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Abstract
Creating a dataset for training supervised machine learning algorithms can be a demand-

ing task. This is especially true for blood vessel segmentation since one or more special-

ists are usually required for image annotation, and creating ground truth labels for just

a single image can take up to several hours. In addition, it is paramount that the anno-

tated samples represent well the different conditions that might affect the imaged tissues

as well as possible changes in the image acquisition process. This can only be achieved

by considering samples that are typical in the dataset as well as atypical, or even outlier,

samples. We introduce VessMAP, an annotated and highly heterogeneous blood ves-

sel segmentation dataset acquired by carefully sampling relevant images from a large

non-annotated dataset containing fluorescence microscopy images. Each image of the

dataset contains metadata information regarding the contrast, amount of noise, density,

and intensity variability of the vessels. Prototypical and atypical samples were carefully

selected from the base dataset using the available metadata information, thus defining an

assorted set of images that can be used for measuring the performance of segmentation

algorithms on samples that are highly distinct from each other. We show that datasets

traditionally used for developing new blood vessel segmentation algorithms tend to have

low heterogeneity. Thus, neural networks trained on as few as four samples can gener-

alize well to all other samples. In contrast, the training samples used for the VessMAP

dataset can be critical to the generalization capability of a neural network. For instance,

training on samples with good contrast leads to models with poor inference quality. Inter-

estingly, while some training sets lead to Dice scores as low as 0.59, a careful selec-

tion of the training samples results in a Dice score of 0.85. Thus, the VessMAP dataset

can be used for the development of new active learning methods for selecting relevant

samples for manual annotation as well as for analyzing the robustness of segmentation

models to distribution shifts of the data.
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1 Introduction

Te perormance o neural networks has dominantly been measured using metrics such
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as classication or segmentation accuracy, precision, recall, and the area under the ROC
curve. However, recent studies have shown the dangers o only considering such globally-
averaged metrics [1–3] that provide only an aggregated, summarized, view o the peror-
mance o machine learning algorithms on datasets with sometimes millions o images. Such
an approach may hide important biases o the model [3]. For instance, or medical images, a
95% accuracy is usually considered a good perormance. But what about the remaining 5%?
It is usually unrealistic to expect models to reach 100% accuracy, but the samples that are not
correctly processed by a neural network may hide important biases o the model. Tese con-
cerns led to the denition o new approaches and metrics that can aid the interpretation o
black box models [4].

For medical image segmentation, the detection o relevant structures is usually only the
rst step o a more elaborate procedure or measuring relevant properties such as size [5], reg-
ularity [6], length [7,8], and curvature [8,9] o the imaged structures. Tereore, systematic
segmentation mistakes might lead to undetected errors when characterizing samples or clin-
ical diagnoses [10] and research purposes [1]. An important cause o such systematic errors
can be the presence o samples with characteristics that occur with low requency in a dataset.
Tis can happen due to additional, unexpected, noise during image acquisition, variations in
tissue staining, image artiacts, or even the presence o structures that are anatomically di-
erent than what was expected. Assuming or illustration purposes that the data is normally
distributed, a machine learning model having good perormance around the peak o the dis-
tribution will tend to have good average accuracy measured or the whole dataset, even i it
cannot correctly classiy or segment images that are around the tail o the distribution [11],
which might be important or downstream analyses.

Segmenting the vasculature in tissue samples tends to be particularly challenging since
the appearance o blood vessels can change signicantly depending on tissue preparation
and imaging protocols. In addition, in most cases, the global shape o the vasculature can
be very dierent among the samples. We argue that blood vessel segmentation methodolo-
gies should have good perormance, or even be directly optimized, on both prototypical and
atypical samples. Tis ocus can lead to models that are more robust to samples located in a
sparsely populated region o the eature space o the dataset. In addition, it might also lead
to models that generalize better to out-o-distribution samples as well as to new datasets.
With these aspects in mind, we create a new dataset which we call the Feature-Mapped Cor-
tex Vasculature Dataset (VessMAP). Te dataset is designed to be as heterogeneous as pos-
sible by including samples having very dierent characteristics rom each other. o this end,
we use a simple and intuitive sampling methodology to select a subset o 100 images rom a
non-annotated base dataset containing 18279 image patches. Te selected samples were then
manually annotated with pixel-wise accuracy.

Te dataset allows the creation o training and validation splits with images having
dierent characteristics, such as contrast and blood vessel density. We show that dier-
ent splits o the VessMAP dataset lead to very dierent training and validation results.
As illustrated in Fig 1, the perormance on the validation set can be dissimilar depend-
ing on the samples used or training a neural network. Tus, we expect the dataset to be
useul or the development o new segmentation algorithms that are robust under distri-
bution shifs o the data as well as or the validation o novel ew-shot and active learning
approaches.
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Fig 1. Illustration o the heterogeneity o the VessMAP dataset. wo segmentations generated by a neural network trained on dierent splits o the dataset are
shown. (a) Original sample. (b) A network trained on a split o the dataset produces several alse positives and misses some blood vessels. (c) Te same network
trained on a dierent split generates a more accurate segmentation. (d) Comparison between the two segmentations. Vessel pixels predicted in (b) but not in (c)
are shown in red, and pixels in green were predicted as vessels in (c) but not in (b). Since the images in the VessMAP dataset have distinct characteristics, the
training set needs to be careully selected in order to avoid spurious results on the validation set.

https://doi.org/10.1371/journal.pone.0322048.g001

Te main contributions o this work are listed as ollows:

• A new dataset, VessMAP, is made available to aid the development o blood vessel segmen-
tation algorithms;

• It is shown that VessMAP has high variability compared to other popular datasets in the
literature, leading to respective large variations o perormance when training data is scarce;

• Specic splits o the dataset are provided or testing techniques that improve the generaliz-
ability o blood vessel segmentation algorithms.

