Filtros : "International Journal of Advanced Engineering Research and Science" "2021" Limpar

Filtros



Limitar por data


  • Fonte: International Journal of Advanced Engineering Research and Science. Unidade: FOB

    Assuntos: MIOCARDITE, COVID-19, CORONAVIRUS, PNEUMONIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FLATO, Uri Adrian Prync et al. Myocarditis as a serious complication of Covid-19. International Journal of Advanced Engineering Research and Science, v. 8, n. 3, p. 26-30, 2021Tradução . . Disponível em: https://doi.org/10.22161/ijaers.83.3. Acesso em: 12 nov. 2025.
    • APA

      Flato, U. A. P., Biteli, P., Reina, D. O. B. R., Reina, F. T. R., Araújo, A. C., Souza, G. A. de, et al. (2021). Myocarditis as a serious complication of Covid-19. International Journal of Advanced Engineering Research and Science, 8( 3), 26-30. doi:10.22161/ijaers.83.3
    • NLM

      Flato UAP, Biteli P, Reina DOBR, Reina FTR, Araújo AC, Souza GA de, Campanari GS dos S, Matias JN, Lima VM, Zutin TLM, Buchaim RL, Buchaim DV, Barbalho SM. Myocarditis as a serious complication of Covid-19 [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ; 8( 3): 26-30.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.83.3
    • Vancouver

      Flato UAP, Biteli P, Reina DOBR, Reina FTR, Araújo AC, Souza GA de, Campanari GS dos S, Matias JN, Lima VM, Zutin TLM, Buchaim RL, Buchaim DV, Barbalho SM. Myocarditis as a serious complication of Covid-19 [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ; 8( 3): 26-30.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.83.3
  • Fonte: International Journal of Advanced Engineering Research and Science. Unidades: IEE, EACH

    Assuntos: DIÓXIDO DE CARBONO, IMPACTOS AMBIENTAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONTES, Talita e PEYERL, Drielli e MORETTO, Evandro Mateus. A Framework Approach for Risk Assessment and Management of CO2 Geological Storage. International Journal of Advanced Engineering Research and Science, v. 8, n. 2, p. 192-198, 2021Tradução . . Disponível em: https://doi.org/10.22161/ijaers.82.24. Acesso em: 12 nov. 2025.
    • APA

      Pontes, T., Peyerl, D., & Moretto, E. M. (2021). A Framework Approach for Risk Assessment and Management of CO2 Geological Storage. International Journal of Advanced Engineering Research and Science, 8( 2), 192-198. doi:10.22161/ijaers.82.24
    • NLM

      Pontes T, Peyerl D, Moretto EM. A Framework Approach for Risk Assessment and Management of CO2 Geological Storage [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ; 8( 2): 192-198.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.82.24
    • Vancouver

      Pontes T, Peyerl D, Moretto EM. A Framework Approach for Risk Assessment and Management of CO2 Geological Storage [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ; 8( 2): 192-198.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.82.24
  • Fonte: International Journal of Advanced Engineering Research and Science. Unidades: FEA, EACH

    Assuntos: CRÉDITO, REDES NEURAIS, REGRESSÃO LOGÍSTICA

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Eric Bacconi e GOUVÊA, Maria Aparecida. Credit risk analysis applying logistic regression, neural networks and genetic algorithms models. International Journal of Advanced Engineering Research and Science, v. 8, n. 9, p. 198-209, 2021Tradução . . Disponível em: https://doi.org/10.22161/ijaers.89.20. Acesso em: 12 nov. 2025.
    • APA

      Gonçalves, E. B., & Gouvêa, M. A. (2021). Credit risk analysis applying logistic regression, neural networks and genetic algorithms models. International Journal of Advanced Engineering Research and Science, 8( 9), 198-209. doi:10.22161/ijaers.89.20
    • NLM

      Gonçalves EB, Gouvêa MA. Credit risk analysis applying logistic regression, neural networks and genetic algorithms models [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ; 8( 9): 198-209.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.89.20
    • Vancouver

      Gonçalves EB, Gouvêa MA. Credit risk analysis applying logistic regression, neural networks and genetic algorithms models [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ; 8( 9): 198-209.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.89.20
  • Fonte: International Journal of Advanced Engineering Research and Science. Unidade: EEL

    Assunto: INDÚSTRIA 4.0

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Cleginaldo Pereira de e BITTENCOURT, Priscila M. Industry 4.0 Machine Learning to Monitor the Life Span of Cutting Tools in an Automotive Production Line. International Journal of Advanced Engineering Research and Science, v. 8, n. 5, p. 220-228, 2021Tradução . . Disponível em: https://doi.org/10.22161/ijaers.85.25. Acesso em: 12 nov. 2025.
    • APA

      Carvalho, C. P. de, & Bittencourt, P. M. (2021). Industry 4.0 Machine Learning to Monitor the Life Span of Cutting Tools in an Automotive Production Line. International Journal of Advanced Engineering Research and Science, 8( 5), 220-228. doi:10.22161/ijaers.85.25
    • NLM

      Carvalho CP de, Bittencourt PM. Industry 4.0 Machine Learning to Monitor the Life Span of Cutting Tools in an Automotive Production Line [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ;8( 5): 220-228.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.85.25
    • Vancouver

      Carvalho CP de, Bittencourt PM. Industry 4.0 Machine Learning to Monitor the Life Span of Cutting Tools in an Automotive Production Line [Internet]. International Journal of Advanced Engineering Research and Science. 2021 ;8( 5): 220-228.[citado 2025 nov. 12 ] Available from: https://doi.org/10.22161/ijaers.85.25

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025