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Abstract

Compact robots operating beneath the crop canopy present great potential for a range of autonomous and remote tasks,
including phenotyping, soil analysis, and cover cropping. Under-canopy navigation presents unique challenges, such as
the need for a navigation system that can traverse diverse crop types, navigate despite sensory obstructions, and manage
sensory noise effectively. Aiming to solve this problem in a scalable manner, we present a novel navigation method that
uses a self-supervised neural network tailored for row-following in under-canopy plantations for mobile robots. Our method,
termed CROW (Crop-ROW navigation), integrates perception, waypoint generator, and control components, and is capable
of handling variations in luminosity, topology, types of plantations, and plant growth stages. By using a Deep Learning-based
approach to interpret LIDAR scans, we convert the detected rows of crops into lines, establishing waypoints for the controller
based on fundamental geometric principles. To address the computational complexity inherent in standard Model Predictive
Controller solvers, we employ a Constrained Iterative Linear Quadratic approach. Our system has been validated in both
simulated and real-world environments, demonstrating successful navigation through 115-meter corn rows with little to no

intervention, i.e., requiring only 3 &+ 3 interventions per row experiment.

Keywords Mobile robotics - Navigation - Deep Learning - Optimal Control

1 Introduction

Autonomous farm vehicles have immense importance in
increasing farm productivity through either automation of
the existing machinery or the introduction of brand-new
autonomous robotic systems. In this background, accurate
navigation along the crop rows is a fundamental skill requi-
site for many tasks in farming, such as precision agriculture,
planting, and harvesting of the crop rows. Along with the
specific challenges that this kind of task represents, the
deployment of robots in agricultural environments implies
extra difficulty, due to the seasonality of crops, changes in
land topography, and most importantly, the fact that more
than one type of crop is interacted with.

It becomes logical to apply robots performing hazardous
operations in challenging outdoor conditions - such as, for
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instance, farming or exploration of wild remote areas. That
explains why the increasing use of robots in such kinds of
operations is something worth noticing [1-3]. However, to
ensure safety in tough terrains, say in large-scale commodity
row crops, robots have to be deployed that can detect the
paths that can be covered. In other words, small robots may
ensure that the effective performance of various tasks in such
situations is secured. Larger equipment is not applicable in
these assignments, since they are designed either for open-
field or over-canopy operations, respectively. From the above
argument, therefore, it is very clear that autonomous mobile
robots that are small, compact, and cheap are best suited
for executing essential tasks to achieve high performance
in phenotype data acquisition, crop scouting, under-canopy
cover crop planting, and under-canopy weeds removal [4-7].

Our system represents an extension of the groundwork
laid in prior research [8], which introduced a modular
LiDAR-based crop-row following system. This extension
aims to address inherent challenges encountered in such
environments, including the presence of naturaldisturbances
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like rough terrain and fluctuations in crop morphology.
By adopting a modular architecture that separates percep-
tion, waypoint generation, and control, our system utilizes
LiDAR-derived point cloud data to anticipate crop row con-
figurations. These predicted row lines are then employed to
generate waypoints based on geometric principles, enabling
the creation of an optimized row-following path in terms of
control.

Unlike previous methods [3, 5,9, 10], we present a frame-
work that exploits a self-supervised neural network to convert
the detected row crops into lines, according to the robot’s
relative heading and placement in the row. Our approach
is flexible, utilizing powerful state-of-the-art techniques in
field robot navigation, including the fact that the perception
is made in terms relative to the robot, i.e., locally. Likewise,
preceding works [11-13], do not solve existing problems of
loss of GNSS reliability for small robots navigating under
the canopy, our implemented navigation module evaluates
the central axis between planting rows for generating the
path. This guarantees modularity for scenarios where global
positioning signals are unreliable, outperforming GNSS-only
navigation. Itis also important to mention that our Model Pre-
dictive Control (MPC) poses computation challenges owing
to the high cost of the solvers available, presenting, there-
fore, an impractical implementation in embedded systems
[14-17]. To deal with this problem, we use a faster solver
that locally linearizes the dynamic model, termed Iterative
Linear Quadratic Regulator (iLQR), so that the processing
can be performed efficiently and its solution can be rapidly
sought (Fig. 1).

Fig. 1 Representation of our solution that autonomously navigates in
farm row crops. By using perception through LiDAR and planning
trajectories, our system can provide safe navigation in agricultural sce-
narios

@ Springer

The main contributions of this paper are as follows:

e A self-supervised perception module that utilizes LIDAR
data to accurately interpret the under-canopy environ-
ment by detecting crop rows, outperforming heuristic
approaches such as [3];

e CROW, a complete LiDAR-based navigation system for
under-canopy row-following, operates exclusively on
local data interpretation, eliminating the need for odom-
etry information;

e A fully integrated navigation solution, combining a
deep learning perception module, a waypoint generator
grounded in geometric principles and an optimal control
based on the iterative Linear Quadratic Regulator GLQR).

2 Related Work

The majority of existing works in agricultural environments
focus on two main types of navigation methods: satellite-
based global positioning system (GPS) path tracking and
row-following navigation. In this section, we review these
methods, highlighting how our approach leverages state-of-
the-art techniques and addresses their limitations.

2.1 Classical Navigation

In classical navigation systems, sensors play a pivotal role in
mapping environments through SLAM [18], which meticu-
lously records all environmental boundaries and obstacles,
enabling autonomous robot navigation between predeter-
mined points. However, a comprehensive assessment of this
method exposes notable shortcomings when deployed in out-
door settings. To address these limitations, Global Navigation
Satellite Systems (GNSS) come into play, utilizing reference
points to chart a trajectory for the robot [19].

