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Abstract Two parametrically-induced phenomena are
addressed in the context of a double pendulum sub-
ject to a vertical base excitation. First, the paramet-
ric resonances that cause the stable downward vertical
equilibrium to bifurcate into large-amplitude periodic
solutions are investigated extensively. Then the sta-
bilization of the unstable upward equilibrium states
through the parametric action of the high-frequency
base motion is documented in the experiments and in
the simulations. It is shown that there is a region in the
plane of the excitation frequency and amplitude where
all four unstable equilibrium states can be stabilized
simultaneously in the double pendulum.

The parametric resonances of the two modes of the
base-excited double pendulum are studied both the-
oretically and experimentally. The transition curves
(i.e., boundaries of the dynamic instability regions)
are constructed asymptotically via the method of mul-
tiple scales including higher-order effects. The bifur-
cations characterizing the transitions from the trivial
equilibrium to the periodic solutions are computed by
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either continuation methods and or by time integration
and compared with the theoretical and experimental
results.
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1 Introduction

Parametric resonances are often encountered in me-
chanics (e.g., dynamic buckling of columns, plates
and shells, water waves in vertically forced contain-
ers, stability of general motions) and in various ar-
eas of physics. Faraday [1] was the first to observe
the phenomenon of parametric resonance in surface
waves of a fluid-filled cylinder under vertical excita-
tion which exhibited twice the period of the excitation.
Lord Rayleigh [2] provided a theoretical foundation
for interpreting the parametric resonance of strings.
Various works have dealt with the parametric res-
onance of the simple pendulum due to its paradig-
matic nature and simplicity for experimental studies.
For small-amplitude oscillations, the equation of mo-
tion reduces to Hill’s equation, 6 + [w? + ¥/116 =0,
where y is the prescribed vertical acceleration of the
pivot, 6 is the angle measured from a fixed vertical
line, and w is the natural frequency of the pendulum.
If the base excitation is harmonic, y = Y cos §2¢, this
equation is referred to as Mathieu’s equation [3, 4].

@ Springer


mailto:sartorelli@if.usp.br
mailto:walter.lacarbonara@uniroma1.it

1680

J.C. Sartorelli, W. Lacarbonara

The associated instability regions emanate from the
critical frequencies £2 = 37“” m=1,2,...,onthe £2-
axis in the (£2, Y)-plane. The first instability region for
m = 1, which emanates from £2 = 2w, is the principal
parametric resonance. The second instability region,
for m =2, corresponds to £2 = w, and is referred to as
parametric resonance. The other regions correspond
to higher-order resonances, such as £2 = %a), %w, %a),
etc., and thus accumulate on the origin of the fre-
quency axis at £2 =0 as m goes to co.

Some features of the chaotic dynamics of the sin-
gle pendulum were discussed in [5, 6], while [7] and
[8] addressed the forced double pendulum and the
triple pendulum, respectively. For small forcing am-
plitudes, there are many theoretical studies dealing
with parametric resonances in the planar double pen-
dulum [9-13]. In particular, El-Bassiouny [12] em-
ployed the method of multiple scales to study the prin-
cipal parametric resonance of both in-phase and out-
of-phase modes of a double pendulum. He found that
each mode has a single-valued curve and there ex-
ist multi-valued zones upon varying some parameters.
Both modes can lose their stability.

Experimental studies about double pendulums have
considered several different geometric configurations
as well as forcing conditions. An orthogonal pendu-
lum whose lower arm oscillates in a plane orthogonal
to that of the upper arm was considered in [14], while
[15] addressed the transition from planar to orthogo-
nal configurations. Studies of the motions of a double
pendulum, excited by the rotation of the lower arm at-
tached through a dc motor to the end of the upper arm,
were presented in [16]. Liang and Feeny [17] inves-
tigated the parametric identification of a chaotic sys-
tem represented by a double pendulum. They extracted
the unstable periodic orbits from recorded experimen-
tal data which were then used within an identification
process based on the harmonic balance method.

The effects of follower forces in inverted double
pendulums (with rotational springs and dashpots be-
tween the arms), subject to base excitations, have been
studied in depth. Jensen [18] investigated the effects
of small-amplitude resonant high-frequency excitation
on the linear stability and nonlinear behavior of the
pendulum by using the method of direct partition of
motion due to Blekhman [19]. He showed that the sup-
port excitation has a stabilizing effect for most system
parameters but can also destabilize the upright pendu-
lum position, supercritical bifurcations may turn into
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subcritical bifurcations and chaotic behaviors of the
pendulum exist for a wide range of system parame-
ters and initial conditions. In a similar system, Yu and
Bi [20] used normal form and bifurcation theory to
find closed-form solutions for equilibria, periodic and
quasi-periodic motions.

