A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
VIEIRA, Bárbara Franco et al. Boosting anaerobic lignin degradation in sulfate-reducing systems: roles of co-substrates, nutrients, and metals for advanced lignocellulosic biorefinery. Bioresource Technology, v. 436, p. 1-11, 2025Tradução . . Disponível em: https://dx.doi.org/10.1016/j.biortech.2025.133042. Acesso em: 15 nov. 2025.
APA
Vieira, B. F., Rabelo, C. A. B. da S., Ramos Muñoz, V. M., Zaiat, M., & Fermoso, F. G. (2025). Boosting anaerobic lignin degradation in sulfate-reducing systems: roles of co-substrates, nutrients, and metals for advanced lignocellulosic biorefinery. Bioresource Technology, 436, 1-11. doi:10.1016/j.biortech.2025.133042
NLM
Vieira BF, Rabelo CAB da S, Ramos Muñoz VM, Zaiat M, Fermoso FG. Boosting anaerobic lignin degradation in sulfate-reducing systems: roles of co-substrates, nutrients, and metals for advanced lignocellulosic biorefinery [Internet]. Bioresource Technology. 2025 ; 436 1-11.[citado 2025 nov. 15 ] Available from: https://dx.doi.org/10.1016/j.biortech.2025.133042
Vancouver
Vieira BF, Rabelo CAB da S, Ramos Muñoz VM, Zaiat M, Fermoso FG. Boosting anaerobic lignin degradation in sulfate-reducing systems: roles of co-substrates, nutrients, and metals for advanced lignocellulosic biorefinery [Internet]. Bioresource Technology. 2025 ; 436 1-11.[citado 2025 nov. 15 ] Available from: https://dx.doi.org/10.1016/j.biortech.2025.133042
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SILVA, Thobias Pereira et al. Anaerobic Digestion Model No. 1 applied to bioenergy generation from fruit and vegetable waste in Upflow Anaerobic Sludge Blanket reactors. Bioresource Technology, v. 432, p. 1-13, 2025Tradução . . Disponível em: https://dx.doi.org/10.1016/j.biortech.2025.132644. Acesso em: 15 nov. 2025.
APA
Silva, T. P., Silva Júnior, F. das C. G. da, Gehring, T. A., Menezes, C. A. de, Almeida, P. de S., Zaiat, M., et al. (2025). Anaerobic Digestion Model No. 1 applied to bioenergy generation from fruit and vegetable waste in Upflow Anaerobic Sludge Blanket reactors. Bioresource Technology, 432, 1-13. doi:10.1016/j.biortech.2025.132644
NLM
Silva TP, Silva Júnior F das CG da, Gehring TA, Menezes CA de, Almeida P de S, Zaiat M, Santos AB dos, Leitao RC. Anaerobic Digestion Model No. 1 applied to bioenergy generation from fruit and vegetable waste in Upflow Anaerobic Sludge Blanket reactors [Internet]. Bioresource Technology. 2025 ; 432 1-13.[citado 2025 nov. 15 ] Available from: https://dx.doi.org/10.1016/j.biortech.2025.132644
Vancouver
Silva TP, Silva Júnior F das CG da, Gehring TA, Menezes CA de, Almeida P de S, Zaiat M, Santos AB dos, Leitao RC. Anaerobic Digestion Model No. 1 applied to bioenergy generation from fruit and vegetable waste in Upflow Anaerobic Sludge Blanket reactors [Internet]. Bioresource Technology. 2025 ; 432 1-13.[citado 2025 nov. 15 ] Available from: https://dx.doi.org/10.1016/j.biortech.2025.132644
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GIACON, Thamiris Guerra et al. Lignocellulosic hydrolysate composition influences contamination profiles in ethanol production. Bioresource Technology, v. No 2025, p. 1-11, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2025.132838. Acesso em: 15 nov. 2025.