Promising solutions here include the use of wide and well-
established GNSS technology outdoors since it would give
an absolute position estimate of the vehicle if a clear signal
from the satellites is received. When so coupled with Real-
Time Kinematic hardware, this technology gives positioning
that is centimeter-level accurate and reliable. In time, accord-
ing to the GNSS and RTK technologies, there comes the
autonomous navigation system into the picture these days,
which is being implemented by different types of agricul-
tural robotic systems [10, 20]. Despite its advantages, GNSS
is limited in an environment with occlusions, even with RTK
corrections.

The inadequacy of these methods in such environments
stems from the fact that agricultural fields often feature
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irregular obstacles of varying sizes, luminosity, and other
factors that introduce considerable noise into the process of
creating a high-fidelity map. Additionally, the rugged ter-
rain necessitates a local perception of the surroundings to
avoid unforeseen obstacles that could potentially damage the
robot, rendering navigation solely reliant on satellite systems
impractical.

2.2 Row Following Navigation

Exteroceptive sensors designed to navigate between crop
rows have received a lot of attention from researchers [3, 5,
21-23]. These methods leverage distinctive features present
in regularly planted crop rows, enhancing navigation accu-
racy and reliability. Even so, they still present significant
challenges, such as the use of RGB images for naviga-
tion under-canopy. The need to calculate absolute distances
from images makes conventional approaches that rely on
extracting geometry from single images difficult, generally
requiring frequent calibrations and not achieving the same
accuracy as systems that use LIDAR. Furthermore, variations
in visual appearance over different days and seasons restrict
the effectiveness of heuristic methods employing detection
algorithms, while the similarity in visual features contributes
to positional inaccuracies in SLAM algorithms [24-26].

Specifically, in the under-canopy row-following task, sen-
sors such as LiDAR are adept at detecting and following crop
rows by precisely determining the distance from the rows
and the angle relative to the row, using this to track specified
row-relative pose [3, 5, 12, 27]. Ultrasonic [28] and infrared
sensors [29, 30] can also offer robust solutions in environ-
ments with varying lighting conditions [31]. This capability
is essential for navigation beneath the canopy where light
levels can fluctuate greatly [32]. However, in some cases,
methods that use heuristics are not robust enough to keep
robots navigating without errors. Consequently, despite its
higher cost, LiDAR provides a simple solution for object
detection, distance estimation, and performance in low light-
ing compared to other sensors in the same class, such as
cameras and radars [33].

2.3 Learned Navigation in Agricultural
Environments

Employment of some of these sophisticated sensors with
advanced machine learning algorithms to identify and track
crop rows is a primary method not only in under-canopy row
following but also in other areas of agricultural robotics [34—
36]. A major advantage of this approach is its exceptional
adaptability [37]; current machine learning models can be
trained to recognize and adjust to various crop types and row
configurations.

The framework proposed in Sivakumar et al. [9] takes
a supervised learning approach, where a network model is
trained for better discrimination between traversable and
untraversable areas and shown to be effective for autonomous
navigation. In a similar way, Sivakumar et al. [38] uses
a keypoint-based under-canopy navigation system, which
processes RGB images to generate heatmaps for semantic
keypoints. However, this requires manual labeling, which
is tedious and time-consuming. Moreover, the reliance on
labeled datasets can limit the system’s robustness, particu-
larly when visual cues change significantly. In contrast to
these approaches, Huang et al. [39] presents an end-to-end
learning-based row-following system specifically designed
for structured apple orchards. The system maps raw pixel
data directly to driving commands, eliminating the need for
multiple subtasks such as boundary detection and manual
labeling. We instead leverage a probability distribution to
create a row predictor that can interpret the under-canopy
environment and predict waypoints for good navigation.

3 System Design

This paper introduces CROW, a system designed for row-
following navigation, illustrated in Fig. 2. CROW seamlessly
integrates the robustness and generalization capabilities of
Self-supervised Deep Learning with the swift solving capa-
bilities of an iterative Linear Quadratic Regulator, this system
empowers our robotic platform, Terrasentia.

Consisting of three essential modules, the system begins
with a Deep Learning perception module (Section 3.2). This
component uses a LIDAR scan to analyze row crop data and
identify local lines through a self-supervised trained neu-
ral network approach (Sections 3.3 and 3.4). Subsequently,
a waypoint generator determines a future setpoint for the
controller to pursue, using the perception crop lines (Sec-
tion 3.5). Finally, the system utilizes a Nonlinear Model
Predictive Controller to steer itself toward the designated
waypoint through a series of actions. The optimization prob-
lem 1is effectively solved using a constrained iLQR solver
(Section 3.7), with a kinematic model (Section 3.6) to model
the system’s motion.

To design our navigation system, we make the following
assumptions the leverages the planting structure in traditional
agricultural environments:

e The environment remains static without moving obsta-
cles, enabling the robot to follow the next waypoint and
apply control without encountering collisions;

e The crops are planted with a consistent distance between
the rows;

e The row curves can be approximated as local lines to
generate waypoints with minimal distances.

@ Springer
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Fig.2 CROW outlines perception, waypoint generator, and controller
modules. It starts with a LIDAR scan of a covered crop area, producing
an image after a £ transformation of the point cloud. This image feeds

3.1 Robot Platform

Terrasentia, developed by Earthsense Inc., is a skid-steer
robot tailored for effective high-throughput field phenotyping
data collection in agriculture. To enhance this data collection
process, the platform receives various solutions for plantation
navigation [3, 5, 9, 12]. Additionally, our system utilizes the
Hokuyo URG-04LX-UGO1 LiDAR, boasting a maximum
range of 30m with a scan speed of 25ms. For algorithm execu-
tion, the platform is equipped with an NVIDIA Jetson AGX
Orin computer.

