Filtros : "Financiamento Shell" "APRENDIZADO COMPUTACIONAL" Limpar

Filtros



Refine with date range


  • Source: Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science.. Unidade: IQSC

    Subjects: POLÍMEROS (MATERIAIS), APRENDIZADO COMPUTACIONAL, MATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. et al. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science. Tradução . Cham: Springer, 2026. . Disponível em: https://link.springer.com/chapter/10.1007/978-3-032-06118-8_25#Sec2. Acesso em: 11 nov. 2025.
    • APA

      Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Fern, X. Z. (2026). Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. In Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science.. Cham: Springer. doi:10.1007/978-3-032-06118-8_25
    • NLM

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. In: Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science. Cham: Springer; 2026. [citado 2025 nov. 11 ] Available from: https://link.springer.com/chapter/10.1007/978-3-032-06118-8_25#Sec2
    • Vancouver

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. In: Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science. Cham: Springer; 2026. [citado 2025 nov. 11 ] Available from: https://link.springer.com/chapter/10.1007/978-3-032-06118-8_25#Sec2
  • Source: Corvallis : College of Engineering Oregon State University, 2024. Conference titles: Chemical, Biological, and Environmental Engineering Seminar - CBEE. Unidade: IQSC

    Subjects: POLÍMEROS (MATERIAIS), APRENDIZADO COMPUTACIONAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. et al. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. 2024, Anais.. Corvallis: Instituto de Química de São Carlos, Universidade de São Paulo, 2024. Disponível em: https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf. Acesso em: 11 nov. 2025.
    • APA

      Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Fern, X. Z. (2024). Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. In Corvallis : College of Engineering Oregon State University, 2024. Corvallis: Instituto de Química de São Carlos, Universidade de São Paulo. Recuperado de https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf
    • NLM

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. Corvallis : College of Engineering Oregon State University, 2024. 2024 ;[citado 2025 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf
    • Vancouver

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. Corvallis : College of Engineering Oregon State University, 2024. 2024 ;[citado 2025 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025