Filtros : "International Journal of Computer Mathematics" Limpar

Filtros



Limitar por data


  • Fonte: International Journal of Computer Mathematics. Unidade: ICMC

    Assuntos: ANÁLISE NUMÉRICA, DIFERENÇAS FINITAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Maria Luísa Bambozzi de e PIRES, Vitor Alves. Analysis of a high-order finite difference detector for discontinuities. International Journal of Computer Mathematics, v. 94, n. 4, p. 676-689 , 2017Tradução . . Disponível em: https://doi.org/10.1080/00207160.2015.1124100. Acesso em: 15 nov. 2025.
    • APA

      Oliveira, M. L. B. de, & Pires, V. A. (2017). Analysis of a high-order finite difference detector for discontinuities. International Journal of Computer Mathematics, 94( 4), 676-689 . doi:10.1080/00207160.2015.1124100
    • NLM

      Oliveira MLB de, Pires VA. Analysis of a high-order finite difference detector for discontinuities [Internet]. International Journal of Computer Mathematics. 2017 ; 94( 4): 676-689 .[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207160.2015.1124100
    • Vancouver

      Oliveira MLB de, Pires VA. Analysis of a high-order finite difference detector for discontinuities [Internet]. International Journal of Computer Mathematics. 2017 ; 94( 4): 676-689 .[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207160.2015.1124100
  • Fonte: International Journal of Computer Mathematics. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIC, Natavsa e MARTÍNEZ, José Mário. Solution of bounded nonlinear systems of equations using homotopies with inexact restoration. International Journal of Computer Mathematics, v. 80, n. 2, p. 211-222, 2003Tradução . . Disponível em: https://doi.org/10.1080/00207160304672. Acesso em: 15 nov. 2025.
    • APA

      Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2003). Solution of bounded nonlinear systems of equations using homotopies with inexact restoration. International Journal of Computer Mathematics, 80( 2), 211-222. doi:10.1080/00207160304672
    • NLM

      Birgin EJG, Krejic N, Martínez JM. Solution of bounded nonlinear systems of equations using homotopies with inexact restoration [Internet]. International Journal of Computer Mathematics. 2003 ; 80( 2): 211-222.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207160304672
    • Vancouver

      Birgin EJG, Krejic N, Martínez JM. Solution of bounded nonlinear systems of equations using homotopies with inexact restoration [Internet]. International Journal of Computer Mathematics. 2003 ; 80( 2): 211-222.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207160304672
  • Fonte: International Journal of Computer Mathematics. Unidade: ICMC

    Assunto: EQUAÇÕES DE VOLTERRA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FAVARO, Marielza Jorge e MCKEE, S e MENEGUETTE, M. Multistep multiderivative methods for volterra integro-differential equations. International Journal of Computer Mathematics, v. 22, n. Ja1987, p. 161-175, 1987Tradução . . Disponível em: https://doi.org/10.1080/00207168708803589. Acesso em: 15 nov. 2025.
    • APA

      Favaro, M. J., Mckee, S., & Meneguette, M. (1987). Multistep multiderivative methods for volterra integro-differential equations. International Journal of Computer Mathematics, 22( Ja1987), 161-175. doi:10.1080/00207168708803589
    • NLM

      Favaro MJ, Mckee S, Meneguette M. Multistep multiderivative methods for volterra integro-differential equations [Internet]. International Journal of Computer Mathematics. 1987 ; 22( Ja1987): 161-175.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207168708803589
    • Vancouver

      Favaro MJ, Mckee S, Meneguette M. Multistep multiderivative methods for volterra integro-differential equations [Internet]. International Journal of Computer Mathematics. 1987 ; 22( Ja1987): 161-175.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207168708803589
  • Fonte: International Journal of Computer Mathematics. Unidade: ICMC

    Assunto: EQUAÇÕES DE VOLTERRA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRANCO, Neide Maria Bertoldi e MCKEE, S. Family of high order product integration methods for an integral equation of lighthill. International Journal of Computer Mathematics, v. 18, n. 2 , p. 173-84, 1985Tradução . . Disponível em: https://doi.org/10.1080/00207168508803487. Acesso em: 15 nov. 2025.
    • APA

      Franco, N. M. B., & Mckee, S. (1985). Family of high order product integration methods for an integral equation of lighthill. International Journal of Computer Mathematics, 18( 2 ), 173-84. doi:10.1080/00207168508803487
    • NLM

      Franco NMB, Mckee S. Family of high order product integration methods for an integral equation of lighthill [Internet]. International Journal of Computer Mathematics. 1985 ; 18( 2 ): 173-84.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207168508803487
    • Vancouver

      Franco NMB, Mckee S. Family of high order product integration methods for an integral equation of lighthill [Internet]. International Journal of Computer Mathematics. 1985 ; 18( 2 ): 173-84.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1080/00207168508803487

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025