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Impact of centrality on cooperative processes
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The solution of today’s complex problems requires the grouping of task forces whose members are usually
connected remotely over long physical distances and different time zones. Hence, understanding the effects of
imposed communication patterns (i.e., who can communicate with whom) on group performance is important.

Here we use an agent-based model to explore the influence of the betweenness centrality of the nodes on the time
the group requires to find the global maxima of NK-fitness landscapes. The agents cooperate by broadcasting
messages, informing on their fitness to their neighbors, and use this information to copy the more successful
agents in their neighborhood. We find that for easy tasks (smooth landscapes), the topology of the communication
network has no effect on the performance of the group, and that the more central nodes are the most likely to
find the global maximum first. For difficult tasks (rugged landscapes), however, we find a positive correlation
between the variance of the betweenness among the network nodes and the group performance. For these tasks,
the performances of individual nodes are strongly influenced by the agents’ dispositions to cooperate and by the

particular realizations of the rugged landscapes.
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I. INTRODUCTION

Problem solving by task groups represents a substantial
portion of the economy of developed countries nowadays [1].
Among the work relationship issues that emerge in this
situation, the most important is perhaps that of intragroup
communication. In fact, the question “What effect do com-
munication patterns have upon the operation of groups?”
prompted a series of experimental studies in the 1950s, which
produced somewhat conflicting conclusions [2—-7]. Of partic-
ular interest is the case of imposed communication patterns,
which happens in the military and industrial organizations,
for instance, and in which the researchers determine who
can communicate with whom, thus excluding a priori the
alternative of self-organization of the group members.

Here we address the issue of the influence of a fixed
communication pattern on group performance, as measured
by the time the group needs to find the solution of a task.
Already in the pioneer studies of the 1950s, the concept of
centrality emerged as the chief (but not the sole) determinant
of the differences in performance of the various group
organizations [2,3]. Centrality or, more precisely, betweenness
centrality is a concept of the importance of a member for the
diffusion process in a network along the shortest paths. Hence,
betweenness is a measure of the availability of the information
necessary for solving the task [8]. In fact, a typical finding of
those studies was that the most central position in a pattern
(e.g., in a wheel), which is located on many shortest-path
information flows between all other positions, is most likely
to hit the solution first [3].

Rather than studying small groups of human subjects as in
those seminal works, we consider agent-based simulations,
aiming at offering a more complete understanding of the
interplay between the centrality of the communication patterns
and the complexity of the task. Even though it is debatable
that conclusions drawn from such an approach may apply to
groups of human workers (see, e.g., Ref. [9]), they certainly
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hold for distributed computational systems that are ubiquitous
in today’s society [10—12].

In particular, we consider a distributed cooperative problem
solving model in which agents cooperate by broadcasting
messages, informing on their partial success towards the
completion of the goal. The agents use this information to copy
parts of the tentative answer exhibited by the more successful
agents in their influence networks [13]. Since copying is an
essential ingredient of social learning (i.e., learning through
observation) and is central to the remarkable success of our
species [14,15], we expect that our conclusions may be of rele-
vance to the organization of real-world task groups. The param-
eters of the model are the number of agents in the system L and
the copy propensity p € [0,1] that is the same for all agents.

The relevant network metric to our study is the
betweenness centrality, which measures a node’s centrality in
a communication pattern [8]. Although there are many other
measures of centrality, such as random walk betweenness
centrality [16], eigenvector centrality [17], and knotty
centrality [18], to mention only a few, here we focus on
the betweenness centrality, which implicitly assumes that
information flows between nodes through the shortest paths.
Thus, our findings can be compared with the results from the
literature which used this centrality measure [2,3,9]. In order
to single out the influence of the betweenness centrality on the
group performance, we follow Ref. [9] and fix the group size
to L = 16 and the degrees of the nodes to k = 3 (see Fig. 1).
In the rest of the paper we will use the terms communication
pattern and network interchangeably. The task posed to the
agents is to find the unique global maximum of a fitness
landscape, whose state space is much larger than the group
size L. The difficulty of the task is gauged by the number and
distribution of local maxima in the landscape.