APA
Giacon, T. G., Vilela, N., Trivellin, C., Basso, T. O., & Olsson, L. (2025). Lignocellulosic hydrolysate composition influences contamination profiles in ethanol production. Bioresource Technology, No 2025, 1-11. doi:10.1016/j.biortech.2025.132838
NLM
Giacon TG, Vilela N, Trivellin C, Basso TO, Olsson L. Lignocellulosic hydrolysate composition influences contamination profiles in ethanol production [Internet]. Bioresource Technology. 2025 ; No 2025 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2025.132838
Vancouver
Giacon TG, Vilela N, Trivellin C, Basso TO, Olsson L. Lignocellulosic hydrolysate composition influences contamination profiles in ethanol production [Internet]. Bioresource Technology. 2025 ; No 2025 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2025.132838
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANTOS-OLIVEIRA, Pedro Henrique et al. Oxidation of propionate in Pseudomonas sp. LFM046: relevance to the synthesis of polyhydroxyalkanoates containing odd-chain length monomers and 2-methylisocitrate. Bioresource Technology, v. 391, p. 10 , 2024Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2023.129944. Acesso em: 15 nov. 2025.
APA
Santos-Oliveira, P. H., Machado, N. F. G., Oliveira, R. D. de, Blank, L. M., Carrillo Le Roux, G. A., Silva, L. F. da, & Gomez, J. G. C. (2024). Oxidation of propionate in Pseudomonas sp. LFM046: relevance to the synthesis of polyhydroxyalkanoates containing odd-chain length monomers and 2-methylisocitrate. Bioresource Technology, 391, 10 . doi:10.1016/j.biortech.2023.129944
NLM
Santos-Oliveira PH, Machado NFG, Oliveira RD de, Blank LM, Carrillo Le Roux GA, Silva LF da, Gomez JGC. Oxidation of propionate in Pseudomonas sp. LFM046: relevance to the synthesis of polyhydroxyalkanoates containing odd-chain length monomers and 2-methylisocitrate [Internet]. Bioresource Technology. 2024 ; 391 10 .[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.129944
Vancouver
Santos-Oliveira PH, Machado NFG, Oliveira RD de, Blank LM, Carrillo Le Roux GA, Silva LF da, Gomez JGC. Oxidation of propionate in Pseudomonas sp. LFM046: relevance to the synthesis of polyhydroxyalkanoates containing odd-chain length monomers and 2-methylisocitrate [Internet]. Bioresource Technology. 2024 ; 391 10 .[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.129944
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OLIVA, Bianca et al. Recombinant cellobiose dehydrogenase from thermothelomyces thermophilus: its functional characterization and applicability in cellobionic acid production. Bioresource Technology, v. 402, p. 130763-1-130763-11 + supplementary data, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2024.130763. Acesso em: 15 nov. 2025.
APA
Oliva, B., Mendoza, J. A. V., Berto, G. L., Polikarpov, I., Oliveira, L. C. de, & Segato, F. (2024). Recombinant cellobiose dehydrogenase from thermothelomyces thermophilus: its functional characterization and applicability in cellobionic acid production. Bioresource Technology, 402, 130763-1-130763-11 + supplementary data. doi:10.1016/j.biortech.2024.130763
NLM
Oliva B, Mendoza JAV, Berto GL, Polikarpov I, Oliveira LC de, Segato F. Recombinant cellobiose dehydrogenase from thermothelomyces thermophilus: its functional characterization and applicability in cellobionic acid production [Internet]. Bioresource Technology. 2024 ; 402 130763-1-130763-11 + supplementary data.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2024.130763
Vancouver
Oliva B, Mendoza JAV, Berto GL, Polikarpov I, Oliveira LC de, Segato F. Recombinant cellobiose dehydrogenase from thermothelomyces thermophilus: its functional characterization and applicability in cellobionic acid production [Internet]. Bioresource Technology. 2024 ; 402 130763-1-130763-11 + supplementary data.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2024.130763
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MARTINS, Guilherme Lucio et al. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes. Bioresource Technology, v. 376, p. 1-9, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2023.128842. Acesso em: 15 nov. 2025.