3.2 Perception

The system detailed in this document targets generic agricul-
tural environments, such as corn plantations, and is adaptable
to corridor-type environments with parallel delimiters. The
LiDAR sensor requires surfaces for laser reflection, making
this a crucial prerequisite for the Perception system.

With the goal of implementing an Optimal Control strat-
egy alongside a Local Perception system, we developed the
Waypoint Generator, a middle-man system that generates
setpoints for the Controller based on the Perception data.
Inspired by Higuti et al. [3], our system advances the per-
ception framework using Deep Learning, shifting away from
earlier heuristic methods. We selected Perception Crop Lines
as the predicted output of the Perception system because they
enable the generation of geometric-based setpoints. Figure 3
illustrates the LiDAR data visualization, while the second
figure depicts the corresponding image projection.

@ Springer

into a neural network to approximate crop data into lines, used to gen-
erate waypoints. These waypoints guide the Model MPC, which uses a
constrained iLQR solver to navigate the row

The parameters of interest include distances d L and d R,
and azimuth ¢, represented in Fig. 4. However, this infor-
mation is intrinsically encoded in the Crop Lines, which

<« 4 Goe® o
e % o |

Fig.3 Characterization of the under-canopy environment, showing the
Robot’s camera view on the left and the corresponding LiDAR reading
on the right
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Fig. 4 Schematic of TerraSentia’s navigation in the global coordinate
system G and local relative to the robot L

contributes to the setpoint generation. The desired percep-
tion output, defining the reference path, are the line equations
parameters m1, ma, by, and by. The line equation format
adopted for the & line is represented by Eq. 1.

In future sections, the inference error will be defined as
the Error function calculated from the predicted and reference
parameter values across all four parameters. Given that one of
the assumptions in system design is the parallelism between
the crop rows, in this work, m| = m, is assumed.

Since LiDAR readings serve as the primary source of
information, the focus of environmental characterization
revolves around data noise. This noise can arise from various
factors, including bumpy terrain, uneven leaf distribution,
asymmetrical crop rows, sensor occlusion, and others. In Fig.
3 it is possible to visually understand these noise generation
factors.

Heuristic methods, as discussed in Higuti et al. [3], face
two primary challenges: noise from readings and sensor

occlusion, particularly in cases of partial occlusion where
some useful data is still available. These issues not only
motivated the use of neural networks in CROW, but also ren-
der manual labeling impractical, as crop rows are often not
defined by the two main lines directly due to these challenges.

Furthermore, it is difficult to gather a high-quality dataset,
since manually controlling the robot in a tight space requires
expertise and can potentially damage the crop. Consequently,
collected datasets tend to be sparse and uneven, resulting in
significant biases in the neural network. To address this prob-
lem, we developed a self-supervised learning pipeline that
creates labeled artificial input data, enabling the neural net-
work to effectively manage noise with a balanced, extensive,
and diverse dataset. We explored different architectures and
techniques to ensure that such approach not only converges
to a solution but also demonstrates feasibility with real-world
data. The details of these self-supervised learning architec-
tures and techniques are presented in Section 3.3, while the
method for generating artificial data is discussed in Section
3.4.

We propose using an image of the projected LiDAR point
cloud as input for the Perception system, via a, denotated, £
transformation that formats the image appropriately. Project-
ing the initial meters of the point cloud onto an image allows
the neural network to leverage additional information and
ideally develop spatial intuition, as shown in Fig. 3 for exam-
ple. Consequently, while this approach requires slightly more
computational power, experimental tests showed improved
performance with image input (Fig. 5).

3.3 Self-Supervised Learning

Due to project constraints that make manual labeling imprac-
tical, we propose a two-step approach that utilizes self-
supervised learning. This method involves an algorithm that
leverages prior human interpretations to produce large arti-
ficial datasets. These datasets consist of labeled parameters
from Eq. 1 and their corresponding images that show pro-
jected point clouds. The images are entirely generated by the

s
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Fig. 5 The Artificial Dataset Generation pipeline for the Perception
system, starting with an angle 6. From this angle, the label parameters
{m1, ma, by, by} are calculated algebraically. Points are generated based

on these label lines to produce the final image based on the label param-
eters. The network then performs inference on this image for training,
evaluation or testing, resulting in the parameters {m{’ s mg R bf s bg }
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Table 1 Practical results for architecture selection

Architecture Params Final Error! Inference Time
MobileNet 3.5M 0.037 32.77 ms
EfficientNet 5.3M 0.061 50.67 ms
ResNet18 11.7M 0.109 101.28 ms
VggNetl6 138.4M 0.446 239.49 ms

IFinal Error Mean for 100 runs

algorithm and are not derived from computational simula-
tions or any physical related model.

The prediction is made by a single neural network trained
offline, representing a self-supervised learning approach. The
training and inference processes are essentially the same.
During each training iteration, a random batch is provided
to the neural network, and the quality of its predictions is
compared to the labels from our artificial datasets, initiating
the optimization process that trains the model.

Through extensive practical tests, a predefined encoder
architecture was chosen to build the neural network. The base
results in Table 1 show that the MobileNet V2 architecture
is the most suitable for the task. Three other notable archi-
tectures considered during the selection were VggNetl6,
ResNet18, and EfficientNet.

The average error was assessed using a distinct test set to
prevent bias in the analysis. The test was conducted 100 times
on various batches, assessing the average error to gauge the
quality of the final model achieved. The inference time aligns
with this approach using the same test set.