We find that for easy tasks (i.e., for landscapes without local
maxima) the network topology has no apparent effect on the
group performance, but for difficult tasks, the strength of the
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FIG. 1. The four network topologies with L = 16 nodes and fixed
degree k = 3 used in the computational experiments. The darker the
shade of a node, the higher its betweenness. (a) Network A is the
topology that maximizes both the maximum betweenness and
the betweenness variance, (b) network B maximizes the average
betweenness, (c) network C is a typical random network regarding
the average betweenness, and (d) network D minimizes both the
maximum betweenness and the betweenness variance (see Table II).

performance is associated to the variance of the betweenness
centrality among the network nodes. The network which max-
imizes this variance exhibits a hierarchical organization with a
central node and a modular structure (network A in Fig. 1). It
is interesting that such an organization performs better than a
more equalitarian pattern, in which the betweenness centrality
of all nodes is maximized (network B in Fig. 1). Moreover, we
find that the best performances are achieved by the so-called
inefficient networks, which are characterized by long average
path lengths that delay the propagation of information through
the network. This is because in rugged landscapes, the infor-
mation on fitness exchanged by the agents is often misleading,
hinting to the locations of local maxima, rather than to the
position of the global maximum of the fitness landscape.

In addition, a more detailed consideration of the perfor-
mance of the nodes shows that for easy tasks, the chance that
a node finds the answer first is positively correlated with its
betweenness centrality. For difficult tasks, however, the chance
of a node hitting the solution depends on the copy propensity p
of the agents: for small p, all agents are roughly equiprobable
of finding the solution. Near the value of p that optimizes
the group performance, the central agents perform better.
For large p, the more peripheral nodes have a better chance to
get the answer first.

The rest of this paper is organized as follows. In Sec. II
we offer an outline of the NK model of rugged fitness
landscapes [19], which we use to represent the tasks presented
to the agents. The behavioral rules that guide the agents in
their searches for the global maximum of the landscapes
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are explained in Sec. III. The four fixed communication
patterns the agents use to exchange information on their
tentative solutions are introduced in Sec. IV. In Sec. V we
present and analyze the results of our simulations, emphasizing
the comparative performance between the different patterns.
Finally, Sec. VI is reserved to our concluding remarks.

II. TASK

The task posed to a system of L agents i =1,...,L is to
find the unique global maximum of a fitness landscape using
the NK model [19]. The NK model is the paradigm for problem
representation in organizational theory [20-24], since it allows
the tuning of the ruggedness of the landscape—and hence of
the difficulty of the task—by changing the integer parameters
N and K. More pointedly, an NK landscape is defined in the
space of binary strings of length N, and so this parameter
determines the size of the state space, namely, 2V. The
other parameter K =0, ...,N — 1 is the degree of epistasis
that influences the ruggedness of the landscape for fixed N.
For K = 0, the (smooth) landscape has a single maximum,
whereas for K = N — 1, the (uncorrelated) landscape has
on the average 2V /(N + 1) maxima with respect to single
bit flips, and the NK model reduces to the Random Energy
model [25,26]. Finding the global maximum of the NK model
for K > 0 is an NP-complete problem [27], which means that
the time required to solve all realizations of that landscape
using any currently known deterministic algorithm increases
exponentially fast with the length N of the strings [28]. We
refer the reader to the original paper by Kauffman and Levin
for details on the procedure to generate a random realization
of an NK landscape [19].

Since our goal is to compare the performances of cooper-
ative problem-solving systems using the four communication
patterns shown in Fig. 1, we must guarantee that they search
the same realizations of the fitness landscapes, as distinct
landscape realizations may differ greatly in the number of
local maxima for K > 0. Thus for each set of the parameters
N and K, we generate and store 100 landscape realizations,
which we use to test the four patterns. In particular, we fix
the string length to N = 16 and allow the degree of epistasis
to take on the values K =0, 3, and 7. Table I shows the
mean number of maxima for each sample of 100 landscapes,
as well as two extreme values, namely, the minimum and the
maximum number of maxima in the sample.

