIG. 4 (color online). Mass of the (c- �u) (j"#i) system as a function of the magnetic field. Numerical results for the Cornell potential,
with three different values of (a) the strong coupling 	, (b) the string tension � and (c) the reduced mass �.
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calculations with this model can be found in textbooks
[19]. Nevertheless we shall, in what follows, give some
formulas to introduce the notation and to stress the role
played by the D mesons in the production of J=c . For the
sake of definiteness we will study the production of char-
monium. The extension of the formulas to bottomonium is
straightforward and numerical results for both cases will be
presented.

In the CEM, charmonium is defined kinematically
as a c- �c state with mass below the D- �D threshold, i.e.,
ð2mcÞ2 <m2 < ð2mDÞ2. At leading order the cross section
is computed with the use of perturbative QCD for the
diagrams of the elementary processes qþ �q ! cþ �c and
gþ g ! cþ �c convoluted with the parton densities in the
projectile and in the target. The production cross section of
a c- �c pair with invariant mass m is given by

d�c �c

dxFdm
2
¼

Z 1

0
dx1dx2�ðx1x2s�m2Þ�ðxF � x1 þ x2Þ

�HABðx1; x2;m2Þ
¼ 1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4m2=s

q HABðx01; x02;m2Þ; (17)

with

x01;02 ¼ 1

2

�
�xF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4m2=s

q �
; (18)

where xF is the fractional momentum of the produced pair
and

ffiffiffi
s

p
is the c.m. energy of a nucleon-nucleon collision.

The HAB function is given by

HABðx1; x2;�2Þ ¼ X
q¼u;d;s

½fAq ðx1; �2ÞfB�q ðx2; �2Þ

þ fA�q ðx1; �2ÞfBq ðx2; �2Þ��q �qð�2Þ
þ fAg ðx1; �2ÞfBg ðx2; �2Þ�ggð�2Þ; (19)

and is computed at the scale �2 ¼ m2 ¼ x1x2s. The func-
tions fq, f �q and fg are the quark, antiquark, and gluon

distribution functions in the proton, which we take from the

Coordinated Theoretical/Experimental Project on QCD
Phenomenology and Tests of the Standard Model parame-
trizations [20]. The leading order cross sections in terms of
the pair invariant mass are given by

�ggðm2Þ ¼ ��sðm2Þ
3m2

��
1þ 4m2

c

m2
þm4

c

m4
ln

�
1þ �

1� �

��

� 1

4

�
7þ 31m2

c

m2

�
�

�
; (20)

�q �qðm2Þ ¼ 8��2
sðm2Þ

27m2

�
1þ 2m2

c

m2

�
�; (21)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

c=m
2

p
and mc is the c quark mass.

The production cross section of the charmonium state is
given by

d�J=c

dxF
¼ FJ=c

Z 4m2

D0

4m2
c

dm2 d�c �c

dxFdm
2
: (22)

In the previous section we showed that the strong magnetic
field created in a heavy ion collision can modify the mass
of a meson with a heavy and a light quark. The reduction of
the D (B) meson mass can consequently modify the J=c
(�) production cross section since this mass squared enters
in the upper limit of the integral. According to the results
shown in Fig. 3 with an uncertainty of ’ 5%, we assume a
reduction of 5%, 15% and 25% in the mass of the D and a
reduction of 3%, 5% and 8% in the mass of the Bmeson. In
Figs. 5 and 6 we show the effect of this reduction in the xF
distribution for

ffiffiffi
s

p ¼ 4:5 TeV and in Fig. 7 we show the
effect in the total cross section. The CEM parameters are
FJ=c ¼ 0:025 and F� ¼ 0:046 [19]. We can observe that

the mass change caused by the magnetic field can reduce
the total cross section and the xF distribution by almost 1
order of magnitude. Moreover, the reduction in the �
production cross section is, even for a modest reduction
in mB, of the same order of magnitude as the reduction in
the J=c production cross section. At first sight, in view of
(2) and (4), this might seem surprising. However from (22)
we see that the integration domain on m2 grows with

FIG. 5 (color online). (a) Differential J=c production cross section at
ffiffiffi
s

p ¼ 4:5 TeV for several values of the D meson mass.
(b) Differential cross sections normalized by calculation performed with the vacuum (eB ¼ 0) D mass.
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the mass difference between the heavy quark and the
corresponding heavy meson, mM �mQ. In the case of

the bottom a reduction of only 9% in the B mass (0:09�
5:279 ¼ 0:475 GeV) is almost enough to close the mass
window mB �mb ¼ 0:49 GeV and reduce the cross
section to zero. Of course, at this stage our result should
be taken just as an indication. In order to check this effect
we would need to simulate the whole collision process
including all the other aspects that are known to affect
particle production, such as nuclear shadowing, parton
saturation, hydrodynamical flow (in central collisions),
rescattering, final state interactions, etc. The point we
wish to emphasize is that including the magnetic effect
in these simulations seems to be mandatory. Having made
this cautionary remark, even though it might be premature,
it is tempting to take a look on J=c production data in
heavy ion collisions. Based on the calculations presented
here we would expect that in the most noncentral collisions
there would be some extra suppression of J=c due to open
charmmass reduction. Indeed, in the centrality dependence
in the data [21] and also the analysis performed in [22], we
notice that for J=c with y ¼ 0, low pT (1<pT < 3 GeV)
and in the least central collisions (40%–92%) there is a
suppression stronger than expected. Since this is precisely
the region where the effect discussed here should be most
important, we feel encouraged to further develop and refine
the present calculation.

