Filtros : "Journal of Chemical Information and Modeling" "2022" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: ZIKA VÍRUS, PLANEJAMENTO DE FÁRMACOS, ANTIVIRAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTTIN, Melina et al. Discovery of new Zika protease and polymerase inhibitors through the open science collaboration Project OpenZika. Journal of Chemical Information and Modeling, v. 62, n. 24, p. 6825-6843, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00596. Acesso em: 08 out. 2025.
    • APA

      Mottin, M., Sousa, B. K. de P., Mesquita, N. C. de M. R., Oliveira, K. I. Z. de, Noske, G. D., Sartori, G. R., et al. (2022). Discovery of new Zika protease and polymerase inhibitors through the open science collaboration Project OpenZika. Journal of Chemical Information and Modeling, 62( 24), 6825-6843. doi:10.1021/acs.jcim.2c00596
    • NLM

      Mottin M, Sousa BK de P, Mesquita NC de MR, Oliveira KIZ de, Noske GD, Sartori GR, Albuquerque A de O, Urbina F, Puhl AC, Moreira Filho JT, Souza GE de, Guido RVC, Muratov E, Neves BJ, Silva JHM da, Clark AE, Siqueira Neto JL, Perryman AL, Oliva G, Ekins S, Andrade CH. Discovery of new Zika protease and polymerase inhibitors through the open science collaboration Project OpenZika [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6825-6843.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00596
    • Vancouver

      Mottin M, Sousa BK de P, Mesquita NC de MR, Oliveira KIZ de, Noske GD, Sartori GR, Albuquerque A de O, Urbina F, Puhl AC, Moreira Filho JT, Souza GE de, Guido RVC, Muratov E, Neves BJ, Silva JHM da, Clark AE, Siqueira Neto JL, Perryman AL, Oliva G, Ekins S, Andrade CH. Discovery of new Zika protease and polymerase inhibitors through the open science collaboration Project OpenZika [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6825-6843.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00596
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: PERIÓDICOS CIENTÍFICOS, QUÍMICA, QUÍMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WEI, Guo-Wei et al. Computational chemistry in Asia [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01050. Acesso em: 08 out. 2025. , 2022
    • APA

      Wei, G. -W., Soares, T. A., Wahab, H. A., & Wang, R. (2022). Computational chemistry in Asia [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01050
    • NLM

      Wei G-W, Soares TA, Wahab HA, Wang R. Computational chemistry in Asia [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 21): 5035-5037.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01050
    • Vancouver

      Wei G-W, Soares TA, Wahab HA, Wang R. Computational chemistry in Asia [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 21): 5035-5037.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01050
  • Source: Journal of Chemical Information and Modeling. Unidades: IF, FFCLRP

    Subjects: FÍSICO-QUÍMICA, FÍSICA MOLECULAR, SOFTWARE ESTATÍSTICO PARA MICROCOMPUTADORES, LIPÍDEOS DA MEMBRANA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Denys e COUTINHO, Kaline Rabelo e SILVA, Thereza Amélia Soares da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4690-4701, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00673. Acesso em: 08 out. 2025.
    • APA

      Santos, D., Coutinho, K. R., & Silva, T. A. S. da. (2022). Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, 62( 19), 4690-4701. doi:10.1021/acs.jcim.2c00673
    • NLM

      Santos D, Coutinho KR, Silva TAS da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4690-4701.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00673
    • Vancouver

      Santos D, Coutinho KR, Silva TAS da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4690-4701.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00673
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: PRECONCEITO, PESQUISA CIENTÍFICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASCELLA, Michele e SILVA, Thereza Amélia Soares da. Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, v. 62, n. 24, p. 6297-6301, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00533. Acesso em: 08 out. 2025.
    • APA

      Cascella, M., & Silva, T. A. S. da. (2022). Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, 62( 24), 6297-6301. doi:10.1021/acs.jcim.2c00533
    • NLM

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
    • Vancouver

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
  • Source: Journal of Chemical Information and Modeling. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, FÁRMACOS (ESTUDO;DESENVOLVIMENTO)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FASSIO, Alexandre Victor et al. Prioritizing virtual screening with interpretable interaction Fingerprints. Journal of Chemical Information and Modeling, v. 62, n. 18, p. 4300-4318, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00695. Acesso em: 08 out. 2025.
    • APA

      Fassio, A. V., Shub, L., Ponzoni, L., McKinley, J., O’Meara, M. J., Ferreira, R. S., et al. (2022). Prioritizing virtual screening with interpretable interaction Fingerprints. Journal of Chemical Information and Modeling, 62( 18), 4300-4318. doi:10.1021/acs.jcim.2c00695
    • NLM