Existence, bifurcations, and stability of high-freq-
uency periodic motions of a double pendulum were
studied in [21]. The linear stability analysis of the four
equilibria was carried out for generic geometries, al-
though when the two arms are identical the stability
problem could be studied in the full nonlinear set-
ting. A rigorous nonlinear analysis of the existence
and stability of periodic motions of the mathematical
pendulum—under various horizontal and oblique mo-
tions of the suspension point—can be found in [22].
For the case of vertical base excitations at an arbi-
trary frequency and amplitude, a stability analysis of
the equilibria of the double pendulum was carried out
in [23]. Along the same lines, a large body of works
has addressed high-frequency parametric excitations
[3, 19].

In the present work, we first aim to study the para-
metric instability regions via the method of multiple
scales—previously employed in the context of vari-
ous parametric resonances of two-degree-of-freedom
systems and cantilever beams [24, 25]. This effort fol-
lows along the lines of recent investigations [26]. Sec-
ondly, we aim to study numerically and experimen-
tally (i) the onset of the parametric instability for both
modes, (ii) the post-critical motions and the underly-
ing bifurcations, and (iii) the possibility of stabiliza-
tion of all unstable equilibria via the high-frequency
parametric excitation phenomenon.

The investigated parametrically excited double
pendulum has two arms of about the same length, al-
though arm 1 is heavier than arm 2 (m| ~ 3.5m>). The
frequencies of the two modes are f; = 1.44 Hz (in-
phase mode) and f, = 2.42 Hz (out-of-phase mode).
The equilibrium solutions are given by 6 = k;m,
where k; =0, 1,2, .... For conciseness, they will be
referred to as the four fixed points (67, 63) = (0, 0),
0, ), (7, 0), and (r, ).

When the suspension point is forced periodically
in the vertical direction by the prescribed motion
y(t) = Y cos £2t, the double pendulum dynamics ex-
hibit interesting phenomena such as the parametric
resonances of the two modes which give rise to large-
amplitude pendulations or the stabilization of all un-
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Fig. 1 Front view of the double pendulum (leff) and lateral
view (right). Parameter values: /; = 10.86 cm, m; = 18.45 g,
JP =0.7149 kg cm?, center of mass ¢ = 4.20 cm, I = 9.50 cm,
my =532g, J) =794 gcmz, 5 = 2.41 cm, handle length
L=225cm, Y™ =4 cm

stable fixed points depending on the excitation fre-
quency f = £2/(2m) and amplitude Y. The stabiliza-
tion of the upright (unstable) positions (e.g., via feed-
back control laws [27]) or the cancellation of the para-
metric resonances (e.g., via open-loop laws [28]) have
been widely investigated in the literature.

2 Theoretical analysis

The equations of motion of a double pendulum subject
to a vertical base motion y(t) (see Fig. 1) are described
by the following two ordinary differential equations
with time-varying coefficients:
J161 + 11 (g + §) sinf) + c16
+ 191162 cos(0) — 62) + 131y sin(6) — 62)63 =0,
ey
]féz + If(g + y)sinf, + C2é2
+ I§116) cos(8) — 62) — I sin(0) — 62)07 =0
@)

where 67 and 6, are the angles of the upper and
lower arms, respectively, measured from a fixed ver-

tical line (taken positive when they are counterclock-
wise); the overdot indicates differentiation with re-
spect to time. The system parameters are expressed as:
Jyi=J7 —l—mzl]z, IR :=mil;, I := 17 + lymy, where
mg, Ig, If, JP (i =1,2) denote the masses, the arm
lengths, the distances of the center of mass of the kth
arm from Oy, and the moments of inertia about Oy
(see Fig. 1 for the parameter values of the experimen-
tal setup). (Ix, Jx) represent first- and second-order
mass moments of inertia of the kth arm. Equations of
motion (1) and (2) describe a double pendulum with
generic nonuniform mass properties of the arms as in
many practical applications. Equations of motion (1)
and (2) were obtained by applying Euler-Lagrange’s
equations to the system Lagrangian and employing the
Rayleigh dissipation function to incorporate the non-
conservative linear damping forces. The equations of
motion exhibit inertia nonlinearities together with the
base-excitation-related multiplicative terms featuring
nonlinear coupling of the base motion with the motion
of the pendulum arms.