2 Related works

able 1 shows a summary o the main blood vessel datasets used in the literature as well as
some recently published datasets. Most o the datasets have images rom the retina. Few
datasets are associated with microscopy images. More importantly, to our knowledge, none
o the datasets were specically designed to maximize the diversity o the samples. Te diver-
sity on some datasets tends to come as a proxy rom the inclusion o healthy and abnormal
tissue. For instance, samples in the DRIVE dataset contain diabetic retinopathy, which gen-
erates abnormal characteristics in blood vessels and image artiacts such as exudates that are
not related to blood vessels. Still, most blood vessels tend to have a well-dened geometry and
texture in all samples o the dataset. Tus, it becomes a simple task or a segmentation algo-
rithm to generalize to new unseen samples rom the same dataset. It is not surprising that
many methods can reach an accuracy larger than 0.94 on the DRIVE dataset [12].

Regarding microscopy images, all datasets ound by our survey include very ew samples.
Usually, very large 3D volumes are annotated in a semi-supervised ashion. Tey contain large
amounts o vessels, but represent a single individual and image acquisition procedure. Tere-
ore, most vessels have similar appearance and it becomes dicult to measure the generaliza-
tion capability o segmentation methods. With these limitations in mind, we created a dataset
that was specically designed to include blood vessels having very dierent characteristics.

Te creation o the dataset involved the application o a method or selecting relevant sam-
ples or annotation. A concept that is similar to the used methodology is the so-called core-
set [48]. Te aim o a coreset is to select a subset o samples that can optimally represent the
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able 1. Summary o important blood vessel datasets on the literature.
Dataset Anatomical region Imaging technique
DRIVE [13] retina color undus photography
SARE [14]
CHASEDB1 [15]
HRF [16]
INSPIRE-AVR [17]
IMAGERE [18,19]
MESSIDOR [20]
VICAVR [21]
ROC [22]
DRIONS DB [23]
DR HAGIS [24]
RE-OR [25]
WIDE [26]
VAMPIRE [27] ultra-wide eld-o-view uorescein

angiogram
IOSAR [28] scanning laser ophthalmoscopy
RC-SLO [28]
Vascular Model Repository [29] aorta; cerebral, coronary,

aortoemoral and pulmonary arteries
CA and MRA

VESSEL12 [30] human lung computed tomography
3D-IRCADb-01 [31] human liver
ASOCA [32] coronary arteries cardiac CA
Vascular Synthesizer[33] synthetic vessels —
VesSAP [34] mouse brain vasculature 3D light-sheet microscopy
ubeMap [35]
Di Diovanna et al. [36]
BvEM [37] volume electron microscopy
OCA [38] optical coherence microscopy
DeepVess [39] two-photon microscopy
MiniVess [40]
VesselExpress [41] mouse brain, heart, and bladder

vasculature
3D light-sheet microscopy

SMILE-UHURA [42] human brain MRA
opCoW [43] MRA and CA
DeepVesselNet [44] human and rat brain
MSD8 [45] human liver computed tomography
HR-Kidney [46] mouse kidney X-ray
HiP-C [47] human kidney computed tomography
Note: *CA: Computed tomography angiography. MRA: Magnetic resonance angiography. CA: Micro-computed
tomography angiography

https://doi.org/10.1371/journal.pone.0322048.t001

whole dataset. Many dierent methodologies and criteria were developed or dening rel-
evant coresets [49–51]. Indeed, the subset dened by our methodology can be associated
with a coreset, but in our case, the aim o the methodology and the approach used diers
markedly rom the usual denition o a coreset. Te aim o our methodology is not ocused
on accurately representing the underlying distribution o the data or preserving the accuracy
o a machine learning algorithm, but on providing a relevant dataset or training machine
learning algorithms while avoiding the underrepresentation o atypical samples. In addi-
tion, many coreset methodologies use a surrogate neural network to estimate latent eatures
or to estimate a degree o uncertainty about each sample, while our methodology is more
general in the sense that any set o eatures obtained rom the samples can be used. Further-
more, many related studies consider a similarity metric or selecting relevant samples [49,50],
which is a degenerate metric and, thereore cannot provide a ull representation o the data
distribution.
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3 Materials and methods

In the ollowing, we describe the methodology used or creating the VessMAP dataset. Te
methodology is illustrated in Fig 2 and can be divided into three steps: (a) acquisition o
the base data rom dierent experiments; (b) characterization o the base dataset accord-
ing to important morphometry eatures; (c) selection o samples that uniormly covers the
mapped eature space. Te base non-annotated dataset used or selecting relevant samples or
VessMAP is described in Sect 3.1. Te sampling methodology used or selecting appropriate
samples rom the base dataset is described in Sect 3.2.

3.1 Blood vessel microscopy base images
We start rom a collection o 2637 conocal microscopy images o mouse brain vasculature.
Te images were acquired under dierent experimental conditions in dierent works pub-
lished in the literature [52–54]. Conditions include control animals, animals that have su-
ered a deletion o chromosome 16p11.12, animals that have experienced sense deprivation
or sense hyperarousal, samples rom stroke regions, and also rom dierent stages o mouse
development. Te images have sizes rom 1376 × 1104 to 2499 × 2005 pixels, totaling around
3.8GB o data.

