Filtros : "Finite Fields and their Applications" "2020" Limpar

Filtros



Limitar por data


  • Fonte: Finite Fields and their Applications. Unidade: ICMC

    Assuntos: CURVAS ALGÉBRICAS, TEORIA DE GALOIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e FUKASAWA, Satoru. Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, v. 61, n. Ja 2020, p. 1-8, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2019.101579. Acesso em: 18 nov. 2025.
    • APA

      Borges, H., & Fukasawa, S. (2020). Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, 61( Ja 2020), 1-8. doi:10.1016/j.ffa.2019.101579
    • NLM

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
    • Vancouver

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
  • Fonte: Finite Fields and their Applications. Unidade: ICMC

    Assuntos: POLINÔMIOS, CORPOS FINITOS, MATRIZES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Lucas da Silva. On the existence and number of invariant polynomials. Finite Fields and their Applications, v. 61, n. Ja 2020, p. 1-13, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2019.101605. Acesso em: 18 nov. 2025.
    • APA

      Reis, L. da S. (2020). On the existence and number of invariant polynomials. Finite Fields and their Applications, 61( Ja 2020), 1-13. doi:10.1016/j.ffa.2019.101605
    • NLM

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1016/j.ffa.2019.101605
    • Vancouver

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.[citado 2025 nov. 18 ] Available from: https://doi.org/10.1016/j.ffa.2019.101605

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025