We nondimensionalize time as t* = w.f, with
a)g =g/l and | :=1; + I, where the superscript star
indicates nondimensional variables, g is the gravity
acceleration. Thus w, has the meaning of circular fre-
quency of a simple pendulum with length equal to the
sum of the lengths of the two arms. The following
nondimensional parameters are accordingly defined:
oa:=nL1/J, B:=11/J1, p:=J7/J1,8:=11/]. The
nondimensional amplitude and frequency of the pre-
scribed periodic base motion, y(#) = Y cos §2¢, are
Y*:=Y/l and 2* := 2 /w,, respectively. The equa-
tions of motion in nondimensional form thus become

b1 + [l + 30 ]sin6r + &6y

+ B86 cos(0) — 62) + B8 sin(0; — 62)63 =0, (3)
pb + B[1+ ¥(1)]sin6 + £260)

+ B861 cos(0) — 62) — B sin(0) — 62)67 =0, (4)

where & := (cx/J1)+/1/g are nondimensional damp-
ing coefficients and the stars were dropped for the sake
of notational simplicity. Thus the double pendulum,
without damping, is governed by the following four
independent parameters: («, 8, 6, p).

Without the forcing term, under the mere action of
gravity, the double pendulum exhibits four equilibria
(fixed points), namely (67, 65) = (0, 0), (0, ), (7, 0),
(m, ), of which only (0, 0) is stable (marginally or
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asymptotically depending on the absence or presence
of damping). The double pendulum possesses two vi-
bration modes about the stable equilibrium (0, 0) of
which the lowest represents the in-phase mode while
the second is the out-of-phase mode. The frequen-
cies and eigenvectors associated with these modes are
given by

\/ ap + B F Va2p? +4ap382 — 2afp + B2
W12 =4/ —

28257 —2p ’

®)

upy = |::t\/a2p2 +4aB382 —2aBp + BZ Fap + /3’ I]T,
’ 205

(6)

where T indicates the transpose. The eigenvectors
w; = [01,6,]" are then normalized according to u,j—
Mu; = 1 and the normalized components are denoted
by ux1 and ug2, respectively.

The physical parameters of the double pendulum
used for the experiments are: /1 = 10.865 cm, I, =
9.5cm, my = 18.45 x 1073 kg, mr = 5.32 x 1073 kg,
1§ =420 cm, IS =241 cm, JP = 0.71431 kgem?,
J3 =0.07940 kg cm?. The gravity acceleration (mea-
sured in Sdo Paulo) is g = 9.78 m/s”. The corre-
sponding nondimensional parameters are given by p =
0.0592, @ =2.053, B =0.1945, and § = 0.5335. Due
to the uncertainty inherent in the level of dissipation
(due to dry friction in the hinges of the pivot points and
air drag), three values of the damping coefficients are
considered: c; = ¢ = (0.015, 0.15, 0.5) kg cmz/s.
The corresponding nondimensional damping coef-
ficients are & = & = (0.161, 1.61, 5.37) x 1072
while the associated modal damping factors are i :=
&/ Qwyr) = (0.06,0.62,2.05) % for mode 1 and
(0.037,0.37, 1.22) % for mode 2, respectively.

The frequencies of the two modes calculated ac-
cording to (5) are 1.44 Hz and 2.42 Hz, respectively.
Due to the fact that the arms are not uniform, the mo-
ments of inertia are determined using a linear system
identification technique. To this end, let us consider
the equation of a single pendulum given by

Tk +myllgsinfp =0 (7

whose period of small oscillations is given by
Ty :2n,/]k/(mkl,$g). 8)
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By measuring the position of the center of mass (/)
and the oscillation period (7%), the moment of inertia
Ji can be determined solving (8).

When the frequency of the base excitation 2 is
close to twice the natural frequency of one of the two
pendulum modes, the pendulum can undergo a prin-
cipal parametric instability. An asymptotic treatment
by the method of multiple scales is presented next.
Closed-form expressions of the transition curves in the
parameter plane ( f, Y) are obtained for different levels
of damping.

2.1 Perturbation analysis

Uniform asymptotic expansions of the resonant peri-
odic motions by the method of multiple scales [29] are
sought when £2 >~ 2wy, k = 1,2. To this end, we in-
troduce a small nondimensional bookkeeping param-
eter ¢ and rescale the nondimensional damping coef-
ficient and the base excitation amplitude as €2&; and
€2Y. The equations of motion are then expanded in
Taylor series about (01, 91 , 6o, 92) =(0,0,0,0) up to
fifth polynomial degree thus obtaining

01 + B8O + ab) + €2£101 + 2ay ()6,

1 .
— call+Eq0]6) + po6r — 02)63
1 2 92\j 2)
-5 B3(67 + 63)6: + B861626>
1 " 1 -
+ —BS(0F + 03)d, + ~ 502026
24 4
1 | ;
- gﬂa(eleg +6762)6 + 5,35(91292 —0163)63

1 3 3\p2 1 5
+ 2B3(63 —67)63 + 55067 =0, ©)

pbh + P86 + POr + €2526, + €2 By (1)62

1 . . .
— 536361 + BS616261 + p3(62 — 01)67

1 1 "
- B+ 2q(0]63 + ﬂ,95(914 + 636y

1 3 1 2,05 1 3w
- 6,3691@91 + 1/3891 0501 — 6ﬂ59i 6,01

— L8303 +07)8} + 3 3(0103 — 070,)67

1

5
=0. 1
0P =0 (10)