Fig 2. A flowchart that illustrates the methodology used to create VessMAP. (a) A large image dataset rom many experiments regarding the morphometry
o the cortex vasculature o mice is used as the base dataset. (b) A set o random windows is extracted rom the base dataset and relevant morphometry eatures
are calculated. (c) Te most descriptive eatures are used to project the samples into a 4-dimensional space and a sampling methodology is applied to select 100
images that uniormly cover this space. (d) Te set o 100 images, together with respective manual annotations o the blood vessels, their medial axes, and meta-
data containing the eatures o each image, dene the VessMAP dataset. (e) Some samples o the dataset are shown. Large dierences in vessel appearance can be
observed. *skel. het.: skeleton heterogeneity, back. mean.: background mean, back. std.: background standard deviation.

https://doi.org/10.1371/journal.pone.0322048.g002
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Te dataset is interesting because it has a considerable variety o characteristics o blood
vessels. In addition, the images represent samples obtained rom hundreds o dierent ani-
mals and experimental conditions. Tis makes it an excellent dataset or training machine
learning algorithms or blood vessel segmentation. However, training supervised algorithms
requires the manual annotation o the blood vessels.

Afer annotating a ew samples, we estimated that each image in the dataset takes roughly
12 hours to ully annotate. Tereore, it is uneasible to annotate the whole dataset, and a sub-
set o samples needs to be selected. Our objective was to select a diverse set o samples con-
taining both prototypical and atypical samples, so that it would be possible to create useul
training and validation splits or quantiying the perormance o segmentation algorithms
under challenging distribution shifs between the splits. o this end, a sampling methodology
was developed to select appropriate samples.

3.2 Sampling methodology
Each image in the base dataset may include illumination inhomogeneities, changes in con-
trast, dierent levels o noise, as well as blood vessels having distinct characteristics (e.g., cal-
iber, tortuosity, etc). Tus, rom the original dataset, we generated a new set o images, each
having a size o 256× 256 pixels. Tese smaller images were generated by extracting 256× 256
patches rom the original images. As shown in Fig 3, seven regions were extracted rom each
image. Te seven regions were extracted in key areas o each image, with our windows in
each o the corners o the image, a central window, and two windows at random positions.
Te latter two may overlap with the other windows. Windows that did not contain a satisac-
tory number o blood vessel segments were removed. Te total size o the resulting dataset is
18279 images. Tis new dataset was used in the remainder o the sampling procedure.

Te methodology developed to sample relevant images has three steps: (1) dataset map-
ping to a eature space, (2) generation o a discrete representation o the eature space, and (3)

Fig 3. An example o seven regions extracted rom a single sample. Conocal microscopy images can present
illumination dierences between the center and the borders o the image. Te our corners, along with the central
region, can capture most o the illumination inhomogeneities that may occur due to uneven illumination o the
samples. Besides these ve regions, two additional random regions are also drawn or each image.

https://doi.org/10.1371/journal.pone.0322048.g003
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selection o points rom the eature space representation. We explain each o these steps in the
ollowing sections.

3.2.1 Dataset mapping. We represent the dataset as D = {1,2,… ,n} where n is the
number o samples. Given a unction f ∶ i→ p⃗i that maps a sample i to a vector p⃗i with
dimension d, the dataset is mapped to a eature space as a n × d matrix, which we call Dmapped.
Te unction f represents a set o characteristics measured rom the samples. Each line o
matrix Dmapped thereore represents the eatures o a sample f(i).

Given that the images rom our base dataset were used in previous works, each sample
has a respective segmentation that was obtained using a semi-supervised methodology. Tis
methodology is based on the adaptive thresholding o the original images, where the thresh-
old was selected manually or each image. Te ull details o the segmentation procedure are
described in [8]. Using the semi-supervised segmentation, the ollowing eatures were used to
characterize the samples: blood vessel contrast, level o Gaussian noise, blood vessel density,
and medial line heterogeneity.

Te blood vessel contrast is related to the average dierence in intensity between the ves-
sels and the background o the image. Te greater the contrast, the easier it is to detect the
vessels. It can be measured using the original image o the vessels and the respective semi-
supervised segmentation containing the pixels belonging to the vessels. Te contrast was
calculated as

C = ̄Iv̄If , (1)

where ̄Iv and ̄If are the mean intensities o, respectively, the pixels belonging to the blood
vessels and the background o the image.

Te signal-to-noise level o the images can be estimated in dierent ways. We investigated
dierent denitions and used the method that was the most compatible with a visual inspec-
tion o the images. Te method proposed in [55] was used. It assumes a noise with normal
distribution and uses wavelets to identiy the most likely standard deviation o the noise com-
ponent. o prevent the method rom capturing vessel variation, only the background o the
image was used or the estimation.

Blood vessel density is dened as the total length o blood vessels in an image divided by
the image area. o do this, we rst applied a skeletonization algorithm to extract the medial
lines o the vessels [56]. Te total length o vessels was then calculated as the sum o the arc-
lengths o all vessel segments.

Te last metric, which we call medial line heterogeneity, measures the illumination
changes in the vessel lumen. o calculate this metric, we rst blurred the image using a Gaus-
sian lter with unit standard deviation to remove extreme values. Te medial line heterogene-
ity was then calculated as the standard deviation o the pixel values along the medial lines o
this blurred image. Te medial lines considered are the same ones used or the blood vessel
density metric.

We observed that the medial line heterogeneity tended to be correlated with the average
intensity o the blood vessels. In order to remove this dependency, the medial line hetero-
geneity, as well as the average intensity o the medial lines, were calculated or all images in
the dataset. Ten, a straight line t hm = a ∗ m + b was applied to the calculated values, where
m is the average intensity and hm is the expected medial line heterogeneity associated with m.
Next, a normalized medial line heterogeneity was dened as h̃ = h – hm, where h is the medial
line heterogeneity calculated or an image.

Tese specic eatures were used because they can signicantly impact the quality o the
morphometry assessment o the cortex vasculature. For example, images with low contrast
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and/or high noise levels are expected to be more challenging to be accurately segmented.
Conversely, images with a larger amount o blood vessels and high medial line heterogene-
ity provide intricate topology and texture to segmentation algorithms. Other eatures, such as
blood vessel tortuosity, the density o branching points (biurcations), and additional noise
estimators, were considered. However, we disregarded strongly correlated eatures or our
nal data selection. Te our remaining metrics mapped the base dataset to a 4-D eature
space. As mentioned beore, the dataset contains 18279 images. Hence, the whole dataset was
mapped to a matrix Dmapped having size 18279 × 4.

