Filtros : "Mathematical Models and Methods in Applied Sciences" Limpar

Filtros



Refine with date range


  • Source: Mathematical Models and Methods in Applied Sciences. Unidade: IFSC

    Subjects: COVID-19, FAKE NEWS, DESINFORMAÇÃO, PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TÓRTURA, Henrique de Almeida e FONTANARI, José Fernando. The synergy between two threats: disinformation and COVID-19. Mathematical Models and Methods in Applied Sciences, v. 32, n. 10, p. 2077-2097, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021820252250049X. Acesso em: 10 dez. 2025.
    • APA

      Tórtura, H. de A., & Fontanari, J. F. (2022). The synergy between two threats: disinformation and COVID-19. Mathematical Models and Methods in Applied Sciences, 32( 10), 2077-2097. doi:10.1142/S021820252250049X
    • NLM

      Tórtura H de A, Fontanari JF. The synergy between two threats: disinformation and COVID-19 [Internet]. Mathematical Models and Methods in Applied Sciences. 2022 ; 32( 10): 2077-2097.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1142/S021820252250049X
    • Vancouver

      Tórtura H de A, Fontanari JF. The synergy between two threats: disinformation and COVID-19 [Internet]. Mathematical Models and Methods in Applied Sciences. 2022 ; 32( 10): 2077-2097.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1142/S021820252250049X
  • Source: Mathematical Models and Methods in Applied Sciences. Unidade: IF

    Subjects: TEORIA DE CAMPOS, FÉRMIO

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRU, J. B. e DE SIQUEIRA PEDRA, Walter. Universal bounds for large determinants from non-commutative Hölder inequalities in fermionic constructive quantum field theory. Mathematical Models and Methods in Applied Sciences, v. 27, n. 10, p. 1963-1992, 2017Tradução . . Disponível em: https://doi.org/10.1142/S0218202517500361. Acesso em: 10 dez. 2025.
    • APA

      Bru, J. B., & De Siqueira Pedra, W. (2017). Universal bounds for large determinants from non-commutative Hölder inequalities in fermionic constructive quantum field theory. Mathematical Models and Methods in Applied Sciences, 27( 10), 1963-1992. doi:10.1142/S0218202517500361
    • NLM

      Bru JB, De Siqueira Pedra W. Universal bounds for large determinants from non-commutative Hölder inequalities in fermionic constructive quantum field theory [Internet]. Mathematical Models and Methods in Applied Sciences. 2017 ; 27( 10): 1963-1992.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1142/S0218202517500361
    • Vancouver

      Bru JB, De Siqueira Pedra W. Universal bounds for large determinants from non-commutative Hölder inequalities in fermionic constructive quantum field theory [Internet]. Mathematical Models and Methods in Applied Sciences. 2017 ; 27( 10): 1963-1992.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1142/S0218202517500361
  • Source: Mathematical Models and Methods in Applied Sciences. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA ESPECTRAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro e SICILIANO, Gaetano e SQUASSINA, Marco. On fractional Choquard equations. Mathematical Models and Methods in Applied Sciences, v. 25, n. 8, p. 1447-1476, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0218202515500384. Acesso em: 10 dez. 2025.
    • APA

      d'Avenia, P., Siciliano, G., & Squassina, M. (2015). On fractional Choquard equations. Mathematical Models and Methods in Applied Sciences, 25( 8), 1447-1476. doi:10.1142/S0218202515500384
    • NLM

      d'Avenia P, Siciliano G, Squassina M. On fractional Choquard equations [Internet]. Mathematical Models and Methods in Applied Sciences. 2015 ; 25( 8): 1447-1476.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1142/S0218202515500384
    • Vancouver

      d'Avenia P, Siciliano G, Squassina M. On fractional Choquard equations [Internet]. Mathematical Models and Methods in Applied Sciences. 2015 ; 25( 8): 1447-1476.[citado 2025 dez. 10 ] Available from: https://doi.org/10.1142/S0218202515500384

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025