Filtros : "Journal of Statistical Physics" "Indexado no Web of Science" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Statistical Physics. Unidade: Interinstitucional de Pós-Graduação em Estatística

    Assuntos: PROCESSOS EM MEIOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUNIOR, Valdivino V e RODRÍGUEZ, Pablo Martín e SPEROTO, Adalto. The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics, v. No 2020, n. 4, p. 1204-1217, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10955-020-02623-y. Acesso em: 15 nov. 2025.
    • APA

      Junior, V. V., Rodríguez, P. M., & Speroto, A. (2020). The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics, No 2020( 4), 1204-1217. doi:10.1007/s10955-020-02623-y
    • NLM

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ; No 2020( 4): 1204-1217.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-020-02623-y
    • Vancouver

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ; No 2020( 4): 1204-1217.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-020-02623-y
  • Fonte: Journal of Statistical Physics. Unidade: IME

    Assuntos: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna et al. Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, v. 158, n. 4, p. 866-902, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-014-1145-1. Acesso em: 15 nov. 2025.
    • APA

      De Masi, A., Galves, A., Löcherbach, E., & Presutti, E. (2015). Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, 158( 4), 866-902. doi:10.1007/s10955-014-1145-1
    • NLM

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1145-1
    • Vancouver

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1145-1
  • Fonte: Journal of Statistical Physics. Unidade: IME

    Assuntos: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHÜTZ, Gunter M. Quantum algebra symmetry of the ASEP with second-class particles. Journal of Statistical Physics, v. No 2015, n. 4, p. 821-842, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-015-1363-1. Acesso em: 15 nov. 2025.
    • APA

      Belitsky, V., & Schütz, G. M. (2015). Quantum algebra symmetry of the ASEP with second-class particles. Journal of Statistical Physics, No 2015( 4), 821-842. doi:10.1007/s10955-015-1363-1
    • NLM

      Belitsky V, Schütz GM. Quantum algebra symmetry of the ASEP with second-class particles [Internet]. Journal of Statistical Physics. 2015 ; No 2015( 4): 821-842.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-015-1363-1
    • Vancouver

      Belitsky V, Schütz GM. Quantum algebra symmetry of the ASEP with second-class particles [Internet]. Journal of Statistical Physics. 2015 ; No 2015( 4): 821-842.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-015-1363-1
  • Fonte: Journal of Statistical Physics. Unidade: IME

    Assuntos: ESTATÍSTICA, MECÂNICA ESTATÍSTICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMENDÁRIZ, Inés et al. Finite cycle Gibbs measures on permutations of Zd. Journal of Statistical Physics, v. 158, n. 6, p. 1213-1233, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10955-014-1169-6. Acesso em: 15 nov. 2025.
    • APA

      Armendáriz, I., Ferrari, P. A., Groisman, P., & Leonardi, F. G. (2015). Finite cycle Gibbs measures on permutations of Zd. Journal of Statistical Physics, 158( 6), 1213-1233. doi:10.1007/s10955-014-1169-6
    • NLM

      Armendáriz I, Ferrari PA, Groisman P, Leonardi FG. Finite cycle Gibbs measures on permutations of Zd [Internet]. Journal of Statistical Physics. 2015 ; 158( 6): 1213-1233.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1169-6
    • Vancouver

      Armendáriz I, Ferrari PA, Groisman P, Leonardi FG. Finite cycle Gibbs measures on permutations of Zd [Internet]. Journal of Statistical Physics. 2015 ; 158( 6): 1213-1233.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1169-6
  • Fonte: Journal of Statistical Physics. Unidades: IME, IF

    Assuntos: PROCESSOS ALEATÓRIOS, PROCESSOS ESTOCÁSTICOS, MODELOS DE MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato et al. Phase transitions in layered systems. Journal of Statistical Physics, v. 157, n. 3, p. 407-421, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10955-014-1090-z. Acesso em: 15 nov. 2025.
    • APA

      Fontes, L. R., Marchetti, D. H. U., Merola, I., Presutti, E., & Vares, M. E. (2014). Phase transitions in layered systems. Journal of Statistical Physics, 157( 3), 407-421. doi:10.1007/s10955-014-1090-z
    • NLM

      Fontes LR, Marchetti DHU, Merola I, Presutti E, Vares ME. Phase transitions in layered systems [Internet]. Journal of Statistical Physics. 2014 ; 157( 3): 407-421.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1090-z
    • Vancouver

      Fontes LR, Marchetti DHU, Merola I, Presutti E, Vares ME. Phase transitions in layered systems [Internet]. Journal of Statistical Physics. 2014 ; 157( 3): 407-421.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1007/s10955-014-1090-z

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025