APA
Martins, G. L., Souza, A. J. de, Mendes, L. W., Gontijo, J. B., Rodrigues, M. M., Coscione, A. R., et al. (2023). Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes. Bioresource Technology, 376, 1-9. doi:10.1016/j.biortech.2023.128842
NLM
Martins GL, Souza AJ de, Mendes LW, Gontijo JB, Rodrigues MM, Coscione AR, Oliveira FC, Regitano JB. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes [Internet]. Bioresource Technology. 2023 ; 376 1-9.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.128842
Vancouver
Martins GL, Souza AJ de, Mendes LW, Gontijo JB, Rodrigues MM, Coscione AR, Oliveira FC, Regitano JB. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes [Internet]. Bioresource Technology. 2023 ; 376 1-9.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.128842
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OLIVEIRA, Eduardo Paniguel et al. Biofilm stratification and autotrophic-heterotrophic interactions in a structured bed reactor (SBRIA) for carbon and nitrogen removal. Bioresource Technology, v. 372, p. 8 on-line, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2023.128639. Acesso em: 15 nov. 2025.
APA
Oliveira, E. P., Giordani, A., Kawanishi, J., Souza, T. S. O. de, Okada, D. Y., Brucha, G., & Moura, R. B. de. (2023). Biofilm stratification and autotrophic-heterotrophic interactions in a structured bed reactor (SBRIA) for carbon and nitrogen removal. Bioresource Technology, 372, 8 on-line. doi:10.1016/j.biortech.2023.128639
NLM
Oliveira EP, Giordani A, Kawanishi J, Souza TSO de, Okada DY, Brucha G, Moura RB de. Biofilm stratification and autotrophic-heterotrophic interactions in a structured bed reactor (SBRIA) for carbon and nitrogen removal [Internet]. Bioresource Technology. 2023 ; 372 8 on-line.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.128639
Vancouver
Oliveira EP, Giordani A, Kawanishi J, Souza TSO de, Okada DY, Brucha G, Moura RB de. Biofilm stratification and autotrophic-heterotrophic interactions in a structured bed reactor (SBRIA) for carbon and nitrogen removal [Internet]. Bioresource Technology. 2023 ; 372 8 on-line.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.128639
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BICELLI, Larissa Garcez et al. Microbial interactions and nitrogen removal performance in an intermittently rotating biological contactor treating mature landfill leachate. Bioresource Technology, v. 389, p. 8 on-line, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2023.129797. Acesso em: 15 nov. 2025.
APA
Bicelli, L. G., Giordani, A., Augusto, M. R., Okada, D. Y., Moura, R. B. de, Vich, D. V., et al. (2023). Microbial interactions and nitrogen removal performance in an intermittently rotating biological contactor treating mature landfill leachate. Bioresource Technology, 389, 8 on-line. doi:10.1016/j.biortech.2023.129797
NLM
Bicelli LG, Giordani A, Augusto MR, Okada DY, Moura RB de, Vich DV, Contrera RC, Cano V, Souza TSO de. Microbial interactions and nitrogen removal performance in an intermittently rotating biological contactor treating mature landfill leachate [Internet]. Bioresource Technology. 2023 ; 389 8 on-line.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.129797
Vancouver
Bicelli LG, Giordani A, Augusto MR, Okada DY, Moura RB de, Vich DV, Contrera RC, Cano V, Souza TSO de. Microbial interactions and nitrogen removal performance in an intermittently rotating biological contactor treating mature landfill leachate [Internet]. Bioresource Technology. 2023 ; 389 8 on-line.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2023.129797
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MUSSAGY, Cassamo Ussemane et al. A look into Phaffia rhodozyma biorefinery: from the recovery and fractionation of carotenoids, lipids and proteins to the sustainable manufacturing of biologically active bioplastics. Bioresource Technology, v. 362, p. 1-11, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2022.127785. Acesso em: 15 nov. 2025.