+
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To treat (9) and (10) by the method of multiple
scales [29], we introduce the time scales ty :=¢, tr :=
&2t, 14 := ¢*. The time scale fy accounts for the
rapidly varying part of the motion (occurring at the
natural frequencies) and the stretched time scales #»
and #4 account for the slowly-varying part of the mo-
tion. We introduce only three time scales because we
terminate the perturbation procedure at fifth order. A
one-term expansion is obtained by carrying out the
analysis up to the cubic order where the solvability
condition gives the modulation equations. A two-term
expansion is obtained by carrying out the analysis up
to the quintic order.

Provided that the data are sufficiently smooth, we
seek asymptotic expansions of the solutions in the
form

5

Ok(t, ) ~ Y Ok j(t, 12, 1a)e! (11

j=1

where the functions 6 ;(to,1,14) are to be deter-
mined. Thus

d
i [Do +&*Ds +&*D4],
i (12)

d 2 2 4 2
T [DG +2¢*DoDy + &* (2D D4 + D3) |
where D, () := d(-)/dt,. To express the closeness of
the resonance condition, we let 2 = 2wy + &2 and
account for the fact that, to within second order, the
base acceleration is expressed as

y= [D% + 282D0D2]%Y[€i(2wklo+)‘t2) + cc]
= —4ka(a)k + 82)\.) % (eim" + cc). (13)

The perturbation at the nth order (with n odd and
such that n < 5) is obtained substituting (11) and (12)
into the equations of motion (9) and (10) and collect-
ing terms of like powers of &”. The problem at O(e) is
the linearized eigenvalue problem. Since we seek the
expansion of the principal parametric resonance of the
kth mode, the generating solution is taken in the form

[01,1,012]" = ug (Age™ ™ + cc) (14)

where A (t2,14) is the complex-valued amplitude of
the motion and cc indicates the complex conjugate of
the preceding term. We then substitute (14) into the

problem at third order whose solvability, by the Fred-
holm Alternative Theorem, yields the complex-valued
modulation equation

1 - .
D2Ak=—§pck Ak—i-iFkA]%Ak—}—iYAkAkelMZ (15)
where (ug, Ik, Ay) are given by

2 2
Mk = glukl +€2uk2,

) 5 (16)
Ak = —ox (augy + upy).
T = — (aug; + Buiy)/ (dox)
+ Béwy [ukzu,%] — 2“%2“%1 + uizukl]. (17)

The coefficients (I}, Ay) are known as the effective
nonlinearity coefficient (i.e., it regulates the bending
of the backbone of the pendulum mode [29]) and ef-
fective parametric resonance coefficient, respectively.

If the perturbation is arrested at this order, by
considering A = ¢2DA and introducing the polar
form for the complex-valued amplitude A as A =
%a exp(i¢/2) exp(iAty) into the solvability condition
(15), we obtain the coupled ordinary-differential equa-
tions that govern the slow time-evolution of the ampli-
tude and phase as

1
d:—i,uka—i—/\ka sin ¢, (18)

1
¢=—,\+§rka2+2mk cos . (19)

The amplitude and phase of the 2-periodic solutions
emanating from the parametric instability are solutions
of @ =0 and ¢ = 0. The equation relating the ampli-
tude of the motion a, the base excitation Y, and the
bifurcation parameter A is obtained in the form:

1
A= Erkaz +/4Y2A2 — 2. (20)

Equation (20) can be expressed in terms of the fre-
quency as

1
Q(e) = 2wy + 82|:§Fka2 +./4Y2 A2 — M,}]. (21)

The bifurcation equation (20) implies that the para-
metric instability is initiated only if the base excitation
amplitude Y is such that the argument of the square
root is positive, that is, ¥ > Y where Y is the criti-
cal amplitude for the onset of the instability in the kth
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Fig. 2 Principal parametric 2.5
instability regions of the

double pendulum with

l] =10.865 cm, lz =95

cm,m; =18.45 g,

my=5.32¢g,1{=420cm,

I5=2.41cm,

JP=714.31 g cm?, 1.5+
J§ =179.405 gcm?,
¢l =cy=c™, with
D =15 gem?/s,
c¢® =150 gem?/s,
¢® =500 gcm?/s

Y [cm]

0.5 —

mode:

o Mk _ E1ug, +&up, 22)
$T2AM T 2wp (e, + Buly)

An explicit expression for the local approximation
of the transition curves around the tip can be obtained
from (20) by putting a = 0, solving for Y, and ex-
panding the resulting formula about A = 0. When the
pendulum is fully undamped (i.e., ux = 0), the tran-
sition curves are obtained from (20) in the form £ =
2wy 22Y Ay. Consequently, the transition curve em-
anates directly from the §2-axis at 2 = 2wy.