III. COOPERATIVE SEARCH

Once the task is specified, we can set up the representation
of the agents as well as the rules for their motion on

TABLE I. Statistics of the number of maxima in the sample of
100 NK-fitness landscapes with N = 16 used in the computational
experiments.

K Mean Min Max
0 1 1 1

3 84.24 43 132
7 664.51 573 770
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the state space. Clearly, a convenient model for searching
NK landscapes is to represent the agents by binary strings,
and so henceforth we will use the terms agent and string
interchangeably. Initially, the L binary strings are drawn at
random with equal probability for the bits 0 and 1. The search
begins with the selection of a string (or agent) at random, say,
string i, at time ¢ = (. This string can move on the state space
through two distinct processes, as described next [13,29].

The first process, which happens with probability p, is the
imitation of the model string, which is defined as the string
that exhibits the largest fitness among the (fixed) subgroup of
strings that can influence (i.e., are connected to) string i. The
model string and the string i are compared, and the different
bits are singled out. Then one of the distinct bits is selected at
random and flipped, so that this bit is now the same in both
strings. In the case that string i is identical to the model string, a
randomly chosen bit of string i is flipped with probability one.
The second process, which happens with probability 1 — p, is
the elementary move on the state space that consists of picking
a bit at random of string i and flipping it. This elementary
move allows the strings to incrementally explore the entire
2N _dimensional state space.

After string i is updated, we increment the time ¢ by the
quantity Ar = 1/L. Then another string is selected at random,
and the procedure described above is repeated. Note that during
the increment from ¢ to ¢ + 1, exactly L updates are performed,
though not necessarily on L distinct strings.

The search ends when one of the agents finds the global
maximum, and we denote by ¢* the halting time. The efficiency
of the search is measured by the total number of string
operations necessary to find that maximum, i.e., Lt* [3] (see
also Refs. [11,12]), and so the computational cost of a search
is defined as C = Lt* /2N , where for convenience we have
rescaled #* by the size of the solution space 2V

The parameter p € [0,1] is the copy propensity of the
agents. The case p = 0 corresponds to the baseline situation
in which the agents explore the state space independently of
each other. The copy or imitation procedure described above
was based on the incremental assimilation mechanism used
to study the influence of external media [30,31] in Axelrod’s
model of social influence [32]. Here we assume that the L
agents are identical with respect to their copy propensities
(see Ref. [33] for the relaxation of this assumption).

The role of imitation on human interactions was extensively
studied by Bandura in the 1960s [34], who concluded that most
human behavior is learned observationally through modeling,
i.e., by observing others and repeating their actions in later
similar situations. Most interestingly, Bandura found that the
probability of imitation is affected by the characteristics of the
observed individual: the higher its perceived status, the more
likely it is to be imitated [34]. Since the behavioral rules of our
agents concur with Bandura’s findings, their use to describe the
behavior of human subjects in similar collaborative problem-
solving scenarios is justifiable. In addition, we note that similar
imitation models have been used to model the strategy of
organizations in competitive market situations [20,21].

A word is in order about a similar agent-based model used in
organizational theory [22,23]. In that model, the agents always
copy the fittest string in their neighborhood (i.e., p = 1, but
see below). This move is called exploitation. If the agent is
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fitter than its neighbors, a single bit is flipped randomly, but,
differently from our elementary move, this change is enacted
only if it increases the fitness of the agent. This move is called
exploration. In addition, in the case the agent imitates a more
successful neighbor, it copies the entire string by changing
many bits simultaneously. This is then a nonincremental move
on the state space. As a result, the search may permanently
get stuck in a local maximum of the landscape [22,23]. This
the reason the performance measure in those studies is taken
as the average fitness of the group after a fixed search time or
as the fraction of searches that found the global maximum for
unlimited search times.