APA
Mussagy, C. U., Remonatto, D., Picheli, F. P., Paula, A. V., Herculano, R. D., Ebinuma, V. de C. S., et al. (2022). A look into Phaffia rhodozyma biorefinery: from the recovery and fractionation of carotenoids, lipids and proteins to the sustainable manufacturing of biologically active bioplastics. Bioresource Technology, 362, 1-11. doi:10.1016/j.biortech.2022.127785
NLM
Mussagy CU, Remonatto D, Picheli FP, Paula AV, Herculano RD, Ebinuma V de CS, Farias RL de, Onishi BSD, Ribeiro SJL, Pereira JFB, Pessoa Junior A. A look into Phaffia rhodozyma biorefinery: from the recovery and fractionation of carotenoids, lipids and proteins to the sustainable manufacturing of biologically active bioplastics [Internet]. Bioresource Technology. 2022 ; 362 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2022.127785
Vancouver
Mussagy CU, Remonatto D, Picheli FP, Paula AV, Herculano RD, Ebinuma V de CS, Farias RL de, Onishi BSD, Ribeiro SJL, Pereira JFB, Pessoa Junior A. A look into Phaffia rhodozyma biorefinery: from the recovery and fractionation of carotenoids, lipids and proteins to the sustainable manufacturing of biologically active bioplastics [Internet]. Bioresource Technology. 2022 ; 362 1-11.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2022.127785
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MUSSAGY, Cassamo U et al. An eco-friendly approach for the recovery of astaxanthin and β-carotene fromPhaffia rhodozyma biomass using bio-based solvents. Bioresource Technology, v. 345, p. 1-12 art. 126555, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2021.126555. Acesso em: 15 nov. 2025.
APA
Mussagy, C. U., Kurnia, K. A., Dias, A. C. R. V., Raghavan, V., Ebinuma, V. de C. S., & Pessoa Junior, A. (2022). An eco-friendly approach for the recovery of astaxanthin and β-carotene fromPhaffia rhodozyma biomass using bio-based solvents. Bioresource Technology, 345, 1-12 art. 126555. doi:10.1016/j.biortech.2021.126555
NLM
Mussagy CU, Kurnia KA, Dias ACRV, Raghavan V, Ebinuma V de CS, Pessoa Junior A. An eco-friendly approach for the recovery of astaxanthin and β-carotene fromPhaffia rhodozyma biomass using bio-based solvents [Internet]. Bioresource Technology. 2022 ; 345 1-12 art. 126555.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.126555
Vancouver
Mussagy CU, Kurnia KA, Dias ACRV, Raghavan V, Ebinuma V de CS, Pessoa Junior A. An eco-friendly approach for the recovery of astaxanthin and β-carotene fromPhaffia rhodozyma biomass using bio-based solvents [Internet]. Bioresource Technology. 2022 ; 345 1-12 art. 126555.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.126555
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
KUNIYOSHI, Taís Mayumi et al. Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse. Bioresource Technology, v. 338, p. 1-12 art. 125565, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2021.125565. Acesso em: 15 nov. 2025.