V. SUMMARY

The main purpose of this work was to explore the effect
of the magnetic field on heavy meson production in heavy
ion collisions. With the guidance of a semiclassical model
we could anticipate that the field induces a mass reduction
of hydrogenlike heavy bound states, an effect which is
mainly due to the coupling between the spin and the
magnetic field. Then, in a more realistic calculation, we
numerically solved the three-dimensional Schrödinger
equation with the Cornell and the QCD Coulomb potential
and confirmed the expectation of the analysis performed
with the semiclassical model. The obtained mass reduction
turned out to be non-negligible. We explored the implica-
tion of the D (and B) mass reduction for the J=c (and �)
production using the color evaporation model. The effect
was surprisingly large both for J=c and for �. We made
use of several simplifying assumptions herein. Given these
assumptions we found that the effect on J=c production
seems to be large enough to justify the inclusion of mag-
netic field effects on detailed simulations of heavy ion
collisions.
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APPENDIX A: SPECTRAL METHOD

The spectral method approximates the solution of
partial differential equations as a linear combination of
continuous and periodic functions. We will describe the
method for a one-dimensional equation. The extension to
the higher dimensional cases is straightforward. Let us
consider the equation

� d2

dx2
fðxÞ þ x2fðxÞ ¼ EfðxÞ: (A1)

The solutions can be written in terms of sines:

fðxÞ ¼ X1
j¼1

Aj sin

�
j�

2L
ðxþ LÞ

�
: (A2)

This solution is only valid in the range �L< x < L.
Inserting (A2) into (A1) we find

X1
j¼1

Aj

�
j�

2L

�
2
sin

�
j�

2L
ðxþLÞ

�
þ x2

X1
j¼1

Aj sin

�
j�

2L
ðxþLÞ

�

¼ E
X1
j¼1

Aj sin

�
j�

2L
ðxþLÞ

�
: (A3)

Multiplying the above equation by the kth term of the
series and integrating over x we have

X1
j¼1

Aj

�
j�

2L

�
2 Z L

�L
dx sin

�
k�

2L
ðxþ LÞ

�
sin

�
j�

2L
ðxþ LÞ

�

(A4)

þ X1
j¼1

Aj

Z L

�L
dx sin

�
k�

2L
ðxþ LÞ

�
x2 sin

�
j�

2L
ðxþ LÞ

�

(A5)

¼ E
X1
j¼1

Aj

Z L

�L
dx sin

�
k�

2L
ðxþ LÞ

�
sin

�
j�

2L
ðxþ LÞ

�
:

(A6)

We can use the orthogonality of sine functions to rewrite
(A3) as

Z L

�L
dx sin

�
j�

2L
ðxþ LÞ

�
sin

�
k�

2L
ðxþ LÞ

�
¼ �jkL: (A7)

Therefore,

Ak

�
k�

2L

�
2 þ X1

j¼1

AjCjk ¼ EAk; (A8)

where the coefficient Cjk is

Cjk ¼ 1

L

Z L

�L
dx sin

�
k�

2L
ðxþLÞ

�
x2 sin

�
j�

2L
ðxþLÞ

�
: (A9)

In order to improve computational efficiency, we rewrite
the equation using the sum of cosines

Cjk ¼ 1

2L

Z L

�L
dxx2

�
cos

�ðk� jÞ�
2L

ðxþ LÞ
�

� cos

�ðjþ kÞ�
2L

ðxþ LÞ
��
: (A10)

Now we have to solve numerically the follow eigenvalue
equation to obtain the energy:

Ak

�
k�

2L

�
2 þ X1

j¼1

Aj

1

2L

Z L

�L
dxx2

�
cos

�ðk� jÞ�
2L

ðxþ LÞ
�

� cos

�ðjþ kÞ�
2L

ðxþ LÞ
��

¼ EAk: (A11)

APPENDIX B: RESCALING THE
KARNAKOV-POPOV EQUATION

The Karnakov-Popov equation gives the change of the
energy levels of the hydrogen atom due to the magnetic
field (details can be found in Ref. [10]). For the ground
state m ¼ 0 we have2

ln

�
eB

m2
ee

4

�
¼ �þ 2 ln�� c ð1Þ � �2

3�
þ ln 2; (B1)

where

E ¼ �mee
4

2ℏ2
�2; (B2)

and c is the derivative of the gamma function. For the B
and D mesons bound by a Coulomb potential,
VðrÞ ¼ �	=r, we have

ln ðqBÞ � ln ð�2	2Þ ¼ �þ 2 ln�� c ð1Þ � �2

3�
þ ln 2;

(B3)

where � is the reduced mass of the system and

E ¼ ��	2

2
�2: (B4)

2We use the expansion c ð1� 1=�Þ 	 c ð1Þ � �2=ð3�Þ valid
for strong magnetic field i.e. � ! 1.
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