The MobileNet architecture, known for its efficiency in
computational power and performance [40], was adapted by
adding a Convolutional Layer to match input dimensions.
In this specific application, sequential linear layers and one-
dimensional batch normalization were introduced after the
final convolutional layer of MobileNet V2. This adjustment,
represented by the Classifier in Fig. 6, transforms the net-
work’s output into four prediction values, typically using four

e’ l

"
‘i‘,} > ":‘: - ){ MobileNet /2 }V >
i ]
e A4

Crop Line

Input *

Image 32 channels : Params
Classifier

Fig.6 Schematic diagram of the MobileNet V2 adaptation, illustrating
the input and output pipelines. On the input side, the projected image is
processed through a convolutional layer to modify the image dimensions
for input on the MobileNet V2 framework. The MobileNet’s output then
passes through a Integration Layer, which returns 4 values known as the
Crop Line Parameters
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float values, with the option to reduce to three if the results
are highly reliable.

The L1 Loss function was utilized as the cost function (and
error estimator) for the network training, which functions
similarly to an MSE cost function but is less sensitive to
outliers. The L1 Loss showed improved performance due to
the presence of noise and misreadings in the LiDAR data.

3.4 Artificial Datasets

The algorithm for creating the artificial dataset utilizes previ-
ous human analysis to randomly place points within a fixed
probabilistic distribution, as the environmental elements tend
to remain constant. We define the line inclination angle 6 to
range from -25° to 25°, producing 50 image packs for each
0 value. The total number of images is determined by the
number of images per pack, with a higher number of images
in packs centered around the 0 value to enhance reliability in
this region, where the network is generally more sensible.

In Fig. 5 it is possible to visualize the algorithm pipeline
to generate one image for a given 6 angle. This process can
be described by the following steps:

1. Line Generation: In this step, two lines are generated
with inclination 6, and the distance between them is
randomly chosen from a specified range. The labels
{m1, my, by, by} are stored;

2. Points Generation: The algorithm generates points in spe-
cific regions based on a probability distribution derived
from Random or Normal functions, using the label line
as a reference. This process includes various stochastic
parameters to ensure data uniqueness;

3. Final Result: The final output can be visualized in Fig.
5. In this phase, random noise is typically added to the
image, with 0 to 50 points distributed randomly.

The network will use this image for inference during train-
ing or evaluation, predicting the values {mf , mg , bf , bg 1.
These predictions can then be used to calculate the error
against the reference values {m1, ma, by, ba}.

Focusing on the Points Generation step, Figure 7 visu-
ally illustrates the split nuclei regions, each accompanied by
a unique probability distribution. As mentioned earlier, our
approach to point generation was centered on identifying
patterns in these regions where points tend to cluster. Con-
sequently, the variation between images will stem from the
number and arrangement of points in these specific regions.
We utilized five regions for this purpose.

e Black: This region identifies the main crop lines where
points tend to concentrate. It serves as the primary source
of information for crop line identification in human clas-
sification;
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Fig.7 The left image characterizes regions for image generation, with
each region defined by specific rules based on Random or Normal
functions that use the label line as a reference (the called probability
distribution). The right image displays a sample from this distribution,
with 6 = —4°

e Green: This region pertains to adjacent lines, which may
or may not be present. In the constrained under-canopy
environment, these adjacent lines can interfere with row
reading;

e Orange: This lower region typically contains LiDAR
noise from leaves near the sensor, making it difficult to
extract reliable information. However, the authors noted
a connection between some readings in this region and
the Black region. Consequently, these regions overlap
to enable the network to recognize this relationship and
mitigate misinformation from the noisy data;

e Grey: The upper grey area consists of distant points that
are not particularly useful for inference. Nonetheless,
they often correlate with the number of points in the black
areas, indicating that when main lines are obscured, the
quantity of points in the grey area generally increases.
This behavior can help the neural network gather more
information about the environment when the main lines
are not dependable.

Each nucleus has patterns that enable point placement via
the Random or Normal function. The Normal function is used
for clustering points in small groups to preserve the stochas-
tic behaviors in the fixed skeleton; otherwise, the Random
function is applied.

The creation of artificial datasets, despite the many prac-
tical and efficient benefits, poses the challenge of ensuring
that the artificially generated dataset accurately represents
the real environment. For this, empirical tests are crucial in
ensuring that the hyperparameters for generating these points
are properly tuned, resulting in representative images. The
optimal model developed in this work required 21000 artifi-
cially generated labeled images for training. A small sample
of the dataset illustrating the previously described patterns is
shown in image Fig. 8.

To address challenging edge cases in input readings, such
as sensor occlusion, we propose incorporating noise into

Fig.8 Sample from the artificial dataset used for training in this work,
featuring 8 images with distinct configurations that illustrate the struc-
tured corridor problem, adapted to our environment’s rules

network training at the final stage of the artificial image gen-
eration. Figure 9 depicts this process: the left plot displays
the generated image after the already presented pipeline of
Lines and Points generation, while the right plot shows the
final version with added noise.

Figure 10 illustrates the prediction system’s performance
in occlusion scenarios. The left image shows a prediction
that slightly veers left, following the crop lane lines, demon-
strating a strong prediction. In the subsequent image, sensor
occlusion results in limited data points; despite this, the net-
work still provides a coherent left-leaning prediction. The
next image depicts the situation immediately after the occlu-
sion, where the network continues on the same path.

This suggests that the network effectively utilizes various
environmental cues to generate coherent predictions, even
when the central lane lines are obscured. It’s worth noting that
the network currently lacks a memory component, meaning
each prediction is based solely on the available information.

As aresult, we observe a significant improvement in effec-
tiveness across different scenarios, with the same model
performing notably better in diverse environments. This
thesis is supported by the Results section, which presents

Fig. 9 Process of noise addition, where the gray points in the right
image represent an example of random noise throughout the image

@ Springer



28 Page80f18

Journal of Intelligent & Robotic Systems (2025) 111:28

N
) :’ . *lle s .
. .. "
Y N K 3 |
‘0'~ ".0 - 4 ... o . .‘ 0"
[ S ¢ b

Fig.10 Real-world test showing the evolution of the prediction through
time of the system over a moment with partial occlusion of the LIDAR
caused by a leaf

compelling Perception outcomes from both Gazebo simula-
tions and real-life tests, all utilizing the same model.