APA
Kuniyoshi, T. M., Mendonça, C. M. N., Vieira, V. B., Robl, D., Franco, B. D. G. de M., Todorov, S. D., et al. (2021). Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse. Bioresource Technology, 338, 1-12 art. 125565. doi:10.1016/j.biortech.2021.125565
NLM
Kuniyoshi TM, Mendonça CMN, Vieira VB, Robl D, Franco BDG de M, Todorov SD, Tomé E, O\2019Connor PM, Converti A, Araújo WL de, Vasconcellos LPSP, Varani A de M, Cotter PD, Rabelo SC, Oliveira RP de S. Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse [Internet]. Bioresource Technology. 2021 ; 338 1-12 art. 125565.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.125565
Vancouver
Kuniyoshi TM, Mendonça CMN, Vieira VB, Robl D, Franco BDG de M, Todorov SD, Tomé E, O\2019Connor PM, Converti A, Araújo WL de, Vasconcellos LPSP, Varani A de M, Cotter PD, Rabelo SC, Oliveira RP de S. Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse [Internet]. Bioresource Technology. 2021 ; 338 1-12 art. 125565.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.125565
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GRACIOSO, Louise Hase et al. Light excess stimulates Poly-beta-hydroxybutyrate yield in a mangrove-isolated strain of Synechocystis sp. Bioresource Technology, v. 320, p. 1-7, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2020.124379. Acesso em: 15 nov. 2025.
APA
Gracioso, L. H., Bellan, A., Karolski, B., Cardoso, L. O. B., Perpetuo, E. A., Nascimento, C. A. O. do, et al. (2021). Light excess stimulates Poly-beta-hydroxybutyrate yield in a mangrove-isolated strain of Synechocystis sp. Bioresource Technology, 320, 1-7. doi:10.1016/j.biortech.2020.124379
NLM
Gracioso LH, Bellan A, Karolski B, Cardoso LOB, Perpetuo EA, Nascimento CAO do, Giudici R, Pizzocchero V, Basaglia M, Morosinotto T. Light excess stimulates Poly-beta-hydroxybutyrate yield in a mangrove-isolated strain of Synechocystis sp [Internet]. Bioresource Technology. 2021 ; 320 1-7.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2020.124379
Vancouver
Gracioso LH, Bellan A, Karolski B, Cardoso LOB, Perpetuo EA, Nascimento CAO do, Giudici R, Pizzocchero V, Basaglia M, Morosinotto T. Light excess stimulates Poly-beta-hydroxybutyrate yield in a mangrove-isolated strain of Synechocystis sp [Internet]. Bioresource Technology. 2021 ; 320 1-7.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2020.124379
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
FONSECA, Bruna Constante et al. Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step. Bioresource Technology, v. 329, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2021.124929. Acesso em: 15 nov. 2025.
APA
Fonseca, B. C., Reginatto, V., López-Linares, J. C., Lucas, S., García-Cubero, M. T., & Coca, M. (2021). Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step. Bioresource Technology, 329. doi:10.1016/j.biortech.2021.124929
NLM
Fonseca BC, Reginatto V, López-Linares JC, Lucas S, García-Cubero MT, Coca M. Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step [Internet]. Bioresource Technology. 2021 ; 329[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.124929
Vancouver
Fonseca BC, Reginatto V, López-Linares JC, Lucas S, García-Cubero MT, Coca M. Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step [Internet]. Bioresource Technology. 2021 ; 329[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.124929
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OLIVEIRA FILHO, Edmar Ramos et al. Burkholderia sacchari (synonym Paraburkholderia sacchari): an industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. Bioresource Technology, v. 337, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2021.125472. Acesso em: 15 nov. 2025.
APA
Oliveira Filho, E. R., Gomez, J. G. C., Taciro, M. K., & Silva, L. F. da. (2021). Burkholderia sacchari (synonym Paraburkholderia sacchari): an industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. Bioresource Technology, 337, 1-14. doi:10.1016/j.biortech.2021.125472
NLM
Oliveira Filho ER, Gomez JGC, Taciro MK, Silva LF da. Burkholderia sacchari (synonym Paraburkholderia sacchari): an industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts [Internet]. Bioresource Technology. 2021 ; 337 1-14.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.125472
Vancouver
Oliveira Filho ER, Gomez JGC, Taciro MK, Silva LF da. Burkholderia sacchari (synonym Paraburkholderia sacchari): an industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts [Internet]. Bioresource Technology. 2021 ; 337 1-14.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.125472
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LIU, Enshi et al. Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids. Bioresource Technology, v. 338, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2021.125564. Acesso em: 15 nov. 2025.
