Filtros : "Neurocomputing" "EP" Limpar

Filtros



Limitar por data


  • Fonte: Neurocomputing. Unidades: ICMC, EP

    Assuntos: APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE IMAGEM

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLETTA, Luiz Fernando Sommaggio et al. Combining clustering and active learning for the detection and learning of new image classes. Neurocomputing, v. 358, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2019.04.070. Acesso em: 11 nov. 2025.
    • APA

      Coletta, L. F. S., Ponti, M. A., Hruschka, E. R., Acharya, A., & Ghosh, J. (2019). Combining clustering and active learning for the detection and learning of new image classes. Neurocomputing, 358, Se 2019. doi:10.1016/j.neucom.2019.04.070
    • NLM

      Coletta LFS, Ponti MA, Hruschka ER, Acharya A, Ghosh J. Combining clustering and active learning for the detection and learning of new image classes [Internet]. Neurocomputing. 2019 ; 358 Se 2019.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2019.04.070
    • Vancouver

      Coletta LFS, Ponti MA, Hruschka ER, Acharya A, Ghosh J. Combining clustering and active learning for the detection and learning of new image classes [Internet]. Neurocomputing. 2019 ; 358 Se 2019.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2019.04.070
  • Fonte: Neurocomputing. Unidade: EP

    Assuntos: NEURÔNIOS, CONTROLE MOTOR, NEUROCIÊNCIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ELIAS, Leonardo Abdala e KOHN, André Fábio. Individual and collective properties of computationally efficient motoneuron models of types S and F with active dendrites. Neurocomputing, v. 99, p. 521-533, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2012.06.038. Acesso em: 11 nov. 2025.
    • APA

      Elias, L. A., & Kohn, A. F. (2013). Individual and collective properties of computationally efficient motoneuron models of types S and F with active dendrites. Neurocomputing, 99, 521-533. doi:10.1016/j.neucom.2012.06.038
    • NLM

      Elias LA, Kohn AF. Individual and collective properties of computationally efficient motoneuron models of types S and F with active dendrites [Internet]. Neurocomputing. 2013 ; 99 521-533.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2012.06.038
    • Vancouver

      Elias LA, Kohn AF. Individual and collective properties of computationally efficient motoneuron models of types S and F with active dendrites [Internet]. Neurocomputing. 2013 ; 99 521-533.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.neucom.2012.06.038
  • Fonte: Neurocomputing. Unidades: EP, FFCLRP

    Assuntos: ENTROPIA, MATEMÁTICA APLICADA

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHO, Marilene de et al. Shannon's entropy applied to the analysis of tonotopic reorganization in a computational model of classical conditioning. Neurocomputing, v. 44-46, p. 359-364, 2002Tradução . . Disponível em: https://doi.org/10.1016/s0925-2312(02)00382-x. Acesso em: 11 nov. 2025.
    • APA

      Pinho, M. de, Mazza, M., Piqueira, J. R. C., & Roque, A. C. (2002). Shannon's entropy applied to the analysis of tonotopic reorganization in a computational model of classical conditioning. Neurocomputing, 44-46, 359-364. doi:10.1016/s0925-2312(02)00382-x
    • NLM

      Pinho M de, Mazza M, Piqueira JRC, Roque AC. Shannon's entropy applied to the analysis of tonotopic reorganization in a computational model of classical conditioning [Internet]. Neurocomputing. 2002 ; 44-46 359-364.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/s0925-2312(02)00382-x
    • Vancouver

      Pinho M de, Mazza M, Piqueira JRC, Roque AC. Shannon's entropy applied to the analysis of tonotopic reorganization in a computational model of classical conditioning [Internet]. Neurocomputing. 2002 ; 44-46 359-364.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/s0925-2312(02)00382-x
  • Fonte: Neurocomputing. Unidades: EP, FFCLRP

    Assuntos: ENTROPIA, MATEMÁTICA APLICADA, RECEPTORES SENSORIAIS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAZZA, Marcelo et al. Using information theory for the analysis of cortical reorganization in a realistic computational model of the somatosensory system. Neurocomputing, v. 44-46, p. 923-928, 2002Tradução . . Disponível em: https://doi.org/10.1016/s0925-2312(02)00492-7. Acesso em: 11 nov. 2025.
    • APA

      Mazza, M., Pinho, M. de, Piqueira, J. R. C., & Roque, A. C. (2002). Using information theory for the analysis of cortical reorganization in a realistic computational model of the somatosensory system. Neurocomputing, 44-46, 923-928. doi:10.1016/s0925-2312(02)00492-7
    • NLM

      Mazza M, Pinho M de, Piqueira JRC, Roque AC. Using information theory for the analysis of cortical reorganization in a realistic computational model of the somatosensory system [Internet]. Neurocomputing. 2002 ; 44-46 923-928.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/s0925-2312(02)00492-7
    • Vancouver

      Mazza M, Pinho M de, Piqueira JRC, Roque AC. Using information theory for the analysis of cortical reorganization in a realistic computational model of the somatosensory system [Internet]. Neurocomputing. 2002 ; 44-46 923-928.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/s0925-2312(02)00492-7

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025