3.2.2 Feature space discretization. A regular grid was dened in the 4-D eature space,
and each data point was mapped to the nearest point in this grid. Fig 4 illustrates this proce-
dure. For creating the grid, it is useul to rst normalize the values o Dmapped to remove di-
erences in the scale o the eatures. Tus, each eature was normalized to have zero mean and
unit variance. Ten, the discretization was done by dening a scale  that sets the size o each
grid cell, and calculating

Dgrid = Dmapped  , (2)

where . represents the oor unction. As shown in Fig 4c, this operation ensures that each
value o Dgrid lies within a regular grid. Note that, as a consequence o undersampling, we
expect multiple data points to all in the same grid position; this is one o the key properties
o the method that will allow a uniorm sampling o the data. A value o  = 10 was used since
we observed that it provided a good balance between grid sparsity and variability.

Afer the eature space discretization, we generated a sparse set o points representing an
estimation o the possible values that can be obtained in the eature space. We call this set the
sampling set o the eature space. Tis procedure works as ollows. A 4-dimensional discrete
hypersphere S with radius r (in grid units) centered on each data point is dened. Tis hyper-
sphere is translated to each data point position. Te union o the calculated hypersphere posi-
tions o all points denes the sampling set Dsset. Te general appearance o Dsset is depicted by
the blue points o Fig 5. Te hypersphere radius used or creating the VessMAP dataset was
r = 4.

Fig 4. Representation o the mapping procedure applied to a setD o samples, ollowed by the eature space discretization. (a) Set D contains blood vessel
images. (b) Each image o D is mapped to a 4-D position in the new eature space. Here, the space is represented in 2-D or ease o visualization. (c) Te mapped
points (light-red points) are moved to a new position (red points) within a regular grid dened by Eq 2.

https://doi.org/10.1371/journal.pone.0322048.g004
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Fig 5. Illustration o the proposed sampling protocol. k random points (green dots) are drawn rom the sampling
set Dsset (blue dots). Te subset o sampled data points is dened by the data points that are closest to each drawn
point (orange stars). Red squares represent the remaining data points that were not selected.

https://doi.org/10.1371/journal.pone.0322048.g005

3.2.3 Uniorm selection o points. Te nal step o the method is to select the samples
to be manually annotated. Te samples are selected by rst drawing a set o points rom the
sampling set Dsset. As illustrated in Fig 5, we draw rom Dsset k points with uniorm probabil-
ity (green dots in Fig 5). For each point drawn, the closest data sample is identied using the
Euclidean distance. I the same data sample is obtained more than once, a new point is drawn
rom Dsset until k unique data samples are obtained. Te nal set o data samples (orange stars
in Fig 5) is represented as Dsampled.

A uniorm sampling o Dsset allows the selection o prototypical and atypical samples rom
the dataset with equal probability. Nevertheless, a single realization o the sampling may lead
to distortions, such as the selection o many samples at similar regions o the space or the cre-
ation o large regions with no samples selected. Tis is due to random uctuations in the sam-
pling process. o amend this, we dene a metric called Farthest Unselected Point (FUS) that
punishes sampled subsets with large gaps between the selected points.

Let Dsampled be the set o sampled data points rom Dgrid, and ¬Dsampled the set o points
rom Dgrid that were not selected in the sampled subset. For each data point in ¬Dsampled, the
Euclidean distance to the closest point in Dsampled is obtained. Te FUS metric is dened as the
largest calculated distance among all points in ¬Dsampled. Sampled subsets leading to low val-
ues o the FUS metric should be preerred since it avoids the creation o large regions o the
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eature space with no samples. In our experiments, we ound that minimizing FUS or 1000
dierent subsets covered a good amount o subset possibilities.

We decided to select k = 100 images or annotation. Also, to avoid data leakage, an addi-
tional restriction that prevented the selection o samples rom the same image was used.

4 Results

4.1 Dataset heterogeneity
Te sampling approach used to generate the VessMAP dataset should lead to a heterogeneous
set o samples. It is dicult to properly measure the heterogeneity o the dataset because it
would involve the estimation o the probability density unction o the original data, which is
not a trivial task and can be inuenced by the choice o parameter values. However, it is clear
that the method should naturally lead to a uniorm selection o the samples. Tis is so because
the set Dgrid (dened in Sect 3.2.2) represents an estimation o the domain o the probability
density unction o the data, and this domain is sampled uniormly.

One approach to illustrate the characteristics o the sampled images is displayed in Fig 6,
which shows histograms o the our considered eatures or both the ull dataset and the sam-
pled subset. Te histograms o individual eatures are not expected to be uniorm since they
represent a projection o the original data into one dimension. Still, it can be seen that the
histograms o the sampled set tend to represent a slightly attened version o the histograms

Fig 6. Histograms o the our eatures calculated rom the base dataset and the sampled subset. Blue bars cor-
respond to the distribution o each metric o the base dataset o cortex images. Orange bars correspond to the
distribution o the sampled subset. Note that the requencies were normalized by their sum so the y-axis matches or
all plots.

https://doi.org/10.1371/journal.pone.0322048.g006
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o the original data, indicating that a larger priority is being given to atypical samples when
compared to the original distribution.

A more robust way o visually checking the sampled subset is to visualize the data using
Principal Component Analysis (PCA). Using PCA, the original 4-D data can be projected
into 2-D with optimal preservation o the variance [57]. Fig 7 shows the PCA projection o
the data. Te our plots included in the gure represent the same projection, but the points
are colored according to the dierent eatures used to characterize the images. Te selected
samples are shown in red. It can be noticed that the sampling methodology selects a subset o
images that uniormly covers the distribution o the data. Furthermore, as also suggested by
the histograms in Fig 6, the sampling was capable o covering the ull range o values o every
considered eature.