APA
Liu, E., Segato, F., Prade, R. A., & Wilkins, M. R. (2021). Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids. Bioresource Technology, 338. doi:10.1016/j.biortech.2021.125564
NLM
Liu E, Segato F, Prade RA, Wilkins MR. Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids [Internet]. Bioresource Technology. 2021 ; 338[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.125564
Vancouver
Liu E, Segato F, Prade RA, Wilkins MR. Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids [Internet]. Bioresource Technology. 2021 ; 338[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2021.125564
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PUTRINO, Fernando Marques et al. Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Bioresource Technology, v. 309, p. 1-7, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2020.123387. Acesso em: 15 nov. 2025.
APA
Putrino, F. M., Tedesco, M. P., Bodini, R. B., & Oliveira, A. L. de. (2020). Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Bioresource Technology, 309, 1-7. doi:10.1016/j.biortech.2020.123387
NLM
Putrino FM, Tedesco MP, Bodini RB, Oliveira AL de. Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose [Internet]. Bioresource Technology. 2020 ; 309 1-7.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2020.123387
Vancouver
Putrino FM, Tedesco MP, Bodini RB, Oliveira AL de. Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose [Internet]. Bioresource Technology. 2020 ; 309 1-7.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2020.123387
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
JIMENEZ, Itzcoatl Muñoz et al. Comparative data on effects of alkaline pretreatments and enzymatic hydrolysis on bioemulsifier production from sugarcane straw by Cutaneotrichosporon mucoides. Bioresource Technology, v. 301, p. 122706-122710, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2019.122706. Acesso em: 15 nov. 2025.
APA
Jimenez, I. M., Chandel, A. K., Marcelino, P. R. F., Anjos, V., Costa, C. B., Bell, M. J. V., et al. (2020). Comparative data on effects of alkaline pretreatments and enzymatic hydrolysis on bioemulsifier production from sugarcane straw by Cutaneotrichosporon mucoides. Bioresource Technology, 301, 122706-122710. doi:10.1016/j.biortech.2019.122706
NLM
Jimenez IM, Chandel AK, Marcelino PRF, Anjos V, Costa CB, Bell MJV, Pereira B, Silva SS da. Comparative data on effects of alkaline pretreatments and enzymatic hydrolysis on bioemulsifier production from sugarcane straw by Cutaneotrichosporon mucoides [Internet]. Bioresource Technology. 2020 ; 301 122706-122710.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2019.122706
Vancouver
Jimenez IM, Chandel AK, Marcelino PRF, Anjos V, Costa CB, Bell MJV, Pereira B, Silva SS da. Comparative data on effects of alkaline pretreatments and enzymatic hydrolysis on bioemulsifier production from sugarcane straw by Cutaneotrichosporon mucoides [Internet]. Bioresource Technology. 2020 ; 301 122706-122710.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2019.122706
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BUENO, Beatriz Egerland et al. Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. Bioresource Technology, v. 312, p. 1-10, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.biortech.2020.123552. Acesso em: 15 nov. 2025.
APA
Bueno, B. E., Soares, L. A., Quispe-Arpasia, D., Sakamoto, I. K., Zhang, Y., Varesche, M. B. A., et al. (2020). Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. Bioresource Technology, 312, 1-10. doi:10.1016/j.biortech.2020.123552
NLM
Bueno BE, Soares LA, Quispe-Arpasia D, Sakamoto IK, Zhang Y, Varesche MBA, Ribeiro R, Tommaso G. Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge [Internet]. Bioresource Technology. 2020 ; 312 1-10.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2020.123552
Vancouver
Bueno BE, Soares LA, Quispe-Arpasia D, Sakamoto IK, Zhang Y, Varesche MBA, Ribeiro R, Tommaso G. Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge [Internet]. Bioresource Technology. 2020 ; 312 1-10.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.biortech.2020.123552