Filtros : "Topological Methods in Nonlinear Analysis" "TEORIA QUALITATIVA" Limpar

Filtros



Limitar por data


  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 18 nov. 2025.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, Rogelio e MACENA, Maria Carolina Stefani Mesquita. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 725-760, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.027. Acesso em: 18 nov. 2025.
    • APA

      Federson, M., Grau, R., & Macena, M. C. S. M. (2022). Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, 60( 2), 725-760. doi:10.12775/TMNA.2022.027
    • NLM

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.027
    • Vancouver

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2022.027
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS), SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, v. 32, n. 2, p. 199-225, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1463151164. Acesso em: 18 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2008). On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, 32( 2), 199-225. Recuperado de https://projecteuclid.org/euclid.tmna/1463151164
    • NLM

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2025 nov. 18 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025