Te subset o images selected by the method (the VessMAP dataset) is shown in Fig 8.
Te subset indeed contains a heterogeneous set o images covering many dierent values o

Fig 7. PCA o the blood vessel dataset. Red points correspond to the sampled subset obtained by the sampling
methodology. Blue points correspond to unselected points rom the original dataset, with their lightness representing
the value o the our original metrics: vessel density, contrast, medial line heterogeneity, and image noise. Darker
blues correspond to larger values o the corresponding metric.

https://doi.org/10.1371/journal.pone.0322048.g007
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Fig 8. Te VessMAP dataset. All 100 samples o the dataset are shown in the gure. Te images cover a wide range
o values in the eature space dened by our our eatures. Contrast variation and vessel density are the easier eatures
to visually veriy. Te medial line heterogeneity can be veried by noticing the brightness changes along blood ves-
sels. Gaussian noise level is harder to veriy visually, but pronounced noise can be observed on some o the brighter
images. Images inside the blue and red rectangles dene, respectively, the training and validation sets or some o the
experiments described in Sect 4.2.

https://doi.org/10.1371/journal.pone.0322048.g008

the considered eatures (e.g., low contrast, high vessel density, etc). For instance, some o the
samples in the dataset come rom animals who suered hemorrhagic strokes. Tese samples
are very dierent rom the typical samples contained in the base dataset, and they would be
largely underrepresented i a sampling ollowing the data distribution was perormed.

We manually labeled each o the 100 images and made the dataset publicly available [58].
o account or inter-annotator variability, 20 samples were labeled by two annotators. Te
Dice similarity score between the two annotators is 0.8780. We identied that most disagree-
ment between annotators lies in delineating the vessel borders, resulting in mildly dier-
ent blood vessel calibers. With that in mind, we also calculated the centerline Dice (clDice)
[1] between both annotations, which provides a metric o how well the annotators agreed
about the topology o the blood vessels. A clDice o 0.9556 was obtained, indicating a good
agreement between annotators regarding the preservation o continuities and biurcations.
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As a comparison, the annotations o the DRIVE dataset’s (one o the most used blood vessel
segmentation datasets) test set have a Dice similarity o 0.7881 and a clDice o 0.7634.

Te VessMAP repository includes manually annotated binary labels, their skeletons (cal-
culated by the Palágyi-Kuba algorithm [56]), and the metrics or each sample (as described in
Sect 3.2.1)—which were calculated using the manual annotations. We veried that the met-
rics calculated rom the manual annotations have a strong correlation with the metrics cal-
culated using the labels obtained rom the semi-supervised segmentation algorithm. Tis
evidences the quality o the algorithm in providing useul metrics to map the dataset into a
eature space. We expect the VessMAP dataset to be useul or uture studies regarding the
inuence o image and tissue characteristics on the generalization capability o segmentation
algorithms.

4.2 Neural network perormance on VessMAP splits
Many current methods or semantic segmentation o biological images involve neural net-
works [59]. Convolutional Neural Networks (CNNs) have been successully used or seg-
menting biological structures or many years, especially afer the adoption o encoder/decoder
architectures, such as the original U-Net [60] and its variants [61–63]. Recently, the emer-
gence o the ransormer [64] architecture allowed remarkable perormance in tasks such
as the development o Large Language Models [65,66], speech processing [67], multimodal
learning [68], and drug discovery [69]. Regarding image processing, ransormers don’t make
assumptions about the relationship between the pixels o an image. Tis lack o inductive bias
makes it harder to train a model rom scratch in scenarios o scarce data, and it is usually nec-
essary to pre-train a Vision ransormer (Vi) [70] in large datasets such as ImageNet [71].
Since we aim to evaluate the VessMAP perormance using small training sets, we chose to use
CNNs, which tend to perorm better than Vis or medical image segmentation with limited
data [72].

o evaluate the potential o VessMAP to generate data splits that are challenging or neu-
ral networks, we generated eight dierent splits based on the eatures used or creating the
dataset: blood vessel density, contrast, medial line heterogeneity, and noise estimation. For
each eature, we selected 20 o the samples with the lowest and highest values and trained a
segmentation CNN using two congurations: (i) training with samples that have the lowest
eature values –lowest split– and evaluating with samples that have the highest eature val-
ues –highest split–, and (ii) training with the highest split and evaluating with the lowest split.
We chose to use 20 images because it is a similar number to common split sizes used or well-
known blood vessel datasets, such as DRIVE [13], SARE [14], and CHASEDB1 [73]. Te
idea behind this experiment is to test whether we can use VessMAP to generate splits that
challenge the generalization capability o CNNs.

For this experiment, we used the CNN architecture illustrated in Fig 9. Tis architecture
encodes the input data through a series o residual blocks [74], concatenates the resulted ea-
ture vector with the activations rom the rst convolution operation (similar to a U-Net [60]),
and decodes the eature vector with a single residual block. For each training/evaluation split,
we trained the network or 1000 epochs. Te training was carried out using the Cross-Entropy
as the loss unction, the Adam optimizer [75], and a polynomial learning rate scheduler
(power = 0.9)—which decays the initial learning rate (0.01) almost linearly.