We further carry out the perturbation analysis to the
fifth order so as to extend the range of validity of the
formulas for the transition curves to higher excitations
away from the exact resonance frequency tuning con-
dition, 2 = 2w. To this end, after enforcing the solv-
ability of the third-order problem, the particular so-
lution at third order is found and substituted into the
fifth-order problem. The solvability condition at fifth
order, yielding D4A, is combined with the condition
at third order to obtain the time rate of change of A
according to the method of reconstitution by which
A=¢2DyA + e*D4A. The complex-valued equation
is then transformed in real form in terms of the am-
plitude a and phase ¢, and the fixed points of a =0
and ¢ = 0 are thus determined. The conducted analy-
sis yields a truly two-term expansion of the pendulum
resonant motion featuring linear and cubic nonlinear
terms.
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Figure 2 shows the theoretically obtained transition
curves for three values of the damping coefficients.
As expected, the threshold amplitudes of the excita-
tion for the onset of the instabilities increase with the
damping coefficients. Secondly, the instability region
of the out-of-phase mode is significantly wider than
that of the in-phase mode; its widening is such that
these regions intersect at frequencies slightly higher
than twice the natural frequency of the in-phase mode.
Figure 3 shows the comparison between the transition
curve obtained via the perturbation approach with that
obtained by the Matlab-based numerical continuation
package COCO [30]. In spite of the relatively high
damping, the agreement is good.

3 Experimental and numerical investigations

The double pendulum employed in the experiments
and the associated physical parameter values are por-
trayed in Fig. 1. Arm 1 consists of two aluminum
tubes of diameter d = 3 mm attached to phenolic
resin blocks. Each phenolic block houses a bearing
of 8§ mm/4 mm external/internal diameter forming the
pivot joints at O; and O;. Transversal aluminum ele-
ments connect the two tubes in arm 1. Arm 2 is a single
aluminum tube attached to a single phenolic block that
houses two bearings with external and internal diame-
ters equal to 6 and 3 mm, respectively.

Pivot O is attached to a cart sliding in a trail whose
periodic motion is given by a crankshaft wheel. First,
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Fig. 3 Principal parametric 1.75
instability regions of the
double pendulum when 1
c1 = ¢y = ¢®: comparison 150
between the perturbation :
results (thin line) and the |
numerical continuation
results (thick line) 1.25+
El
g J
” 1.0 4
0.75+
0.5 \ \ \ \ \
1 3 £ [F7] 5 6 7 8

the excitation amplitude is fixed to its selected value,
subsequently measurements are taken so as to change
the dc motor speed through digital inputs from the
data acquisition system. If Y denotes the radius of the
crankshaft wheel, the position of the pivot point of the
pendulum is given by

y(t)=L[1- \/1 — (Y/L)?sin* ¢ (1)]
+Y[1—cosg(t)]. (23)

Differentiating it twice with respect to time, setting
2 = ¢, and letting Y/L < 1 yields the acceleration
in the form

J (1) ~ Y §2% cos 1. (24)

The range of excitation amplitude Y and frequency
f = $2/Q2mn) are restricted to [0, 4] cm and to [0, 17]
Hz, respectively.

We measured the average of the absolute value of
the angular velocity w; = 6; of arm 1 detecting the
instants of induced pulses through a transmissive opti-
cal encoder using an ADC counter at 100 ksamples/s.
The angular resolution is 27 /2500 ~ 2.5 x 1073 rad,
so |w1| = (2w /2500)/At, where At is the time in-
terval between two successive pulses. The data were
recorded after waiting a minimum time of 10 s subse-
quent to a forcing frequency change (i.e., increment or
decrement depending on the sweeping direction).

In Fig. 4 we show the experimental results for
the transition curves of the in-phase and out-of-phase

modes. The curves were obtained by a forward sweep
of the forcing frequency (triangles) followed by a
backward sweep (upside down triangles). The loss
of stability is encountered at the threshold amplitude
Yiin ~ 0.7 cm.

The transition curves were also obtained employ-
ing the Floquet theory [31] by assuming 6x(¢) in the
form 6, = e* cos(£2/2t + ¢x), where A is the Flo-
quet exponent, £2 is the (circular) frequency of the
base motion, and ¢ is the relative phase between
the response and the excitation. Moreover, to explore
other global phenomena such as the parametrically-
driven stabilization of the unstable upward equilib-
ria, a full numerical approach was employed resort-
ing to a direct integration of the equations of mo-
tion over a sufficiently large time span taken equal
to 2000 s. The time integration was carried out using
the variable-step Dormand-Prince algorithm with ini-
tial conditions (61(0),62(0)) = (67 + €,65 + €) and
(01(0), w2(0)) = (0,0) (e is a small perturbation of
the equilibrium state) and the observed decay of 61 (¢)
and 6, (¢). To this end, we divided the parameter plane,
f €[0,17] Hz and Y € [0, 4] cm, in a lattice of
ny X ny points suitable to capture local variations of
the transition curves.

