Filtros : "Journal of Differential Equations" "OLIVEIRA, REGILENE DELAZARI DOS SANTOS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, GEOMETRIA ALGÉBRICA REAL

    Disponível em 01/12/2026Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DALBELO, Thaís Maria e OLIVEIRA, Regilene Delazari dos Santos e PEREZ, Otavio Henrique. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, v. No 2024, p. 230-253, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.06.028. Acesso em: 08 out. 2025.
    • APA

      Dalbelo, T. M., Oliveira, R. D. dos S., & Perez, O. H. (2024). Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, No 2024, 230-253. doi:10.1016/j.jde.2024.06.028
    • NLM

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
    • Vancouver

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. First-order perturbation for multi-parameter center families. Journal of Differential Equations, v. 309, p. 291-310, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.035. Acesso em: 08 out. 2025.
    • APA

      Itikawa, J., Oliveira, R. D. dos S., & Torregrosa, J. (2022). First-order perturbation for multi-parameter center families. Journal of Differential Equations, 309, 291-310. doi:10.1016/j.jde.2021.11.035
    • NLM

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
    • Vancouver

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid Sofia e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse Bott integrable systems on surfaces. Journal of Differential Equations, v. 260, n. Ja 2016, p. 688-707, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2015.09.008. Acesso em: 08 out. 2025.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2016). Singular levels and topological invariants of Morse Bott integrable systems on surfaces. Journal of Differential Equations, 260( Ja 2016), 688-707. doi:10.1016/j.jde.2015.09.008
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse Bott integrable systems on surfaces [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 688-707.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2015.09.008
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse Bott integrable systems on surfaces [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 688-707.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2015.09.008

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025