Fig 10 presents the loss curves o the eight training setups (two split congurations or each
metric). We evaluate the distance between the training and validation loss curves, , as a met-
ric o how well the CNN generalized or out-o-distribution data. Only the rst 200 epochs
are plotted because  did not change signicantly during the remaining epochs. We dene 
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Fig 9. CNN architecture used to evaluate the training perormance o different VessMAP splits. Te input data go
through a convolution layer with 64 7× 7 kernels. 8 residual blocks are then applied, with the rst one having stride
2 to downsample the activations. Te nal eature map o the encoder is concatenated with the activations rom the
rst convolution layer and decoded by a single residual block. A nal convolution layer generates the segmentation.
Te convolutions are padded to ensure no resolution loss afer each operation.

https://doi.org/10.1371/journal.pone.0322048.g009

as the dierence between the training loss and the validation loss at a specic epoch. It is also
worth noting that the loss curves were smoothed using an exponentially weighted moving
average in order to reduce the natural variance o the loss values and obtain a more precise 
value. Here, we calculate  at epoch 150.

For the splits using the contrast eature, when training with samples having low contrast
(Fig 10b), the network generalizes well or new data having high contrast. Tis behavior can
be attributed to the act that high-contrast images are less challenging and, i the network
learns how to properly segment low-contrast images, it tends to handle well high-contrast
images. Te opposite behavior occurs when we invert the training and validation sets. When
training with high-contrast images (Fig 10a), the CNN could not generalize towards low-
contrast data, yielding a negative . Te same behavior can be observed or the blood vessel
density splits. Notice that a negative  indicates that using specically low-density samples as
the training set yields low generalization towards more dense images. Te exact opposite hap-
pens when training with denser samples. It can also be noticed that the training splits using
the highest noise and medial line heterogeneity values resulted in similar training and vali-
dation loss curves. Tis indicates that, although these splits are unbalanced regarding eature
values, the samples are still diverse enough to allow good generalization. Te results o the
experiments with dierent splits are summarized in able 2.

Considering that the VessMAP images are diverse, another approach or generating chal-
lenging training and validation splits is to select samples that are ar apart in the eature space.
o do so, it is rst necessary to identiy a distance threshold above which the training and val-
idation sets can be considered to be adequately separated in the eature space. We calculated
this threshold by generating 10000 random splits o 20 training and validation images and
obtaining the smallest Euclidean distance between all pairs o points o the two sets or each
split. Ten, we analyzed the histogram o the calculated distances and considered that two
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Fig 10. raining and validation loss curves or eight different splits that were generated using the VessMAPmetadata. In (a), we depict the results obtained
by training a CNN with the 20 samples having the highest values o each considered metric (indicated above each plot) and validating with the 20 images having
the lowest values o the metric. Te opposite situation is presented in (b), i.e., the samples having the lowest values o the metrics were used or training, and
the models were validated on the samples having the largest values o each metric. From lef to right, each column shows the result or each considered metric:
contrast, noise, density, and medial line heterogeneity. Negative  values indicate that the CNN does not generalize well to the validation data. Positive  values
indicate that the validation samples are easier to segment than the training samples.

https://doi.org/10.1371/journal.pone.0322048.g010

able 2.  values or the experiments with different splits generated using the VessMAPmetadata. Each experi-
ment name depicts the eature used to split the dataset, ollowed by (h) i the training set had the largest values o
the eature or (l) i the training set had the lowest values. Negative  values suggest poor generalization and were
marked as bold. *Skel. het: skeleton heterogeneity.
Experiment rain loss Valid loss 
Contrast (h) 0.2853 0.5359 –0.2507
Contrast (l) 0.3831 0.1661 0.2107
Density (h) 0.3652 0.2309 0.1343
Density (l) 0.2610 0.5575 –0.2966
Noise (h) 0.2717 0.2535 0.0182
Noise (l) 0.3710 0.2243 0.1467
Skel. het. (h) 0.2934 0.2992 –0.0057
Skel het. (l) 0.3696 0.2514 0.1182

https://doi.org/10.1371/journal.pone.0322048.t002

sets are ar apart i their distance is larger than a threshold o t = 0.7, which corresponded to
approximately 2.4% o the randomly drawn splits.

One o the identied splits containing highly distinct samples is highlighted in blue and
red in Fig 8. By using the same CNN and hyperparameters as the previous experiments, an
average validation Dice score [76] o 0.824± 0.008 was obtained or 100 training runs using
the identied split. When the training and validation sets were swapped, a Dice score o
0.892± 0.006 was obtained. Tis result is in agreement with our previous experiment depicted
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in Fig 10, as the images o the training set present high contrast, low density, and low medial
line heterogeneity.

For reerence, we ran a similar experiment on the retinography images rom the DRIVE,
SARE, and CHASEDB1 datasets. For the DRIVE dataset, a Dice o 0.803± 0.002 was
obtained using the ocial split o the dataset, and a Dice o 0.791± 0.003 was obtained when
the training and validation sets were swapped. Since the SARE dataset does not have an o-
cial training and validation split, we trained the network or 100 randomly drawn splits and
calculated the average perormance dierence between each split and its swapped counter-
part. An average Dice dierence o 0.029± 0.024 was obtained, with a maximum dierence
o 0.12. Tis same approach was applied to the CHASEDB1 dataset, where an average Dice
dierence o 0.01± 0.008 was obtained, with a maximum dierence o 0.03. Note that the
CHASEDB1 and DRIVE datasets got similar results regarding the perormance dierence
between splits. Te dierence in Dice values obtained or the splits o the VessMAP dataset,
0.892 – 0.824 = 0.068, was signicantly larger than the maximum values obtained or the
CHASEDB1 and DRIVE datasets.

Interestingly, our experiments show that the SARE dataset contains the split with the
largest perormance dierence among all datasets. Indeed, some samples o the SARE
dataset have very distinct appearances when compared to the typical characteristics o the
dataset. Tus, in addition to VessMAP, SARE also seems to be a suitable dataset or evalu-
ating network generalizability on blood vessel segmentation tasks. Nevertheless, the higher
number o images in VessMAP compared to SARE and the eature metadata enables the
denition o training setups with a greater number o training/validation splits.