In particular, in Fig. 4(a) the solid black line is
the transition curve without damping. Below the solid
black line, the equilibrium (0, 0) is stable; above it,
the fully developed parametric resonance can lead to
periodic solutions or other attractors. In the same fig-
ure, the transition curves obtained by the Floquet the-
ory are portrayed as a sequence of gray dots and a
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Fig. 4 Transition curves in
the (Y, f)-plane for the
in-phase and out-of-phase 34
modes. Regular triangles
(upside down triangles)
denote forward (backward)
frequency sweeps. In part
(a), squares, circles and
five-point stars indicate the
borders of the fixed points
0, ), (7,0), and (7, ),

S Floquet

respectively. The simulated — (0,0) ¢=0
curve is numerically -—- (O:TI:) )
obtained without damping = (1,0

—e— (7t,7)

(black line) as well as

through the Floguet theory 1 \é/ é\ 4 / 5 6 7 8 9 10 11 12 13 14 15 16 17

for the principal parametric

resonance (dashed gray

line). In part (b), a

zoomed-in view at various

damping levels: ¢ =0

(black line); ¢® =150

g cmz/s, (gray line),

c¢® =500 gcm?/s E

(dashed—dotted line) S ]
>

Fig. 5 Comparison
between the transition
curves obtained
theoretically (solid lines)
for three damping values
and those experimentally
measured (triangles)

Y[cm]

2 4 6 8 10 12 14

f[Hz]
solid line adjoining them. In Fig. 4(b) a close-up of the Fig. 5 the perturbation predictions for the transition
two principal parametric resonances emanating from curves with the numerical and experimental results of
f=2f1 and f =2f, is shown. By comparing in Fig. 4, the agreement can be considered reasonably
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good given the difficulty inherent in the identification
of the level of damping and the challenge associated
with the experimental detection of the exact onset of
the dynamic instability.

The experimentally obtained results for the para-
metric resonance of the in-phase mode indicate that
the critical amplitude is Y ~ 0.7 cm at the critical
frequency f ~ 2.9 Hz. On the other hand, for the
parametric resonance of the out-of-phase mode, the
critical amplitude is Y5 > Y while the critical fre-
quency is f ~ 4.8 Hz. The transition curves inter-
sectat Y™ ~1.75 cm when f™ ~3.5 Hz. Indeed these
three points in the parameter plane, (Y[, 1), (Y5, f5),
(Y™, f™), are three characteristic points of the tran-
sition curves associated with the principal parametric
resonances since they represent two local minima and
a local maximum. These points can be used for the
identification of damping in the pendulum. Therefore,
we first determined the damping coefficients ¢; = ¢
that better reproduce the transition curves having first
(YT, f7) as reference point and, subsequently, having
the value of (Y™, f™) as reference point.

In Fig. 4(b), the zoomed-in view in the parameter
plane shows that the transition curves (dashed line),
obtained with ¢ = ¢® =500 gcm?/s, reproduce well
the thresholds but deviate from the rest of the experi-
mental data. This damping coefficient corresponds to
damping ratios of 2.05 % for mode 1 and 1.22 % for
mode 2, respectively. These ratios can be regarded as
high modal damping ratios for a pendulum problem
since it is often weakly damped when the pivot is suf-
ficiently lubricated and smooth.

With ¢ = ¢® = 150 g cm?/s (damping ratios 0.62 %
for mode 1 and 0.37 % for mode 2), the gray line
shows a better description for most of the experimental
transition curves, but not at the threshold values. This
is likely due to the difficulty in capturing experimen-
tally the threshold amplitudes with sufficient accuracy.

Since the numerical simulations with ¢ = ¢® =
500 gcm?/s turn out to attenuate strongly the reso-
nances with m = 2 (i.e., 2 ~ wy) and do not de-
scribe the experimental data adequately, apart from
the threshold (Y7, f{) we refer to this case as the
high-damping case; on the other hand, ¢ = ¢® =
150 g cm?/s is referred to as the low-damping case.

