Filtros : "Journal of Computational and Applied Mathematics" "ANÁLISE NUMÉRICA" Limpar

Filtros



Refine with date range


  • Source: Journal of Computational and Applied Mathematics. Unidade: IME

    Subjects: ANÁLISE NUMÉRICA, PROGRAMAÇÃO NÃO LINEAR, PESQUISA OPERACIONAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Inexact restoration for derivative-free expensive function minimization and applications. Journal of Computational and Applied Mathematics, v. 410, n. artigo 114193, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cam.2022.114193. Acesso em: 11 nov. 2025.
    • APA

      Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2022). Inexact restoration for derivative-free expensive function minimization and applications. Journal of Computational and Applied Mathematics, 410( artigo 114193), 1-15. doi:10.1016/j.cam.2022.114193
    • NLM

      Birgin EJG, Krejić N, Martínez JM. Inexact restoration for derivative-free expensive function minimization and applications [Internet]. Journal of Computational and Applied Mathematics. 2022 ; 410( artigo 114193): 1-15.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cam.2022.114193
    • Vancouver

      Birgin EJG, Krejić N, Martínez JM. Inexact restoration for derivative-free expensive function minimization and applications [Internet]. Journal of Computational and Applied Mathematics. 2022 ; 410( artigo 114193): 1-15.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cam.2022.114193
  • Source: Journal of Computational and Applied Mathematics. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO, ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REDDY, G. M. M. e VYNNYCKY, M. e CUMINATO, José Alberto. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem. Journal of Computational and Applied Mathematics, v. 349, p. 21-40, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cam.2018.09.004. Acesso em: 11 nov. 2025.
    • APA

      Reddy, G. M. M., Vynnycky, M., & Cuminato, J. A. (2019). An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem. Journal of Computational and Applied Mathematics, 349, 21-40. doi:10.1016/j.cam.2018.09.004
    • NLM

      Reddy GMM, Vynnycky M, Cuminato JA. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem [Internet]. Journal of Computational and Applied Mathematics. 2019 ; 349 21-40.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cam.2018.09.004
    • Vancouver

      Reddy GMM, Vynnycky M, Cuminato JA. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem [Internet]. Journal of Computational and Applied Mathematics. 2019 ; 349 21-40.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cam.2018.09.004
  • Source: Journal of Computational and Applied Mathematics. Unidade: ICMC

    Assunto: ANÁLISE NUMÉRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SRI RANGA, A. Convergence properties of a class of j- fractions. Journal of Computational and Applied Mathematics, v. 19, n. 3 , p. 331-342, 1987Tradução . . Disponível em: https://doi.org/10.1016/0377-0427(87)90202-0. Acesso em: 11 nov. 2025.
    • APA

      Sri Ranga, A. (1987). Convergence properties of a class of j- fractions. Journal of Computational and Applied Mathematics, 19( 3 ), 331-342. doi:10.1016/0377-0427(87)90202-0
    • NLM

      Sri Ranga A. Convergence properties of a class of j- fractions [Internet]. Journal of Computational and Applied Mathematics. 1987 ; 19( 3 ): 331-342.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/0377-0427(87)90202-0
    • Vancouver

      Sri Ranga A. Convergence properties of a class of j- fractions [Internet]. Journal of Computational and Applied Mathematics. 1987 ; 19( 3 ): 331-342.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/0377-0427(87)90202-0
  • Source: Journal of Computational and Applied Mathematics. Unidade: ICMC

    Subjects: ANÁLISE NUMÉRICA, EQUAÇÕES DE VOLTERRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Célia Maria Finazzi de e MCKEE, S. High accuracy A.D.I. methods for fourth order parabolic equations with variable coefficients. Journal of Computational and Applied Mathematics, v. 3, n. 1, p. 11-14, 1977Tradução . . Disponível em: https://doi.org/10.1016/0771-050x(77)90019-5. Acesso em: 11 nov. 2025.
    • APA

      Andrade, C. M. F. de, & Mckee, S. (1977). High accuracy A.D.I. methods for fourth order parabolic equations with variable coefficients. Journal of Computational and Applied Mathematics, 3( 1), 11-14. doi:10.1016/0771-050x(77)90019-5
    • NLM

      Andrade CMF de, Mckee S. High accuracy A.D.I. methods for fourth order parabolic equations with variable coefficients [Internet]. Journal of Computational and Applied Mathematics. 1977 ; 3( 1): 11-14.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/0771-050x(77)90019-5
    • Vancouver

      Andrade CMF de, Mckee S. High accuracy A.D.I. methods for fourth order parabolic equations with variable coefficients [Internet]. Journal of Computational and Applied Mathematics. 1977 ; 3( 1): 11-14.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/0771-050x(77)90019-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025