It is worth mentioning that the Dice values obtained in our experiments with the undus
images are slightly lower than the state-o-the-art results or these datasets [77]. Tis is mainly
because no preprocessing and data augmentation were applied in order to match the training
setup applied to VessMAP.

Te heterogeneity o the VessMAP dataset is particularly useul or developing robust seg-
mentation models when the training data is scarce. o show this, we ran a series o exper-
iments using only our images or the training set. Tis replicates situations where, or
instance, an active learning method suggests a small set o images or annotation, or on inter-
active segmentation scenarios where only a small set o blood vessels might be annotated. A
neural network was trained on 4 randomly selected samples rom the VessMAP dataset and
the perormance was measured on the remaining 96 samples. Te same process was repeated
100 times using dierent sets o samples. o show that the overall results o our analyses are
not dependent on a specic network architecture or training parameters, we replicated the
same model and training approach used in [78]. Specically, the 3,8 U-Net model contain-
ing 6 convolution layers in the encoder was used. Te training protocol was also replicated
with the exception o the cyclical learning rate scheduler, which was replaced by a polynomial
scheduler. Te batch size was also changed rom 4 to 2 since the training set has only our
samples.

For each image o the dataset, we measured the Dice scores obtained or trainings runs
in which the image was not included in the training set. Te result or all images is shown in
Fig 11a. It is clear that, or most images, the samples used or training the network have a large
inuence on the quality o the segmentation. Te training set can lead to either very good
segmentations or to segmentations that are o very poor quality.

For comparison, we repeated the same experiments or the DRIVE, SARE, and
CHASEDB1 datasets. Te results are shown in Fig 11b–11d. Te variation observed or these
datasets is much smaller compared to the VessMAP dataset. Tat is, our training samples
are usually enough to obtain good and robust perormance on the remaining samples. Tus,
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Fig 11. Segmentation perormance or all images o the datasets used in the experiments. Each vertical box represents the distribution o Dice scores obtained
or a sample across 100 training runs. Te bottom and top o each box represent, respectively, the rst (q1) and third (q3) quartiles o the data. Te horizontal
green line indicates the median and the whiskers indicate the range [q1 – 1.5(q3 – q1), q3 + 1.5(q3 – q1)]. Te results are shown or the (a) VessMAP, (b) DRIVE,
(c) SARE, and (d) CHASEDB1 datasets.

https://doi.org/10.1371/journal.pone.0322048.g011

methods developed to work on scarce data annotation regimes might trivially result in good,
low-biased perormance when tested on these datasets. Te same trend was observed or the
area under the ROC curve (AUC) and average precision perormance metrics (S1 Fig and S2
Fig o the supporting inormation).

o quantiy the perormance variation observed, the dierence between the highest and
lowest Dice score obtained or each sample was calculated. Te average dierence or all sam-
ples was then calculated or each dataset. Te values are shown in able 3 and conrm the
high perormance variations observed or VessMAP.

In Fig 12 we show example segmentations obtained or the sample having the median stan-
dard deviation o Dice scores among all runs, that is, a sample with a typical variation o Dice
scores observed in the dataset. Te training set can lead to many missing blood vessels, to an
oversegmentation o the vessels, to the presence o spurious holes as well as to discontinuities
on the vessels. For many other samples, we also observed a large number o alse positives.
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able 3. Influence o the training set on the generalizability o a model. For each dataset, models were trained
on 100 different training sets containing 4 images each and were validated on the remaining images. Te differ-
ence between the maximum and minimumDice scores obtained or each sample across all runs was calculated
and averaged over all samples. Te standard deviation o the differences is also shown to provide a reerence
regarding the degree o variation observed among samples.
Dataset Average Dice difference Std. dev. Dice difference
VessMAP 0.55 0.19
DRIVE 0.13 0.13
SARE 0.29 0.18
CHASEDB1 0.11 0.06

https://doi.org/10.1371/journal.pone.0322048.t003

Fig 12. Example segmentations obtained or sample 6818 o the VessMAP dataset. Te original image and manual annotation are shown at the upper lef
corner. Te remaining panels show the training set used to train a neural network and the respective segmentation obtained or the sample. Te respective Dice
scores are shown above each segmentation.

https://doi.org/10.1371/journal.pone.0322048.g012

With these analyses, we suggest two applications o the VessMAP metadata. First, one can
generate splits that challenge the generalization capacity o a neural network, yielding negative during training. Tis kind o split can be used to test or develop new approaches to handle
datasets having very distinct samples. In a similar ashion, splits that have positive  can be
used or developing new active learning methods, where it is useul to identiy challenging
samples or training networks so as to obtain low validation loss. In both situations, an ideal
model should converge the training and validation loss curves, resulting in  ≈ 0.

o aid the development o such methods, we provide ocial splits o the dataset con-
taining training sets that lead to vastly distinct inerence perormances. Te splits are shown
in able 4. For calculating the perormance o each split, each o the 100 training runs was
repeated 5 times using dierent seeds or the random number generator used during training.

5 Conclusion

Annotating appropriate images rom a larger dataset or training machine learning algorithms
is an important task. Tis is because the usual approach is to use as many images as possible.
While this approach is relevant or general classication problems, or medical image seg-
mentation, where image annotation can be very costly, the images used must be careully
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able 4. Relevant training splits o the VessMAP dataset. Each row shows the average Dice score obtained on
the remaining 96 samples when training a neural network using the our images indicated in the training set
column.Te standard deviation obtained across five repetitions o the training runs is also shown.

raining set Dice score
Split 1 4404, 11828, 16295, 7344 0.846 ± 0.007
Split 2 12943, 8493, 12618, 9284 0.800 ± 0.014
Split 3 7083, 6887, 14778, 2287 0.752 ± 0.025
Split 4 12877, 15577, 12960, 9593 0.702 ± 0.024
Split 5 8284, 9284, 11411, 9452 0.653 ± 0.008
Split 6 9710, 2643, 11111, 8196 0.589 ± 0.073

https://doi.org/10.1371/journal.pone.0322048.t004

selected in order to ensure good coverage o dierent tissue appearances and imaging vari-
ations. In addition, it is important that the annotated images do not lead to biases in down-
stream tasks related to tissue characterization. For instance, training segmentation algorithms
mostly on prototypical images can lead to incorrect measurements on samples having unusual
properties (e.g., very bright or very noisy).