The direct numerical integration for all lattice
points in the parameter plane yielded also the bound-
aries of the regions of stabilization of the three unsta-
ble fixed points, (0, ), (7, 0), and (7, 7). These sta-
bility regions are bounded, respectively, by the dashed

lines, the dashed-dotted lines, and the dotted lines in
Fig. 3(a). In the experiments, initial conditions in the
neighborhoods of the unstable equilibria were given
and the frequency was varied in the direction of the
boundary. The experimental results are represented
by the squares, circles, and stars, respectively. Most
remarkably, we observe that the stability region of
(, m) is embedded in the (7, 0)-region which, in turn,
is also embedded in the (0, )-region. Above 14 Hz,
there exists a small region represented by the hatching
in Fig. 3(a) in which all stable regions overlap, thus
all fixed points turn out to be stable. There is a large
region where no overlapping of the stability regions
exists; therein none of the fixed points can be rendered
stable by the high-frequency excitation.

3.1 Bifurcation scenarios with high damping

The bifurcations occurring across the transition curves
of the trivial state are investigated by employing a
numerical continuation package [30]. The bifurcation
diagrams portray variation of the amplitude of the
periodic orbit—here represented by 6 (¢#)—with the
frequency f. These bifurcation diagrams, obtained
for different excitation amplitudes and ¢ = ¢® =
500 g cm? /s, are shown in Fig. 6.

For the low amplitude, ¥ = 0.97 cm (Fig. 6(a)), by
decreasing the excitation frequency, the trivial solu-
tion undergoes a supercritical pitchfork at A leading
to a parametric-resonant in-phase motion which is sta-
ble up to B where a fold bifurcation is responsible for
a jump to the trivial solution. By increasing the fre-
quency, the trivial solution suffers a subcritical pitch-
fork bifurcation at C where a jump to the parametric-
resonance solution occurs. On the other hand, the triv-
ial solution undergoes supercritical pitchfork bifurca-
tions into the parametric-resonance out-of-phase mo-
tion at D and E, hence no jumps are encountered by
the parametric-resonance out-of-phase motions.

For a higher excitation, ¥ = 1.1 cm (Fig. 6(b)),
the parametric-resonance out-of-phase motion under-
goes a fold at E and a subcritical pitchfork bifurca-
tion at F. On the other hand, in Fig. 6(b), at ¥ =
1.53 cm the branches of the in-phase and out-of-
phase modes appear to be merged. To investigate
the transition between the disconnected branches and
their merging, a set of bifurcation diagrams is shown
in Fig. 6(c) for various excitation amplitudes, ¥ =
(0.97,1.1,1.5,1.5185,1.53) cm. At some threshold
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Fig. 6 Continuation-based bifurcation diagrams showing the amplitude of arm 1 vs. the excitation frequency when ¥ = (0.97, 1.1,
1.5,1.5185,1.53) cm and ¢ = ¢® =500 gcm?/s

Fig. 7 Loci of the fold 25
(dashed lines) and pitchfork
bifurcations (solid lines) T
obtained by a continuation 204
tool when
c=c® =500 gecm?/s 5
1.5
El
L.
” 1.0
0.5 -
0 T T T T T T T T T
0 2 4

value, the supercritical pitchfork of the in-phase mode
turns into a subcritical pitchfork with a simultaneous
appearance of a fold to its right. This is better ob-
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served in Fig. 6(d). The distance between the fold of
the in-phase mode (G) and that of the out-of-phase
mode (H) tends to vanish at some critical amplitude at
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Fig. 8 (a) The
experimentally obtained
(Jw1]) vs. f curves for

Y =0.75 cm.

(b) Numerical results and
(¢) continuation-based
bifurcation diagram when
Y =0.75 cm and

@ =150 gcm?/s

which they collide and the branches become a single-
connected branch. The full picture in terms of insta-
bility regions can be gained if a continuation of the
pitchfork and fold bifurcations is carried out. Figure 7
shows that the nonlinearity plays a major role in de-
termining the multi-stable region between the loci of
fold bifurcations (dashed lines) and those of pitchfork
bifurcations (solid lines).

3.2 Bifurcation scenarios with low damping

The parameter plane presented in Fig. 3 shows that the
experimental data are better described when we con-
sider the weaker damping value of ¢® = 150 gcm?/s
which corresponds to modal damping ratios equal to
0.62 % for mode 1 and 0.37 % for mode 2, respec-
tively. To characterize the loss of stability of the triv-
ial solution for some fixed values of Y, we recorded
the average of the absolute value of the angular ve-
locity w1 (arm 1) in forward and backward frequency

1
T T T T T T

35 4 45 5 55 6 6.5
f[Hz]

sweeps. The average angular velocity (Jw;|) was ob-
tained considering the last 5 % portion of the time his-
tory (with a minimum time span of 2000 s).

In Fig. 8(a) the experimentally obtained bifurcation
diagrams, portraying (|wi|) versus f, are shown for
Y =0.75 cm, slightly above the experimental thresh-
old Y7. The jumps are clearly highlighted by the ar-
TOWS.