IV. COMMUNICATION PATTERNS

Here we focus on a commonly studied network metric,
namely, the betweenness centrality, which is a measure of a
node’s centrality in a communication pattern or network [8].
More pointedly, the betweenness centrality of node i, which
we denote by B3;, is given by the ratio between the number of
shortest paths from all nodes to all others that pass through
node i and the number of shortest paths from all nodes to all
others regardless of whether they pass through node i or not.
Clearly, a node with high betweenness centrality has a large
influence on the transfer of information through the network.
Hence it is relevant to understand the role of this metric on
the performance of distributed cooperative problem-solving
systems. We can introduce global metrics as well, such as
the average betweenness centrality up = ZiL:, B;/L where L
is the number of nodes of the network. The variance o} of
the betweenness centrality is similarly defined. For simplicity,
henceforth we will refer to the betweenness centrality as
simply the betweenness, since the other type of betweenness,
namely, edge betweenness [35] will not be considered here.

For networks with L = 16 nodes, each with kK = 3 neigh-
bors, we can obtain, through an exhaustive search on the space
of networks, three networks with special properties regarding
the betweenness metric, which are exhibited in Fig. 1. For in-
stance, network A is the network that maximizes the maximum
betweenness among the L nodes. It happens also that this net-
work exhibits the maximum variance (or standard deviation)
of the betweenness among the nodes. Network B exhibits the
maximum average betweenness. Network D minimizes the
maximum betweenness among the L nodes and exhibits also
the minimum variance of the betweenness among the nodes.
Actually, all nodes have the same betweenness in this network.
Network C is a typical random network, regarding the average
betweenness, with L = 16 and &k = 3. To obtain this network
we generated a sample of 10° random networks, calculated the
average betweenness of each network, and then determined the
average of the sample: network C was the network whose aver-
age betweenness was closest to the sample average. Networks
A and B were considered in the study of Ref. [9]. Table II
exhibits the average betweenness (145) and the standard devi-
ation (o) of these four networks. The networks were ordered
from high to low values of their betweenness variances.

Another metric of interest used to characterize the com-
munication patterns is the average path length [ defined as
the average number of steps along the shortest paths for all
possible pairs of network nodes. Because it is a measure of the

022305-3



REIA, HERRMANN, AND FONTANARI

TABLE II. Summary statistics of the networks’ betweenness and
average path length for the four topologies used in the computational
experiments.

Network B on [
A 0.1678 0.2118 3.35
B 0.2047 0.1862 3.87
C 0.1036 0.0348 2.45
D 0.0857 0 2.2

efficiency of the flow of information on a network [36], it has
been used to classify the communication patterns as efficient
(short path lengths) and inefficient (long path lengths) [9]. In
that sense, the two networks shown in the upper row of Fig. 1
are classified as inefficient networks and those shown in the
lower row as efficient networks (see Table II). We note that for
networks with L = 16 nodes and fixed degree k = 3, networks
B and D have the largest and the smallest possible average path
lengths, respectively.

V. RESULTS

For a given communication pattern and for fixed values
of the NK model parameters we proceed as follows. For
each realization of a fitness landscape we carry out 10* to
103 searches starting from different initial conditions (initial
strings), and the resulting average computational cost is then
averaged again over 100 distinct landscapes. We recall that
the four networks of Fig. 1 are tested on the same landscapes.
The error bars are smaller than the symbol sizes in all figures
shown in this section.

In Fig. 2 we show the dependence of the average com-
putational cost (C) on the copy propensity p of the agents
for increasing task difficulties as measured by the landscapes’
ruggedness, K = 0, 3, and 7. For landscapes with no local
maxima (K = 0, upper panel of Fig. 2), the performances of
the four topologies are practically indistinguishable in the scale
of the figure, and the mean computational cost decreases with
increasing p, i.e., the best performance is attained by always
copying the model string (p = 1) and allowing only its clones
to explore the landscape through the elementary move.

The presence of a moderate number of local maxima
(K =3, middle panel of Fig. 2) impacts the performance
only for large values of the copy propensity, and the effect
is more pronounced for the more efficient networks C and
D. The performances of networks A and B are very similar,
except in the region of p very close to 1, where network
A slightly outperforms network B. The difference between
the performances of these two networks becomes evident for
difficult problems (K = 7, lower panel of Fig. 2) only, as
illustrated in the inset of that panel.