In addition, artificial dataset generation for neural net-
work training is a common practice and, as shown in the
referenced work, enables training in cases of Dataset Shift.
In such scenarios, the dataset’s immutability cannot be guar-
anteed, leading to the need for frequent retraining with new
datasets. These challenges are discussed in [41, 42], support-
ing the approach taken.

The works [43-45] support the approach of generalizing
neural network learning through the addition of noise. The
maximum amount of noise to be added is tested empirically
and varies between different batches of the dataset.

3.5 Waypoint Generator

To bridge the perception and controller modules, we employed
a waypoint generator. This generator utilizes geometric prin-
ciples to approximate the central axis among planting rows,
derived from inference lines of perception, to generate future
waypoints for row-following, as illustrated in Figure 11.

Since the inference lines are referenced from the robot’s
position, the central axis is calculated as the average between
the left and right lines.

W Crop Lines
W Center Axis

Fig. 11 Representation of the derivation of a local waypoint. In the
figure, (pyx, py) indicates the position of the waypoint, and 6 represents
the heading angle

@ Springer

Using the central axis and Euclidean distance to account
for potential distortions between the axes, we calculate a set
point at a distance D from the robot. This forms the basis for
determining the waypoint coordinates in the local frame:

Ypx =M - Xpy +b

D_ @

2 2
Xim t Yim

where m and b represent the slope and intercept of the cen-
ter axis, respectively. Additionally, the subscript px denotes
image pixel coordinates, and rm denotes row meter coordi-
nates.

Solving this system provides the position in row coor-
dinates, already in local frame coordinates (pyx, py) =
(Xrm» Yrm), with the heading angle obtained using 6 =
arctan 2(xrm s yrm)-

Finally, we established a local waypoint to serve as a ref-
erence for the controller to follow the crop row.

3.6 Kinematic Model

In this paper, we utilize the nonlinear form of the robot
error-tracking model [46]. This employs a unicycle kine-
matic model to determine changes in the robot’s position
and orientation, given by the equations:

Dx v - cos6
Py | =|v-sinf 3)
0 w

where x = [py px 0] is the state vector containing the

position and orientation of the mobile robot and u = [v w]
is the action control vector containing the linear and angular
speeds.

With these definitions, it is possible to obtain an error state
e € R3 between the pose of the waypoint and the robot. Intro-
ducing a reference state x, = [px, py, 6] and a reference
action control #, = [v, w,], the error state is obtained as:

e=T(®) x [x, — x] “)
where T () is the transformation matrix shown below:
cosf sinf O

—siné cos6 0 5)
0 0 1

T() =

After applying the transformation, the error state vec-
tor comprises longitudinal, lateral, and angular errors. This
adjustment yields a kinematic model that circumvents the
singularities present in the unicycle model when the linear
velocity approaches zero, as discussed in Gonzdlez-Sierra et
al. [47].
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Associating the derivation of the error state ¢ with the
kinematic relations of the unicycle model, we can obtain the
dynamic model based on the error tracking.

V- COSe3 + wey — v
v Sin ez + weq (6)
wr —

e=f(e,u,u,) =

The development of this equation allows us to present a
nonlinear state space of this error-tracking model, discretized
using a sampling time (Af).

ex+1 = falex, ug, uy) = ex+

—1 e coses 0
0 e |u+|sine3 0| u, | At 7
0 —1 0 1

Remark 1 For controllability, it’s necessary that v, # 0 or
w, # 0, as the system is linearized around the current state.

3.7 Controller

The controller employed for the robot utilizes a Nonlinear
Model Predictive Controller (NMPC), which employs a Con-
strained Iterative Linear Quadratic Regulator (iLQR) as its
solver [48].

For prediction, we denote a trajectory {E, U, U, } contain-
ing the sequence of states £ = {eg, ey, ..., e}, the sequence
of action controls U = {uo, u1, ..., ux—1}, and the sequence
of reference action controls U, = {uy,, Ur;, ..., Up_, }, OVET
the prediction horizon. Moreover, we introduce inequality
constraint functions to ensure bounded action control, which
can be generalized as:

giup) <0, k=0,1,..,N—1 (8)

where i is the index of the inequality constraints. Finally, we
can present our optimization problem:

N-1
min J(ep, U, U)——lf(é’N)+ : Zl(ek’”k)
v 25
s. t. ex+1 = falep, up + up)
eo =T () x [x, — x0]
gi(up) <0,
k=0,1,...N—1 ©)

where the total cost is defined as the sum of running costs /
and terminal cost / over a horizon N.

The running and terminal costs follow linear quadratic
functions, mirroring the principles of the Linear Quadratic

Regulator [49]. These cost functions are defined as:

L (en) = llenllg,
Iew, ur) = llexlp + llux |z (10)

where Q ¢, Q, and R represent positive definite weight matri-
ces for the final state, state, and action control, respectively.

3.7.1 Barrier Method

To handle inequality constraints, the barrier method was
used [50]. This method serves as a penalty mechanism that
expands the feasible region of the optimization problem to ¢,
but imposes a substantial cost on the cost function for points
lying outside this region.

0, for U € ¢;
1,(U) = 11
s () 00, otherwise an

where

¢ ={Ulgi(ux) <0,k=0,1,..., N =1} (12)

Continuing, this setisn’t differentiable, which is a require-
ment for calculating gradients and Hessians in iLQR steps.
Therefore, we employ a logarithmic barrier function to
approximate it, ensuring desirable properties such as con-
tinuity, differentiability, and convexity.

