Filtros : "Pinheiro, Gabriel A." Limpar

Filtros



Limitar por data


  • Fonte: Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science.. Unidade: IQSC

    Assuntos: POLÍMEROS (MATERIAIS), APRENDIZADO COMPUTACIONAL, MATERIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. et al. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science. Tradução . Cham: Springer, 2026. . Disponível em: https://link.springer.com/chapter/10.1007/978-3-032-06118-8_25#Sec2. Acesso em: 03 dez. 2025.
    • APA

      Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Fern, X. Z. (2026). Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. In Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science.. Cham: Springer. doi:10.1007/978-3-032-06118-8_25
    • NLM

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. In: Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science. Cham: Springer; 2026. [citado 2025 dez. 03 ] Available from: https://link.springer.com/chapter/10.1007/978-3-032-06118-8_25#Sec2
    • Vancouver

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. In: Machine learning and knowledge discovery in databases.Applied Data Science Track. ECML PKDD 2025. Lecture Notes in Computer Science. Cham: Springer; 2026. [citado 2025 dez. 03 ] Available from: https://link.springer.com/chapter/10.1007/978-3-032-06118-8_25#Sec2
  • Fonte: Proceedings. Nome do evento: International Conference on Computational Science and Its Applications. Unidade: IQSC

    Assuntos: MOLÉCULA, APRENDIZADO COMPUTACIONAL, CIÊNCIA DA COMPUTAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUILES, Marcos G. et al. Enhancing low-cost molecular property prediction with contrastive learning on SMILES representations. 2024, Anais.. Cham: Springer, 2024. Disponível em: https://doi.org/10.1007/978-3-031-65329-2_26. Acesso em: 03 dez. 2025.
    • APA

      Quiles, M. G., Ribeiro, P. A. L., Pinheiro, G. A., Prati, R., & Silva, J. L. F. da. (2024). Enhancing low-cost molecular property prediction with contrastive learning on SMILES representations. In Proceedings. Cham: Springer. doi:10.1007/978-3-031-65329-2_26
    • NLM

      Quiles MG, Ribeiro PAL, Pinheiro GA, Prati R, Silva JLF da. Enhancing low-cost molecular property prediction with contrastive learning on SMILES representations [Internet]. Proceedings. 2024 ;[citado 2025 dez. 03 ] Available from: https://doi.org/10.1007/978-3-031-65329-2_26
    • Vancouver

      Quiles MG, Ribeiro PAL, Pinheiro GA, Prati R, Silva JLF da. Enhancing low-cost molecular property prediction with contrastive learning on SMILES representations [Internet]. Proceedings. 2024 ;[citado 2025 dez. 03 ] Available from: https://doi.org/10.1007/978-3-031-65329-2_26
  • Fonte: Corvallis : College of Engineering Oregon State University, 2024. Nome do evento: Chemical, Biological, and Environmental Engineering Seminar - CBEE. Unidade: IQSC

    Assuntos: POLÍMEROS (MATERIAIS), APRENDIZADO COMPUTACIONAL

    Versão PublicadaComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. et al. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. 2024, Anais.. Corvallis: Instituto de Química de São Carlos, Universidade de São Paulo, 2024. Disponível em: https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf. Acesso em: 03 dez. 2025.
    • APA

      Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Fern, X. Z. (2024). Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning. In Corvallis : College of Engineering Oregon State University, 2024. Corvallis: Instituto de Química de São Carlos, Universidade de São Paulo. Recuperado de https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf
    • NLM

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. Corvallis : College of Engineering Oregon State University, 2024. 2024 ;[citado 2025 dez. 03 ] Available from: https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf
    • Vancouver

      Pinheiro GA, Quiles MG, Silva JLF da, Fern XZ. Mitigating data scarcity in polymer property prediction via multi-task auxiliary learning [Internet]. Corvallis : College of Engineering Oregon State University, 2024. 2024 ;[citado 2025 dez. 03 ] Available from: https://repositorio.usp.br/directbitstream/6d62f8cb-1d90-47c2-bf5f-e454e6e85238/P22205.pdf
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: MODELAGEM MOLECULAR, MOLÉCULA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, v. 62, n. 17, p. 3948–3960, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00521. Acesso em: 03 dez. 2025.
    • APA

      Pinheiro, G. A., Silva, J. L. F. da, & Quiles, M. G. (2022). SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, 62( 17), 3948–3960. doi:10.1021/acs.jcim.2c00521
    • NLM

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
    • Vancouver

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
  • Fonte: Journal of Chemical Information and Modeling. Unidades: FFCLRP, IQSC

    Assuntos: ÍONS ELETRÔNICOS, ESTRUTURA ATÔMICA (QUÍMICA TEÓRICA), ENERGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Alex S. et al. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4702–4712, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00748. Acesso em: 03 dez. 2025.
    • APA

      Moraes, A. S., Pinheiro, G. A., Lourenço, T. da C., Lopes, M. C., Quiles, M. G., Dias, L. G., & Silva, J. L. F. da. (2022). Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, 62( 19), 4702–4712. doi:10.1021/acs.jcim.2c00748
    • NLM

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
    • Vancouver

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, ALGORITMOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Luis Cesar de et al. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, v. 61, p. 4210−4223, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00503. Acesso em: 03 dez. 2025.
    • APA

      Azevedo, L. C. de, Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Prati, R. C. (2021). Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, 61, 4210−4223. doi:10.1021/acs.jcim.1c00503
    • NLM

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
    • Vancouver

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
  • Fonte: Journal of Physical Chemistry A. Unidades: IQSC, ICMC

    Assunto: QUÍMICA QUÂNTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. et al. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset. Journal of Physical Chemistry A, v. No 2020, n. 47, p. 9854–9866, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jpca.0c05969. Acesso em: 03 dez. 2025.
    • APA

      Pinheiro, G. A., Mucelini, J., Soares, M. D., Prati, R. C., Silva, J. L. F. da, & Quiles, M. G. (2020). Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset. Journal of Physical Chemistry A, No 2020( 47), 9854–9866. doi:10.1021/acs.jpca.0c05969
    • NLM

      Pinheiro GA, Mucelini J, Soares MD, Prati RC, Silva JLF da, Quiles MG. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset [Internet]. Journal of Physical Chemistry A. 2020 ; No 2020( 47): 9854–9866.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jpca.0c05969
    • Vancouver

      Pinheiro GA, Mucelini J, Soares MD, Prati RC, Silva JLF da, Quiles MG. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset [Internet]. Journal of Physical Chemistry A. 2020 ; No 2020( 47): 9854–9866.[citado 2025 dez. 03 ] Available from: https://doi.org/10.1021/acs.jpca.0c05969

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025