It seems that the determinant factor for the superior
performance of a communication pattern is the variance of
the betweenness among the nodes (see Table II). However,
an alternative explanation may be the presence of modules in
network A and quasimodular structures in networks B and C
but not in network D, which exhibits the worst performance.
In fact, it has been argued that the modular organization,
which is characteristic of hierarchical networks, may facilitate
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FIG. 2. Average computational cost (C) as function of the copy
propensity p for the four communication patterns shown in Fig. 1
according to the convention: network A (@), network B (A), network
C (v), and network D (H). The upper panel shows the results for
K = 0, the middle panel for K = 3 and the lower panel for K = 7.
The lines are guides to the eye.

the escape from the local maxima [37] (see Ref. [38] for
experimental evidence on the effect of a hierarchical social
network structure on the efficiency of collective action).
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For the sake of concreteness, we calculate the maximum
modularity Q of the networks shown in Fig. 1 in the case
the nodes are assigned to two and three modules. We recall
that the modularity of a particular assignment of nodes into
modules (or communities) is defined as the fraction of the
links that fall within the given module minus the expected
fraction if the links were distributed at random [35,39].
Hence networks with high modularity have dense connections
between the nodes within modules, but sparse connections
between nodes in different modules. The maximum modularity
is obtained by finding the assignment of nodes to modules that
maximizes the modularity. For our networks, we find that the
maximum modularity occurs for the partitioning of the nodes
in three modules with the values O = 0.581 (network A), O =
0.565 (network B), O = 0.414 (network C), and Q = 0.331
(network D). This supports the conjecture that the superior
problem-solving performance of network A may be due to its
high modularity. Actually, we have carried out an exhaustive
search in the space of networks with L = 16 and k =3 in
order to determine the network with the highest maximum
modularity value for partitioning of nodes in two and three
modules, and, as expected, the search produced network A.

In the case of rugged landscapes, the group performance
correlates negatively with the efficiency of the networks, as
measured by /. This happens because in this case, the model
agents may broadcast misleading information, and so it is
advantageous to slow down the information transmission, so
as to allow the agents more time to explore the solution space
away from the neighborhoods of the local maxima.

We find that (C) is quite insensitive to variations on the
topology of the network for small values of p. In particular,
for p = 0 one recovers the results of the independent search,
(C) =~ 1.08 (see Ref. [29] for an analytical estimate of this
value), regardless of the network topology and of the value
of the parameter K. As the difficulty of the task increases,
the optimum copy propensity decreases towards zero, and the
minimum of (C) becomes shallower. In particular, for K =
N — 1 that minimum happens at p = 0. Finally, we note that
since finding the global maxima of NK landscapes with K > 0
is an NP-Complete problem [27], one should not expect that the
imitative search (or any other search strategy, for that matter)
would find those maxima for a large sample of landscapes
much more rapidly than the independent search.

Figure 2 reveals the superior performance of networks
whose nodes exhibit the largest variability of betweenness
in long runs, i.e., when there is no limit to the duration of
the search. Now we examine whether this finding holds also
in the case where a maximum search time ¢ or computational
cost C is fixed a priori. Figure 3 shows the fraction of runs
F(C) that found the global maximum for a fixed value of C in
difficult tasks, i.e., landscapes with N = 16 and K = 7. For
easy tasks (K = 0), we find that, similarly to the situation for
long runs, the fixed-cost performances of the four networks
are practically indistinguishable (data not shown). Hence, the
conclusions for the long runs displayed in Fig. 2 are valid in
the case that the computational cost of the search is fixed a
priori, as well.

