Filtros : "Journal of Chemical Information and Modeling" "SILVA, JUAREZ LOPES FERREIRA DA" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: ENERGIA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZÁLEZ, José E. et al. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1306–1318, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c01895. Acesso em: 08 out. 2025.
    • APA

      González, J. E., Besse, R., Lima, M. P., & Silva, J. L. F. da. (2024). Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights. Journal of Chemical Information and Modeling, 64( 4), 1306–1318. doi:10.1021/acs.jcim.3c01895
    • NLM

      González JE, Besse R, Lima MP, Silva JLF da. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1306–1318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01895
    • Vancouver

      González JE, Besse R, Lima MP, Silva JLF da. Decoding Van der Waals Impact on Chirality Transfer in Perovskite Structures: Density Functional Theory Insights [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1306–1318.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c01895
  • Fonte: Journal of Chemical Information and Modeling. Unidades: IQSC, FFCLRP

    Assuntos: BIOENGENHARIA, BIOTECNOLOGIA, BIOLOGIA, MATERIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRATI, Ronaldo C. et al. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1107–1111, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c02014. Acesso em: 08 out. 2025.
    • APA

      Prati, R. C., Rodrigues, B. S. M., Aragão, I., Silva, T. A. S. da, Quiles, M. G., & Silva, J. L. F. da. (2024). The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, 64( 4), 1107–1111. doi:10.1021/acs.jcim.3c02014
    • NLM

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
    • Vancouver

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: ENERGIA, MOLÉCULA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Andre F e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, v. 62, p. 817−828, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c01573. Acesso em: 08 out. 2025.
    • APA

      Oliveira, A. F., Silva, J. L. F. da, & Quiles, M. G. (2022). Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, 62, 817−828. doi:10.1021/acs.jcim.1c01573
    • NLM

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
    • Vancouver

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: MODELAGEM MOLECULAR, MOLÉCULA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, v. 62, n. 17, p. 3948–3960, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00521. Acesso em: 08 out. 2025.
    • APA

      Pinheiro, G. A., Silva, J. L. F. da, & Quiles, M. G. (2022). SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, 62( 17), 3948–3960. doi:10.1021/acs.jcim.2c00521
    • NLM

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
    • Vancouver

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
  • Fonte: Journal of Chemical Information and Modeling. Unidades: FFCLRP, IQSC

    Assuntos: ÍONS ELETRÔNICOS, ESTRUTURA ATÔMICA (QUÍMICA TEÓRICA), ENERGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Alex S. et al. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4702–4712, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00748. Acesso em: 08 out. 2025.
    • APA

      Moraes, A. S., Pinheiro, G. A., Lourenço, T. da C., Lopes, M. C., Quiles, M. G., Dias, L. G., & Silva, J. L. F. da. (2022). Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, 62( 19), 4702–4712. doi:10.1021/acs.jcim.2c00748
    • NLM

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
    • Vancouver

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: COMBUSTÍVEIS, COBRE, NANOCOMPOSITOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDONÇA, João Paulo A. de et al. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, v. 27, p. 5503-5512, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00957. Acesso em: 08 out. 2025.
    • APA

      Mendonça, J. P. A. de, Calderan, F. V., Lourenço, T. da C., Quiles, M. G., & Silva, J. L. F. da. (2022). Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles. Journal of Chemical Information and Modeling, 27, 5503-5512. doi:10.1021/acs.jcim.2c00957
    • NLM

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957
    • Vancouver

      Mendonça JPA de, Calderan FV, Lourenço T da C, Quiles MG, Silva JLF da. Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of FiniteSize Particles [Internet]. Journal of Chemical Information and Modeling. 2022 ; 27 5503-5512.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.2c00957
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: METAIS, ADSORÇÃO, FÍSICO-QUÍMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Krys E. A. et al. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, v. 61, n. 5, p. 2294–2301, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00097. Acesso em: 08 out. 2025.
    • APA

      Batista, K. E. A., Soares, M. D., Quiles, M. G., Piotrowski, M. J., & Da Silva, J. L. F. (2021). Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, 61( 5), 2294–2301. doi:10.1021/acs.jcim.1c00097
    • NLM

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
    • Vancouver

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, MINERAÇÃO DE DADOS, FRAMEWORKS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUCELINI, Johnatan et al. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, v. 61, p. 1125-1135, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01267. Acesso em: 08 out. 2025.
    • APA

      Mucelini, J., Quiles, M. G., Prati, R. C., & Silva, J. L. F. da. (2021). Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, 61, 1125-1135. doi:10.1021/acs.jcim.0c01267
    • NLM

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
    • Vancouver

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
  • Fonte: Journal of Chemical Information and Modeling. Unidades: IQSC, IFSC

    Assunto: METAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAIS, Felipe Orlando e ANDRIANI, Karla Furtado e SILVA, Juarez Lopes Ferreira da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, v. 61, n. 7, p. 3411-3420, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00253. Acesso em: 08 out. 2025.
    • APA

      Morais, F. O., Andriani, K. F., & Silva, J. L. F. da. (2021). Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, 61( 7), 3411-3420. doi:10.1021/acs.jcim.1c00253
    • NLM

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
    • Vancouver

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, ALGORITMOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Luis Cesar de et al. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, v. 61, p. 4210−4223, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00503. Acesso em: 08 out. 2025.
    • APA

      Azevedo, L. C. de, Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Prati, R. C. (2021). Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, 61, 4210−4223. doi:10.1021/acs.jcim.1c00503
    • NLM

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
    • Vancouver

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assunto: CLUSTERS

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Krys Elly de Araújo et al. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of Chemical Information and Modeling, v. 60, p. 537-545, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00792. Acesso em: 08 out. 2025.
    • APA

      Batista, K. E. de A., Restrepo, V. k, Soares, M. D., Quiles, M. G., Piotrowski, M. J., & Silva, J. L. F. da. (2020). Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of Chemical Information and Modeling, 60, 537-545. doi:10.1021/acs.jcim.9b00792
    • NLM

      Batista KE de A, Restrepo V k, Soares MD, Quiles MG, Piotrowski MJ, Silva JLF da. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60 537-545.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00792
    • Vancouver

      Batista KE de A, Restrepo V k, Soares MD, Quiles MG, Piotrowski MJ, Silva JLF da. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60 537-545.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/acs.jcim.9b00792
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assunto: NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RONDINA, Gustavo Garcia e SILVA, Juarez Lopes Ferreira da. Revised basin-hopping monte carlo algorithm for structure optimization of clusters and nanoparticles. Journal of Chemical Information and Modeling, v. 53, n. 9, p. 2282-2298, 2013Tradução . . Disponível em: https://doi.org/10.1021/ci400224z. Acesso em: 08 out. 2025.
    • APA

      Rondina, G. G., & Silva, J. L. F. da. (2013). Revised basin-hopping monte carlo algorithm for structure optimization of clusters and nanoparticles. Journal of Chemical Information and Modeling, 53( 9), 2282-2298. doi:10.1021/ci400224z
    • NLM

      Rondina GG, Silva JLF da. Revised basin-hopping monte carlo algorithm for structure optimization of clusters and nanoparticles [Internet]. Journal of Chemical Information and Modeling. 2013 ; 53( 9): 2282-2298.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/ci400224z
    • Vancouver

      Rondina GG, Silva JLF da. Revised basin-hopping monte carlo algorithm for structure optimization of clusters and nanoparticles [Internet]. Journal of Chemical Information and Modeling. 2013 ; 53( 9): 2282-2298.[citado 2025 out. 08 ] Available from: https://doi.org/10.1021/ci400224z

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025