Filtros : "Topological Methods in Nonlinear Analysis" "ANÁLISE FUNCIONAL NÃO LINEAR" Limpar

Filtros



Limitar por data


  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assuntos: GRAU TOPOLÓGICO, ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL NÃO LINEAR

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e FURI, Massimo. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 401-430, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.052. Acesso em: 18 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., & Furi, M. (2015). On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, 46( 1), 401-430. doi:10.12775/TMNA.2015.052
    • NLM

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.052
    • Vancouver

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2025 nov. 18 ] Available from: https://doi.org/10.12775/TMNA.2015.052

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025