For network A, which exhibits nodes with four distinct
betweenness values, namely, B = 0.00317, 0.114, 0.422, and
0.714 with degeneracies D = 6, 6, 3, and 1, respectively,
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F(C)

FIG. 3. Fraction of the searches that found the solution for a fixed
computational cost C for network A (@), network B (A), network C
(V), and network D (H). The copy propensity is p = 0.85, and the
parameters of the landscape are N = 16 and K = 7. The lines are
guides to the eye.

we can measure the chance Fp(C) that a specific node with
a certain betweenness finds the global maximum for a fixed
computational cost C. This quantity is given by the fraction
of runs with computational cost less than C for which a
particular node with betweenness B finds the solution. Since
for C — 0o, we can guarantee that all runs have halted, we
have ) 5 DpFp(C) =1 in this limit. The results for K =0
and K = 3 are shown in Figs. 4 and 5, respectively, with the
copy propensity set to its maximum value, p = 1.

For easy tasks (K = 0), the central node of network A is
most likely to get the answer first, regardless of the allotted
search time as shown in Fig. 4. More generally, the chance of

0.08 T T

JZ/BJBBB e S S NS S

0.06

0.02

T
0.010 0.015

C

FIG. 4. Probability that a node with betweenness 3 in network A
gets the answer first for runs with computational cost less than C. The
convention is B = 0.00317 (o), 0.114 (<), 0.422 (t>), and 0.714 (O))
as indicated. The copy propensity is p = 1, and the parameters of the
smooth landscape are N = 16 and K = 0. The lines are guides to the
eye.
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FIG. 5. Same as Fig. 4 but for rugged landscapes with parameters
N =16 and K = 3. The logarithmic scale in the x axis highlights
the change of the networks performance hierarchy for long and short
runs.

a node hitting the solution increases steadily with its between-
ness. This conclusion holds for networks B and C as well, and
for all values of the copy propensity p. We recall that all nodes
of network D are identical regarding their betweenness values,
so this network is unfit for this type of analysis. Surprisingly,
the situation is reversed for more difficult tasks (K = 3) as
shown in Fig. 5. Although it is still true that the central node
is the most likely to find the solution for short runs (low
computational cost), it is the least likely for long runs. In fact
for long runs, the lesser the centrality of a node, the greater its
chance of hitting the solution. We note, however, the superior
performance of the more central nodes for short runs seems
to be a peculiarity of network A, since for networks B and
C, the nodes with the lowest betweenness are the most likely
to find the solution, regardless of the value of C (data not
shown). It is interesting to mention a related finding within the
context of the spreading of epidemics in complex networks:
under certain circumstances, the most efficient spreaders may
not be the most central individuals in the network [40].

Actually, for rugged landscapes the performance of a
particular node is way more complicated than for smooth
landscapes, because it depends on the copy propensity p as
shown in Fig. 6. For instance, for p close to the value that
minimizes the computational cost (see middle panel of Fig. 2)
the central nodes perform better, but for p close to 1, in the
region where the search is hampered by the local maxima, the
peripheral nodes perform better, in agreement with Fig. 5. We
note that the highly nonmonotonic behavior of the probability
Fp for the central nodes is an artifact of averaging over
different landscapes realizations. In fact, Fig. 7 illustrates the
strong effect of the landscape realization on Fp for the node
with the highest betweenness value (central node): for some
landscapes, we find that F decreases monotonously with
increasing p, whereas for others, this probability increases
with p. The average over similarly discordant results using
the sample of 100 landscapes yields the convoluted curves
exhibited in Fig. 6.

PHYSICAL REVIEW E 95, 022305 (2017)

0.066 - —— T ———T

0.003 i

0.056 . T . T . . . . .
0.0 0.2 0.4 0.6 0.8 1.0

p

FIG. 6. Probability that a node with betweenness 3 in network A
gets the answer first for time-unrestricted runs as function of the copy
propensity. The parameters of the rugged landscapes are N = 16 and
K = 3. The symbols convention is the same as for Fig. 4, and the
lines are guides to the eye.

Although we have found qualitatively similar results for NK
landscapes with different ruggedness (i.e., different values of
K), there are two aspects that are worth mentioning. First, the
differences in the performances of the central and peripheral
nodes for short runs become less noticeable with increasing
K, and second, those differences become more prominent for
long runs. For instance, whereas the chances of hitting the
global maximum are practically indistinguishable for nodes
with betweenness B = 0.714 and B = 0.422 for K = 3 (see
Figs. 5 and 6), we found that the more central node significantly
outperforms the less central nodes for K > 3. In summary,
increase of K decreases the effect of the centrality of the
nodes for short runs, but increases it for long runs.