      Fassio AV, Shub L, Ponzoni L, McKinley J, O’Meara MJ, Ferreira RS, Keiser MJ, Minardi RC de M. Prioritizing virtual screening with interpretable interaction Fingerprints [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 18): 4300-4318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00695
    • Vancouver

      Fassio AV, Shub L, Ponzoni L, McKinley J, O’Meara MJ, Ferreira RS, Keiser MJ, Minardi RC de M. Prioritizing virtual screening with interpretable interaction Fingerprints [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 18): 4300-4318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00695
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: AMINOÁCIDOS, MECÂNICA QUÂNTICA, ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Alberto M. Dos et al. Assessment of Reversibility for Covalent Cysteine Protease Inhibitors Using Quantum Mechanics/Molecular Mechanics Free Energy Surfaces. Journal of Chemical Information and Modeling, v. 62, p. 4083-4094, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00466. Acesso em: 08 out. 2025.
    • APA

      Santos, A. M. D., Oliveira, A. R. S., Costa, C. H. S. da, Kenny, P. W., Montanari, C. A., Varela Júnior, J. de J. G., & Lameira, J. (2022). Assessment of Reversibility for Covalent Cysteine Protease Inhibitors Using Quantum Mechanics/Molecular Mechanics Free Energy Surfaces. Journal of Chemical Information and Modeling, 62, 4083-4094. doi:10.1021/acs.jcim.2c00466
    • NLM

      Santos AMD, Oliveira ARS, Costa CHS da, Kenny PW, Montanari CA, Varela Júnior J de JG, Lameira J. Assessment of Reversibility for Covalent Cysteine Protease Inhibitors Using Quantum Mechanics/Molecular Mechanics Free Energy Surfaces [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 4083-4094.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00466
    • Vancouver

      Santos AMD, Oliveira ARS, Costa CHS da, Kenny PW, Montanari CA, Varela Júnior J de JG, Lameira J. Assessment of Reversibility for Covalent Cysteine Protease Inhibitors Using Quantum Mechanics/Molecular Mechanics Free Energy Surfaces [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 4083-4094.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00466
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: ENERGIA, MOLÉCULA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Andre F e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, v. 62, p. 817−828, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c01573. Acesso em: 08 out. 2025.
    • APA

      Oliveira, A. F., Silva, J. L. F. da, & Quiles, M. G. (2022). Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, 62, 817−828. doi:10.1021/acs.jcim.1c01573
    • NLM

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
    • Vancouver

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, MODELOS MATEMÁTICOS, ESTRUTURA MOLECULAR (QUÍMICA TEÓRICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Thereza A. et al. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01422. Acesso em: 08 out. 2025. , 2022
    • APA

      Soares, T. A., Alves, A. F. N., Mazzolari, A., Ruggiu, F., Wei, G. -W., & Merz, K. (2022). The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01422
    • NLM

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
    • Vancouver

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: PERIÓDICOS CIENTÍFICOS, QUÍMICA TEÓRICA, CIÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COURNIA, Zoe et al. Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01543. Acesso em: 08 out. 2025. , 2022
    • APA

      Cournia, Z., Soares, T. A., Wahab, H. A., & Amaro, R. E. (2022). Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01543
    • NLM

      Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6287-6291.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01543
    • Vancouver

      Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6287-6291.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c01543
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: MODELAGEM MOLECULAR, MOLÉCULA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, v. 62, n. 17, p. 3948–3960, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00521. Acesso em: 08 out. 2025.
    • APA

      Pinheiro, G. A., Silva, J. L. F. da, & Quiles, M. G. (2022). SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, 62( 17), 3948–3960. doi:10.1021/acs.jcim.2c00521
    • NLM

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
    • Vancouver

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
  • Source: Journal of Chemical Information and Modeling. Unidades: FFCLRP, IQSC

    Subjects: ÍONS ELETRÔNICOS, ESTRUTURA ATÔMICA (QUÍMICA TEÓRICA), ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Alex S. et al. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4702–4712, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00748. Acesso em: 08 out. 2025.
    • APA

      Moraes, A. S., Pinheiro, G. A., Lourenço, T. da C., Lopes, M. C., Quiles, M. G., Dias, L. G., & Silva, J. L. F. da. (2022). Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, 62( 19), 4702–4712. doi:10.1021/acs.jcim.2c00748
    • NLM

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
    • Vancouver

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: COMBUSTÍVEIS, COBRE, NANOCOMPOSITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDONÇA, João Paulo A. de et al. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, v. 27, p. 5503-5512, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00957. Acesso em: 08 out. 2025.
    • APA

      Mendonça, J. P. A. de, Calderan, F. V., Lourenço, T. da C., Quiles, M. G., & Silva, J. L. F. da. (2022). Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, 27, 5503-5512. doi:10.1021/acs.jcim.2c00957
    • NLM

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957
    • Vancouver

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025