We used an intuitive sampling methodology that evenly selects, as best as possible, both
typical and atypical vascular image samples or creating VessMAP, a dataset containing a het-
erogeneous set o samples representing many possible variations o image noise and contrast
as well as blood vessel density and intensity variance. One important characteristic o the
dataset is that it provides an intuitive uniorm grid in the eature space that can be used or
urther analyses. For example, one can study the accuracy o a segmentation model on dier-
ent regions o the grid to identiy regions where samples are not being correctly segmented. A
robust algorithm should provide good segmentation no matter i a sample is too noisy, bright
or dark, i it has low or high contrast, or any other variation on relevant image properties. Te
dataset is being made available together with the metadata containing the eatures used or
creating the dataset.

We showed that dierent splits o the dataset can lead to largely distinct validation peror-
mances. Te heterogeneity is particularly noticeable when training data is scarce. For many
popular blood vessel datasets, the vasculature has similar characteristics throughout all sam-
ples. Tus, while they can be used or testing novel approaches or segmenting blood vessels,
they are not ideal or quantiying the robustness o methods under small distribution shifs
regarding sample characteristics and vessel geometry. Our analyses showed that VessMAP
displays stronger appearance changes, with an average Dice score change o 0.55, depend-
ing on the samples used or training. Tis result contrasts with the average Dice score dier-
ence o 0.29 observed or the SARE dataset, the most heterogeneous dataset identied in the
experiments afer VessMAP.

One drawback o VessMAP is that the samples are relatively easy to segment. When train-
ing with more than 20 samples, the validation perormance tends to be good and has little
dependence on the training set. Tus, the useulness o the dataset lies mostly in tasks with
very limited training data. Another important consideration is that the eatures used to create
the dataset are not necessarily related to the underlying conditions aecting the tissue sam-
ples (e.g., wild type, mutations, stroke, development stage) or to the acquisition process o
the samples. Tus, obtaining good perormance on the VessMAP dataset is important but not
sucient to conclude that a model is not biased on downstream tasks.

We expect that the dataset will be useul or studies regarding data distribution shifs as
well as ew-shot, interactive segmentation and active learning methods. We suggest two spe-
cic applications. Observing the ocial splits shown in able 4, it is clear that among the
100 samples, training on samples 4404, 11828, 16295, and 7344 (split 1) led to robust mod-
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els displaying good segmentation accuracy on the remaining samples (Dice score o 0.846).
Te same is not true or most o the other samples in the dataset. An active learning method
should be able to automatically identiy these our samples since they lead to a very low anno-
tation eort to segment the whole dataset with good accuracy.

Another interesting application is the automatic identication o segmentation mistakes.
A common scenario in real applications is the ollowing. A new dataset is provided and needs
to be segmented or downstream analyses. Since manually annotating blood vessel samples
is time-consuming, only a raction o the samples are manually annotated. A segmentation
model is then trained on the annotated samples and applied to the remaining images. But how
do we veriy that the annotated samples were enough to provide good accuracy on down-
stream analyses or the remaining data? Looking back at able 4, i the manually annotated
samples are those o split 6, the perormance o the model is known to be poor (Dice score
o 0.589). Tus, one can develop additional heuristics to identiy where the model is making
mistakes. For instance, an interesting prospect is to analyze the topology o the vasculature
and automatically identiy missing segments, spurious branches and unrealistic connectiv-
ity patterns. Te ocial splits o the VessMAP dataset allow a systematic comparison between
methods developed by dierent research groups.

Interestingly, the splits in able 4 represent dierent degrees o dicult or such meth-
ods. Split 6, with a Dice score o 0.589, should lead to clearly unrealistic connectivity patterns.
However, the dierence between splits 1 and 2 is likely more subtle, and automatically identi-
ying segmentation mistakes in split 2 that are not on split 1 should be more challenging.

Te VessMAP dataset might also be used or testing the perormance o more general
methods that were not developed specically or segmenting blood vessels. Many large-scale
biomedical datasets have been created in recent years [79–83]. Fluorescence microscopy sam-
ples are relatively uncommon in such datasets. Tus, the VessMAP dataset can be useul as an
additional imaging modality or quantiying the perormance o general methods.

Supporting information

S1 Fig. Segmentation perormance or all images o the datasets used in the experiments.
Each vertical box represents the distribution o the area under the ROC curve obtained or a
sample across 100 training runs. Te bottom and top o each box represent, respectively, the
rst (q1) and third (q3) quartiles o the data. Te horizontal green line indicates the median
and the whiskers indicate the range [q1 – 1.5(q3 – q1), q3 + 1.5(q3 – q1)]. Te results are shown
or the (a) VessMAP, (b) DRIVE, (c) SARE, and (d) CHASEDB1 datasets.
(PDF)

S2 Fig. Segmentation perormance or all images o the datasets used in the experiments.
Each vertical box represents the average precision obtained or a sample across 100 training
runs. Te values were calculated as the average precision obtained when setting the decision
threshold to each unique probability value. Te bottom and top o each box represent, respec-
tively, the rst (q1) and third (q3) quartiles o the data. Te horizontal green line indicates the
median and the whiskers indicate the range [q1 – 1.5(q3 –q1), q3 +1.5(q3 –q1)]. Te results are
shown or the (a) VessMAP, (b) DRIVE, (c) SARE, and (d) CHASEDB1 datasets.
(PDF)
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