0.08 . T

0.07

0.06

L 0.054 \ -

0.04 4

0.03 T T T T T T T T T
0.0 0.2 04 0.6 0.8 1.0

p

FIG. 7. Probability that the central node in network A gets
the answer first for time-unrestricted runs as function of the copy
propensity for four distinct landscape realizations. The parameters
of the rugged landscapes are N = 16 and K = 3, and the lines are
guides to the eye.
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Since even our simple agent-based model yields plenty of
discordant results regarding the performance of individual
nodes on difficult tasks, the profusion of conflicting con-
clusions drawn from the studies with human subjects is no
wonder: neither the cooperation strategies used by the subjects
nor the difficulty of the problems are controlled variables in
those experiments.

VI. DISCUSSION

The claim that restrictions on the communication channels
available to a group affects its problem-solving efficiency
is hardly controversial. However, the issue whether there
is a communication pattern which gives significantly better
performance than others in solving specific or general tasks has
produced conflicting findings [2-7,9,22,23]. The main reason
seems to be the strong dependence of the group performance
on several aspects of the group organization, as well as on
the complexity of the tasks and on the cooperation strategies
used by the subjects. Hence a thorough analysis of the vast
parameter space of the group or task composite is necessary
to elucidate that issue. Such a comprehensive study is feasible
only through computational experiments [22].

Here we attempt to clarify the role of the betweenness
centrality on the performance of a group as well as on the
performance of its individual members. To achieve that, we
compare networks with the same number of nodes (L = 16),
which are identical with respect to their degrees (k = 3 for all
nodes), as illustrated in Fig. 1. The networks were generated
so as to exhibit special properties regarding their local and
global betweenness metrics [9]. Actually, the reason we used
such small networks, in addition to the need to compare our
findings with those of Ref. [9] as will be done below, is that
it is unfeasible to find networks with those special properties
through the exhaustive search in the space of networks for
a number of nodes larger than L = 16. The task posed to
the agents is to find the unique global maximum of a NK
fitness landscape with the parameter N = 16 fixed but with
variable K. The difficulty of the task increases with K due
to the proliferation of local maxima. The choice N = L = 16
ensures that the group size is fixed close to its optimal value
for easy tasks [29], and that the size of the state space 2V is
much larger than L, which makes the search for the single
global maximum a challenging task.

We find that for simple tasks, there is no significant
difference in the performances of the different network
topologies. However, the performance of the group members,
which is measured by the chance they get the answer first,
is strongly correlated to the centrality of the node in the
network: the more central a node is, the more likely it is to
find the solution of the task. These findings are in agreement
with the experimental results [3,6]. We stress, however, that
the unresponsiveness of the easy-task performance to changes
on the communication patterns is because the number of
nodes, as well as the density of links are the same for the four
networks of Fig. 1. Variation of these parameters has a large
effect on the group performance for easy tasks. For instance,
for those tasks there is an optimal group size that minimizes
the cost of the search, and the optimal performance is achieved
by fully connected networks [41], in agreement with the
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experimental finding that groups with more communication
channels perform better for simple tasks [4].

For complex tasks, the best performing communication
pattern is the pattern that maximizes the variance of the
betweenness among the nodes (network A in Fig. 1). This
network also exhibits the node with the largest possible
betweenness allowed by the constraints L = 16 and k = 3 for
all nodes. The group performance degrades as that variance
decreases towards zero, so that the worst performing pattern is
that in which all nodes have the same betweenness (network
D in Fig. 1). Interestingly, among the topologies displayed in
Fig. 1, network D is the topology with the shortest average path
length, and so it is the most efficient regarding the transmission
of information through the network, whereas network A is
above network B only in this rank of efficiency (see Table II).
Our finding that inefficient networks perform better is justified
by noting that speeding up the transmission of information
through the network makes sense only if one can guarantee its
faithfulness and usefulness, otherwise it may be wiser to slow
it down and give more time for the agents to explore different
regions of the state space [22,42,43]. We note, however, that
even in the case the fitness values provide faithful information
on the location of the global optimum, viz., for landscapes with
K =0, the so-called efficient networks do not perform better
than the inefficient ones.