We can define a new running cost by incorporating this
function:

2

—1

l@w%—zm(MM) (13)

i=1

N,
[\)I —_—
~
Il
o

where the parameter ¢ determines the accuracy of the approx-
imation. As f approaches infinity, the function becomes more
accurate with ¢.

Furthermore, the optimization problem is reformulated as:

1 _
min J(ep, U, U,) = Elf(eN) + lek, ug)

S. t. eir1 = falex, ui +up)
eo = T(0) x [xr — x0]
k=0,1,...N—1 (14)

3.7.2 Backward Pass

This setup allows us to solve Eq. 14 using the principle of
differential dynamic programming (DDP). Thus, Bellman’s

@ Springer
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Principle of Optimality defines a state value function Vi rep-
resenting the minimum cost-to-go at each state:

Vi = ml}n {ICexs ur) + Vir1 (faler, ur)) }

VN =lf(€1v) (15)

The cost remaining in the k;j, iteration depends on the
(k + 1)th iteration, establishing a connection between steps
that enables the backward pass to compute the values of Vj,
starting with the last known remaining cost Vy.

Furthermore, deviations of ¢, and u} are introduced as Sej
and Suy, respectively, to allow us to linearize the dynamic
model over a current state and action control:

dery1 ~ Aex, up)dex + B(ex, ui)duy (16)

where A = % and B = %.

Using the iLQR and DDP methods, we introduce a per-
turbed action-value function, by conducting a second-order
Taylor expansion centered at the current state e; and action
u, using the linearized kinematic model. This expansion
enables us to estimate how the action value evolves when the
state and action variables undergo minor adjustments.

1 T
sousew <[] G G ][]+

Q. ! dex
(el ] @

where

Qe = l_e + Ag (Vk+l)e

Qu = l_u + Bx (VkJrl)e
Qee = l_ee + A]Z (Vk+l)ee Ag
Que =

l_ue + BkT (Vk+1)ee By
Quu = _uu + BkT (Vk+1)ee Ak

here the subscripts denote the partial derivative concerning
the corresponding variable.

With these equations, it is possible to find the optimal Su
minimizing the perturbed Q-function.

Suj = arg r§1in8Qk(56k, Sug) (18)
ug

Solving Eq. 18 we can determine the backward pass gains
to find the optimal correction action control:

Suf = dy + K dex (19)

@ Springer

with
dr = — 0y, Ou
K = — 0, Qux (20)

Having this solution, we can plug it back into the equation
of the Q-perturbed function to calculate the difference in the
state value function and previous gradients and Hessians:

1
AV = EdTQuud +dTQu

(Vk)e - Qe - KTQuud + KTQu + QZed
(Videe = Qee + KT QuuK + KT Que + QueK (21)

These derivatives can be used to calculate the preceding
optimal correction action controls, for all trajectory U, fol-
lowing the idea behind the backward pass.

3.7.3 Forward Pass

After completing the backward pass, the next step is the
forward pass. Here, we update the nominal trajectory by inte-
grating forward from the initial state. Additionally, we use a
backtracking search parameter « to ensure convergence.

up = ux + Ky (ex — éx) + ady
ex+1 = falek, ur) (22)

where the hat indicates the nominal value of the respective
variable.

3.7.4 Implementation

It’s important to note that during this process, certain Q-
terms might lose positive definiteness. To address this issue,
regularization is applied to the matrices Q,, and Q,, by
incorporating an identity matrix multiplication (p/) into the
computations with the gradients of the kinematic model.
Consequently, the updated Q-terms (Quu and Qux) are uti-
lized to calculate the backward pass gains [15].

Hence, this algorithm operates at a frequency to predict
the path between the robot’s pose and the waypoint, and it
applies the first action control to the robot. The pseudocode
of the constrained iLQR is outlined in Algorithm 1. It’s worth
noting that in the actual algorithm, several stopping condi-
tions are incorporated, such as a tolerance threshold for AV
and regularization.
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Algorithm 1 Iterative Linear Quadratic Regulator

Input: U, e

Output: ug

1: E, J < rollout(eq, U)

2:fori =0,1, ..., i do

3 K,d, AV < BackwardPass(E, U)
4 for o; : @ do

5: (E, U, J)yew <ForwardPass(K, d, «;)
6: if |Jyew| < |J| then

7 (E,U,J) <~ (E,U, Dpew

8 end if

9 end for

10: end for

4 Experimental Results

In this section, we present the experimental results obtained
from both simulation and real-world scenarios, utilizing the
TerraSentia platform (Fig. 1) to apply our methodology.
Additionally, we validate our system by comparing it with a
state-of-the-art method in simulation and demonstrating its
functionality in real crop environments.

4.1 Perception

The Perception system receives raw LiDAR data and outputs
the crop lines in the line equation format {m1, my, b1, b>}.
It is worth noting that, in the bellow experiments, the pre-
dictions with the neural network were made assuming m| =
m>.This correction enhances the efficiency of neural network
training and has demonstrated positive results empirically.

To evaluate inference accuracy, the error was calculated
from prediction outputs on two datasets: the training set with
21,108 images and the testing set with 11,440 images. The L1
Loss function, the default for this works training, was used
to ensure result reproducibility. Table 2 presents the mean
w and standard deviation p of the Absolute Error metric for
each dataset.

