Filtros : "Topological Methods in Nonlinear Analysis" "Financiamento CNPq" Limpar

Filtros



Limitar por data


  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, v. 65, n. 2, p. 623-651, 2025Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2024.051. Acesso em: 18 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, 65( 2), 623-651. doi:10.12775/TMNA.2024.051
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2024.051
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2024.051
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA DAS SINGULARIDADES, TEORIA DO ÍNDICE, COBORDISMO, VARIEDADES TOPOLÓGICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds. Topological Methods in Nonlinear Analysis, v. 62, n. 1, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.070. Acesso em: 18 nov. 2025.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2023). Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds. Topological Methods in Nonlinear Analysis, 62( 1), Se 2023. doi:10.12775/TMNA.2022.070
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 62( 1): Se 2023.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.070
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Conley index theory for Gutierrez-Sotomayor flows on singular 3-manifolds [Internet]. Topological Methods in Nonlinear Analysis. 2023 ; 62( 1): Se 2023.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.070
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA DAS SINGULARIDADES, DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE, VARIEDADES TOPOLÓGICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, v. 60, n. 1, p. 221-265, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.054. Acesso em: 18 nov. 2025.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2022). Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, 60( 1), 221-265. doi:10.12775/TMNA.2021.054
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.054
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 1): 221-265.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.054
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 18 nov. 2025.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, Rogelio e MACENA, Maria Carolina Stefani Mesquita. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 725-760, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.027. Acesso em: 18 nov. 2025.
    • APA

      Federson, M., Grau, R., & Macena, M. C. S. M. (2022). Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, 60( 2), 725-760. doi:10.12775/TMNA.2022.027
    • NLM

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.027
    • Vancouver

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.027
  • Fonte: Topological Methods in Nonlinear Analysis. Unidades: IME, ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS-PARABÓLICAS QUASILINEARES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, v. 58, n. 1, p. 209-231, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.009. Acesso em: 18 nov. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2021). A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, 58( 1), 209-231. doi:10.12775/TMNA.2021.009
    • NLM

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.009
    • Vancouver

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.009
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assuntos: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 18 nov. 2025.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGONA VALLEJO, Alfredo Jorge e FERNANDEZ, Roseli e JURIAANS, Orlando Stanley. Natural topologies on Colombeau algebras. Topological Methods in Nonlinear Analysis, v. 34, n. 1, p. 161-180, 2009Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2009.035. Acesso em: 18 nov. 2025.
    • APA

      Aragona Vallejo, A. J., Fernandez, R., & Juriaans, O. S. (2009). Natural topologies on Colombeau algebras. Topological Methods in Nonlinear Analysis, 34( 1), 161-180. doi:10.12775/TMNA.2009.035
    • NLM

      Aragona Vallejo AJ, Fernandez R, Juriaans OS. Natural topologies on Colombeau algebras [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 34( 1): 161-180.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2009.035
    • Vancouver

      Aragona Vallejo AJ, Fernandez R, Juriaans OS. Natural topologies on Colombeau algebras [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 34( 1): 161-180.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2009.035
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: GEOMETRIA SEMI-RIEMANNIANA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions. Topological Methods in Nonlinear Analysis, v. 21, n. 2, p. 273-291, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.016. Acesso em: 18 nov. 2025.
    • APA

      Giambó, R., Giannoni, F., Piccione, P., & Tausk, D. V. (2003). Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions. Topological Methods in Nonlinear Analysis, 21( 2), 273-291. doi:10.12775/tmna.2003.016
    • NLM

      Giambó R, Giannoni F, Piccione P, Tausk DV. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 2): 273-291.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.016
    • Vancouver

      Giambó R, Giannoni F, Piccione P, Tausk DV. Morse theory for normal geodesics in sub-Riemannian manifolds with codimension one distributions [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 2): 273-291.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/tmna.2003.016

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025