In addition, the attempt to maximize the betweenness of
all nodes results in the network with the largest average
betweenness (network B in Fig. 1), which exhibits the second
best performance. Thus it seems that the key factor to improve
group performance is not the maximization of the number of
nodes that have large betweenness, but rather the assignment
of a large variety of betweenness values to the nodes. Hence,
within the perspective of the betweenness centrality metric,
diversity is crucial to boost group performance.

Regarding the performance of an individual node of the
communication network, measured by the probability that
it hits the global maximum first, we find a neat positive
correlation between the centrality of a node and its perfor-
mance on easy tasks, regardless of the topology or of the
particularities of the agents, such as their copy propensities p.
For complex tasks, however, there is no such a general verdict
as the performances of the nodes are strongly influenced by the
agents dispositions to cooperate and by the specific realizations
of the rugged landscapes. Averaging over the landscape
realizations yields a complicated dependence on the parameter
p. For instance, the central nodes perform better when the
network performance is optimal, whereas the peripheral nodes
win when the network performance is most heavily harmed by
the local maximum traps. This sensitivity on the details of the
model and the consequent impossibility of drawing general
(i.e., task and subject independent) conclusions is reminiscent
of the conflicting outcomes that characterize the experimental
literature dealing with the effects of the communication
patterns in task-oriented groups [2-7,9,42,43].

A word is in order about the interesting online experiments
conducted using Amazon’s Mechanical Turk, in which human
subjects (players) select points for oil drilling on a map [9].
The good and the bad oil wells are the maxima and the minima
of a rugged landscape, and their locations are unknown to the
subjects, who, however, are able to see the coordinates of
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the selected points as well as the earnings of their network
neighbors. The goal of each player is to maximize its own
earnings by picking the more productive well. In contrast with
our findings, the best performing networks in the web-based
experiments are the so-called efficient networks, characterized
by short average path lengths, such as networks C and D in
Fig. 1. A possible reason for this discrepancy is the distinct
performance measure used in those experiments, namely, the
average earnings of the group rather than the time to find the
optimum oil well. In addition, since the game does not stop
when that optimum is eventually found by a player, truly useful
information about the coordinates of the optimum becomes
available to the other players, which may then explain the
superiority of the topologies with short average path lengths.

Finally, we note that the study of distributed cooperative
problem-solving systems diverges from the game theoretical
literature on cooperation that followed Axelrod’s seminal
1984 book The Evolution of Cooperation [44]. In fact, in
the context of cooperative processes, there is no conflict of
interests between the agents, and the opposite of cooperation
is independent work, rather than defection. In addition, in the
game theoretical framework it is usually assumed that mutual
cooperation is the most rewarding strategy for the group in the
long run, whereas here we argue that too much cooperation,
which results from a high value of the copy propensity, may
lead to disastrous results, akin to the so-called groupthink
phenomenon that happens when everyone in a group starts
thinking alike [45].
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Most studies of the influence of communication patterns on
the operation of groups have considered externally imposed
patterns that dictate the distribution of the communication
channels among the group members (see Ref. [5] for an
exception), thus precluding the emergence of a self-organized
network. This connectivity-driven network approach is fitting
to describe situations where the connections among nodes are
persistent features, such as in the Internet, but it may not be
so suitable to model the more ephemeral work relationships,
which may change on a very short time scale. A promising
avenue for further theoretical investigation is to consider
dynamic unidirectional links, as in activity-driven models
of varying networks [46], that can be created or destroyed
depending on whether a previous copy process resulted in
an increase or decrease of the copier fitness. The topology
of the resulting time varying self-organized network may
shed light on the issue of the emergence of leadership in a
task-force [47].
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