Figure 12 illustrates the quality of the neural network’s
predictions. The image depict examples of predictions from
three distinct positions: near the right plantation, near the left
plantation, and at the center. These examples reveal that the
prediction line closely follows the reference line, indicating

Table 2 Inference Accuracy (u,p)

Dataset mi by by

Train
Test

(0.489, 0.308)
(0.563,0.321)

(0.488, 0.327)
(0.558, 0.360)

(0.521, 0.355)
(0.602, 0.373)

L 4
Reference /I ,'/ll
. ’ /i
-=-- Predicted | [ ] / o
L [/ 1
¢ 1
[ ] o,
w 5 d
° [ 4 ¥ IS
o [ de
/7 L J] .
’/’ 1’
L4 /4 l/ 0
° I,’ W
44’/ 4,,,

(a) Close to the row of (b) Close to the row of
plantations on the right  plantations on the left

MELE
.. Io 1\

‘.E

b

(c) Centered in the middle of the hallway
Fig. 12 Different prediction extremes for the Neural Network infer-

ence, compared to the reference

the network’s high accuracy across all this extreme scenarios.
The absolute errors for the images are as follows:

o (2)m) :0.411, b1 :0.175, by : 0.286;
o (b)my :0.380, by : 0.552, by : 0.501;
o (c)m :0.619, by : 0.768, by : 0.373.

Comparing the values of Fig. 12 to those in Table 2, it is
evident that all fall within the range defined by the table’s
mean and standard deviation.

By refining the analysis scope, it is possible to link the
errors values to real-world measurements. Using b1 and b,
outputs enables us to evaluate the actual deviation in meters
these errors would cause, based on the same assumptions as
the deployment code. To accurately depict the error geomet-
rically, the difference between the prediction and the label
(called Absolute Loss) is preferable to L1 Loss, as L1 Loss
distorts the geometric interpretation of the value.

The conversion from bpye; t0 byerers can be achieved
with the following expression:

Hmeters

bimeters = : bpixels (23)

Hpixels

@ Springer
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Hyperers and Hpiyes denote the Horizon in meters and
pixels, respectively. This metric reflects the maximum value
from the images. In this project, all images have a height of
224 pixels, and the experimental Horizon for testing was set
at 3 meters. Thus, the conversion factor is 3/224.

The Test set errors (u,p) for by and by were (0.7473,
0.4821) and (0.806, 0.499) centimeters, respectively. The
test set typically performs worse than the train set but better
reflects real-case scenarios. Thus, most errors are statistically
below 1.5 centimeters, which is almost negligible given the
1.8-meter row gap.

4.2 Controller

Before presenting the full system results, we conducted a
benchmark of the controller by comparing our implemen-
tation of the Model Predictive Controller, which uses a
Constrained Iterative Linear Quadratic Regulator iLQR) as
the solver, with the state-of-the-art IPOPT solver [17]. It
is important to highlight that while our constrained iLQR
employs the kinematic model developed in Section 3.6, the
IPOPT was configured with the unicycle model. This com-
parison allowed us to identify the advantages of our controller
relative to other state-of-the-art methods.

The comparison, shown in Table 3, was measured by run-
ning the system in simulation, which is described in more
detail in Section 4.3. The table displays the RAM usage (from
a total of 8GB) and the time taken to compute each control
action. Both metrics are crucial for ensuring that our system
does not overburden the robot’s hardware with the controller
module and can generate control actions more frequently,
making the robot more robust.

Considering that the time to complete the simulation run
is nearly identical across controllers, with each outperform-
ing the other by only a few seconds (3% of the total runtime)
across the experiments, we can analyze the data in Table 3
under the assumption that both controllers performed equiv-
alently for our intended purpose.

Analyzing the results, it is worth highlighting that, in
all cases-taking the average of both straight and curved
scenarios-our method computes the control actions faster.
However, the most significant observation is the difference
in RAM usage during these calculations. The iLQR solver

Table 3 Comparison between our iLQR and IPOPT

Straight Curved

iLQR IPOPT iLQR IPOPT
Av. Memory [%] 0.28 10.50 0.30 14.30
Av. Solver [ms] 17 55 30 55

@ Springer

only utilized 0.28%-0.30% of the available memory, whereas
IPOPT consumed between 17% and 30%. This substantial
reduction in resource consumption makes our method far
more efficient.

4.3 Simulation

To conduct our experiments, we used the Gazebo simulator
[51], which is renowned for its flexibility in robotics sim-
ulation. Specifically, we employed the Virtual Maze Field
package [52] to create plantation environments as close as
possible to the real ones; hosting the virtual TerraSentia,
which was equipped with identical sensors to those found on
the actual robot. The setup could allow for rigorous naviga-
tion system testing under controlled yet realistic conditions.
To thoroughly assess the system’s adaptability and accuracy,
some variations of the plantation parameters were made, such
as plant density, row spacing, and crop height. The adapta-
tions allowed one to simulate absolutely the principal types of
agricultural environments and system performance with the
whole diversity of scenarios from mild to most challenging
ones.

In our first set of experiments, we compare our method
with a baseline [3], with both systems navigating through
straight and curved plantations, enabling us to assess the
accuracy of trajectory generation relative to a reference.
Given our assumption of consistent row spacing, the refer-
ence line is defined as the center line with an equal distance
from each row crop. In this scenario, the task was to navi-
gate autonomously through the entire crop row with the robot
starting position close to the crop lane entrance, aligned with
the rows, making it easier to start planning the path between
the planting lanes.

The trajectories generated by our system and the base-
line (Higuti et al. [3]) are depicted in Fig. 13. Our system
exhibits a higher degree of accuracy compared to the base-
line. Particularly in curved scenarios, our system is capable of
generating trajectories without collisions, whereas the base-
line fails to do so. Furthermore, each test was conducted five
times, and the results are presented in Table 4.