These experimental results can be well described
by direct numerical integration of the equations of
motion with damping coefficient ¢® = 150 gcm?/s,
as shown in Fig. 8(b), where the initial conditions
for each integration were taken as the end values of
the state variables of the previous integration. Further-
more, the bifurcation diagrams were also obtained by
continuation as shown in Fig. 8(c).

At B* and G*, the in-phase and out-of-phase modes
lose their stability likely due to symmetry-breaking bi-
furcations.
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Fig. 9 Experimentally obtained bifurcation diagrams for (a)
Y=1.00cm, (b)Y =1.35cm, (¢) Y =1.50 cm

For higher values of Y, the supercritical bifurca-
tions A and D persist up to Y™ > 1.75 cm as shown
in Figs. 9 and 10. The sudden loss of stability at
the subcritical bifurcations makes the pendulum spin
chaotically. As the initial conditions at the jumps hap-
pen to be the angles and angular velocities at the in-
stant when the speed motor (i.e., excitation frequency)
was varied, they are not within the basin of attrac-
tion of the limit cycles. Therefore, to avoid such sus-
tained spinning of the pendulum, a hanging foam-type
punching bag was used to reverse the rotation of arm 1
at 61 ~ £m. The transfer of energy from the pendulum
to the foam punching bag stops the spinning when the
basin of attraction of the limit cycles can be achieved
and the pitchfork supercritical evolution is resumed,
as shown in Fig. 9(a). However, the punching bag does
not act to avoid the rotation of arm 2 while arm 1 oscil-
lates around the fixed point, as illustrated in Figs. 9(b)
and 9(c). In this case, to recover the periodic solution,
manual adjustments of the initial conditions were nec-
essary.

For ¥ = 1.75 cm and with ¢® = 150 gcm?/s, the
experimentally and numerically obtained bifurcation
diagrams are shown in Fig. 10. The experimentally ob-
tained results could be reasonably well reproduced by

@ Springer

direct numerical integration of the equations of motion
shown in Fig. 10(b), obtained by arresting the integra-
tion when the angle |6;| is greater than w, thus mim-
icking the action of the punching bag.

4 Discussion and conclusions

The phenomenon of dynamic loss of stability of the
trivial downward equilibrium of a parametrically ex-
cited double pendulum (arms hanging downward in
the direction of gravity) can occur through the para-
metric resonance of the individual modes about this
trivial state or through a couple-mode parametric reso-
nance. Thus the double pendulum, by virtue of the rel-
atively simple mechanical context, lends itself to the
study of fundamental properties inherent in the dy-
namic loss of stability experienced by more or less
closely spaced modes of distributed-parameter sys-
tems governed by PDEs. Moreover, the double pen-
dulum possesses three unstable equilibria when one
or both arms are in the upward position. While the
parametric effect of the base motion can be detrimen-
tal when causing a parametric resonance resulting into
large-amplitude oscillations about the trivial state, it
turns out to be beneficial when the frequency is suffi-
ciently high since it can stabilize the unstable upright
equilibrium states.

By employing theoretical and experimental ap-
proaches, it has been shown that (i) the instability re-
gions arising from the parametric resonances can be
well described by a higher-order approximation based
on the method of multiple scales, (ii) the unfolding of
the bifurcations via continuation and numerical sim-
ulations shows interesting scenarios. Above a certain
excitation, the (right) supercritical pitchfork bifurca-
tion of the in-phase mode becomes supercritical with
a simultaneous appearance of a fold to its right. At
a certain threshold excitation, this fold collides with
the fold of the out-of-phase mode thus causing the two
branches to coalesce into one single connected branch.
The frequency band of the resonance widens abruptly
spanning both modes.

The scenario becomes more complicated at lower
damping values. The jumps that occur at the subcrit-
ical pitchfork bifurcations lead to chaotic solutions in
which the pendulum revolves completely in two direc-
tions.
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Fig. 10 (a) The ex-
perimentally obtained
(Jw1]) vs. f curves for

Y =1.75cm.

(b) Numerically obtained
curves with ¢ =

150 gem?/s
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Another interesting experimental finding is that
there exists a region in the plane of the excitation fre-
quency and amplitude where all three unstable equilib-
ria can be stabilized by the parametric high-frequency
excitation. In particular, by determining the bound-
aries of the stabilization regions of the unstable equi-
librium states, we found that the stable region of the
fixed point (7, ) is embedded in the (s, 0)-region
which, in turn, is also embedded in the (0, 7r)-region,
and for f 2 14 Hz, all of these regions overlap with
the stable region of the trivial state (0, 0). We also ob-
served a large region, in which there is no overlapping,
hence all fixed upright equilibrium states cannot be
stabilized by parametric excitations.

Future work will address the dynamic loss of sta-
bility through parametric resonances when the two
modes are auto-parametrically coupled through a two-
to-one or three-to-one nonlinear transfer of energy.
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