Filtros : "Computational and Applied Mathematics" "Indexado no MathSciNet" Limpar

Filtros



Limitar por data


  • Fonte: Computational and Applied Mathematics. Unidade: ICMC

    Assuntos: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, ESPAÇOS HOMOGÊNEOS, GEOESTATÍSTICA, PROCESSOS ESTACIONÁRIOS, ANÁLISE REAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EMERY, Xavier e PERON, Ana Paula e PORCU, Emilio. Dimension walks on hyperspheres. Computational and Applied Mathematics, v. 41, n. 5, p. 1-22, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40314-022-01912-4. Acesso em: 19 nov. 2025.
    • APA

      Emery, X., Peron, A. P., & Porcu, E. (2022). Dimension walks on hyperspheres. Computational and Applied Mathematics, 41( 5), 1-22. doi:10.1007/s40314-022-01912-4
    • NLM

      Emery X, Peron AP, Porcu E. Dimension walks on hyperspheres [Internet]. Computational and Applied Mathematics. 2022 ; 41( 5): 1-22.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s40314-022-01912-4
    • Vancouver

      Emery X, Peron AP, Porcu E. Dimension walks on hyperspheres [Internet]. Computational and Applied Mathematics. 2022 ; 41( 5): 1-22.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s40314-022-01912-4
  • Fonte: Computational and Applied Mathematics. Unidade: ICMC

    Assuntos: PROBLEMAS INVERSOS, MÉTODOS NUMÉRICOS, ALGORITMOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REDDY, Gujji Murali Mohan et al. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, v. 40, p. 1-26, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40314-021-01454-1. Acesso em: 19 nov. 2025.
    • APA

      Reddy, G. M. M., Nanda, P., Vynnycky, M., & Cuminato, J. A. (2021). An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, 40, 1-26. doi:10.1007/s40314-021-01454-1
    • NLM

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
    • Vancouver

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
  • Fonte: Computational and Applied Mathematics. Unidade: IME

    Assuntos: ANÁLISE NUMÉRICA, INTERPOLAÇÃO, APROXIMAÇÃO NUMÉRICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASCARENHAS, Walter Figueiredo. The divergence of the barycentric Padé interpolants. Computational and Applied Mathematics, v. 34, n. 3, p. 819-830, 2015Tradução . . Disponível em: https://doi.org/10.1007/s40314-014-0144-9. Acesso em: 19 nov. 2025.
    • APA

      Mascarenhas, W. F. (2015). The divergence of the barycentric Padé interpolants. Computational and Applied Mathematics, 34( 3), 819-830. doi:10.1007/s40314-014-0144-9
    • NLM

      Mascarenhas WF. The divergence of the barycentric Padé interpolants [Internet]. Computational and Applied Mathematics. 2015 ; 34( 3): 819-830.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s40314-014-0144-9
    • Vancouver

      Mascarenhas WF. The divergence of the barycentric Padé interpolants [Internet]. Computational and Applied Mathematics. 2015 ; 34( 3): 819-830.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s40314-014-0144-9

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025