In straight scenarios, CROW achieved a 100% collision-
free rate, covering an average distance of 57.5 meters,
whereas the Higuti et al. [3] method had a 20% collision
rate, with an average of 50.56 meters covered. This demon-
strates CROW’s superior accuracy and efficiency. In the
more complex curved scenarios, CROW again showed better
results, maintaining a 100% collision-free rate and covering
44 meters on average. The Higuti et al. [3] method, however,
struggled significantly, with an 80% collision rate and only
24.33 meters covered on average.
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4.4 Field Validation

Following the valid
simulation, we proc

an actual robotic platform. We utilized the facilities of

the Illinois Autono

¥ Position [m]

nois Urbana-Champaign, which features rows with varying

shapes, distances between crops and sizes of the rows.
ation of the proposed method through In the outdoor setting, we employed a Real-Time Kine-
eeded to conduct field validation using ~ matic (RTK) system as the ground truth for analyzing the

mous Farm at the University of Illi-  module to navigate through the crops.
—— Run#1  —:- Run#3 —-- Run#5 ® Start X Collision ® Final
~— Run #2 === Run #4

|
o

X Position [m]

a) Experiment with CROW in a straight-row scenario.

4
2_
-4

(b) Experiment with Higuti et al. [? ] in a straight-row scenario.

15.0
125
10.0
75
5.0
25
-2.5

(c) Experiment with CROW in a curved-row scenario.

15.0
12,5
10.0
7.5
5.0
25
0.0
-2.5

(d) Experiment with Higuti et al. [? ] in a curved-row scenario.

4
| _
4

-30 -20 -10 10 20 30

trajectories, as our system does not require a localization

Fig. 13 Comparison between CROW and Higuti et al. [3] on a straight and curved crop row. In this experiment, the methods run five times in the

same crop row. The plo

t shows the navigated path with collision locations

@ Springer



28 Page140f18

Journal of Intelligent & Robotic Systems (2025) 111:28

Table4 Comparison between

. L Straight Row Curved Row

CtR(.)\;‘/t ‘mi H‘g“‘éet al. Blfor g4 CROW Higuti et al. [3] CROW Higut et al 3]

straight and curved crop rows Coll. Distance [m] Coll. Distance [m] Coll. Distance [m] Coll. Distance [m]
1 - 57.50 v 22.83 - 44.00 - 44.00
2 - 57.50 - 57.50 - 44.00 v 31.06
3 - 57.50 - 57.50 - 44.00 v 8.28
4 - 57.50 - 57.50 - 44.00 v 11.87
5 - 57.50 - 57.50 - 44.00 v 26.42
Average 0 575 20%  50.56 0.0 44.0 80%  24.326

Continuing, we conducted 6 experiments across different
rows measuring 115 meters, during which we recorded the
number of collisions and the time taken to complete each run.
For each collision, the controller was halted, and the robot’s
locomotion resumed once it was realigned within the row.
Finally, the numerical results can be seen in Table 5.

Additionally, some of the trajectories used to generate
these results, based on RTK-recorded positions, are shown
in Fig. 14 along with their corresponding collisions and start
points. We excluded some trajectories to avoid overcrowding
the GPS plot, as repeated rows made it difficult to interpret.

These results demonstrate that our method successfully
navigates real crop rows without the need to train the per-
ception module on real-world data, achieving an average
distance of 34.5 meters per collision, with 3+3 collisions
over the runs.

However, real-world noise, such as weeds within the
rows and other natural obstacles, introduces challenges in
interpreting the LiDAR data for detecting crop lines. These
obstacles were less prevalent in runs 3 and 4, as observed
in the front camera footage from those experiments, which
also had fewer collisions. Thus, we can establish a direct cor-
relation between the difficulty of each row, i.e., the number
of natural features in the under-canopy environment, and the
number of collisions experienced by CROW.

Table 5 Field Validation Results

Run # Coll. Av. Dist. p/ Coll. [m] Traj. Time [s]
1 5 23.00 235

2 4 28.75 245

3 0 - 155

4 1 115.0 172

5 4 28.75 252

6 6 19.17 278

Average 3.33 345 222.83

@ Springer

Furthermore, given that our system struggles in these
challenging conditions, it is possible to integrate a recov-
ery module, as implemented in Gasparino et al. [12]. This
addition could enable the system to navigate under-canopy
environments more effectively, thereby enhancing its overall
performance.

It is important to note that the satellite images shown in
Fig. 14 are not aligned with the exact dates of our exper-
iments. As a result, the auxiliary image is provided to
approximate the appearance of the crops during the experi-
mental period.

5 Conclusion

We presented CROW, a row-following navigation system
designed for compact robots, validated on the Terrasentia
Platform within under-canopy environments. Our system
uses a LiDAR-based self-supervised Deep learning per-
ception, capable of identify across various crop types and
detecting crop rows amidst fluctuating noise levels. This
perception data informs the generation of waypoints for
the robot, which is controlled by an MPC framework that
integrates an error-tracking model with a constrained iLQR
solver.

Our method was evaluated in both simulated and real-
world environments, demonstrating robust performance under
diverse conditions. In simulation, CROW excelled in navigat-
ing curved crop rows, a challenge that many contemporary
approaches struggle with, achieving successful navigation
without any collisions.

In real-world tests, however, a performance gap emerged
due to the presence of noise, such as weeds and other nat-
ural obstacles within the crop rows. This noise introduced
challenges in interpreting the LiDAR data, leading to more
collisions in noisier rows. Despite these challenges, CROW
was able to navigate real crop rows without requiring training
on real-world data, showcasing its adaptability and strength.
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Run #1

Run #2

Run #3 5¢ Start Point

Collision [ ]

Fig.14 GPS trajectories of CROW at the Illinois Autonomous Farm. The accompanying image depicts the plantations on the date of the experiments

Notably, the system achieved an average of 34.5 meters per
collision, with 3 £ 3 collisions across our experiments.
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