Filtros : "Stochastic Processes and their Applications" "Financiado pela FAPESP" Limpar

Filtros



Limitar por data


  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: GRANDES DESVIOS, TEOREMAS LIMITES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, v. 137, p. 149-166, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2021.03.011. Acesso em: 09 nov. 2025.
    • APA

      Logachov, A., Mogulskii, A., Prokopenko, E. I., & Yambartsev, A. (2021). Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, 137, 149-166. doi:10.1016/j.spa.2021.03.011
    • NLM

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
    • Vancouver

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS, PERCOLAÇÃO

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MOUNTFORD, Thomas S e VARES, Maria Eulalia. Contact process under renewals II. Stochastic Processes and their Applications, v. 130, n. 2, p. 1103-1118, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2019.04.008. Acesso em: 09 nov. 2025.
    • APA

      Fontes, L. R., Mountford, T. S., & Vares, M. E. (2020). Contact process under renewals II. Stochastic Processes and their Applications, 130( 2), 1103-1118. doi:10.1016/j.spa.2019.04.008
    • NLM

      Fontes LR, Mountford TS, Vares ME. Contact process under renewals II [Internet]. Stochastic Processes and their Applications. 2020 ; 130( 2): 1103-1118.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2019.04.008
    • Vancouver

      Fontes LR, Mountford TS, Vares ME. Contact process under renewals II [Internet]. Stochastic Processes and their Applications. 2020 ; 130( 2): 1103-1118.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2019.04.008
  • Fonte: Stochastic Processes and their Applications. Unidades: IF, IME

    Assuntos: MECÂNICA ESTATÍSTICA, PERCOLAÇÃO

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MARCHETTI, Domingos Humberto Urbano e MOUNTFORD, Thomas S. Contact process under renewals I. Stochastic Processes and their Applications, v. 129, n. 8, p. 2903-2911, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2018.08.007. Acesso em: 09 nov. 2025.
    • APA

      Fontes, L. R., Marchetti, D. H. U., & Mountford, T. S. (2019). Contact process under renewals I. Stochastic Processes and their Applications, 129( 8), 2903-2911. doi:10.1016/j.spa.2018.08.007
    • NLM

      Fontes LR, Marchetti DHU, Mountford TS. Contact process under renewals I [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 8): 2903-2911.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2018.08.007
    • Vancouver

      Fontes LR, Marchetti DHU, Mountford TS. Contact process under renewals I [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 8): 2903-2911.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2018.08.007
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEVALLIER, J et al. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, v. 129, n. 1, p. 1-27, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2018.02.007. Acesso em: 09 nov. 2025.
    • APA

      Chevallier, J., Duarte, A., Löcherbach, E., & Ost, G. (2019). Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, 129( 1), 1-27. doi:10.1016/j.spa.2018.02.007
    • NLM

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
    • Vancouver

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: ESTATÍSTICA E PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHUTZ, G. M. Self-duality and shock dynamics in the n-species priority ASEP. Stochastic Processes and their Applications, v. 128, n. 4, p. 1165-1207, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2017.07.003. Acesso em: 09 nov. 2025.
    • APA

      Belitsky, V., & Schutz, G. M. (2018). Self-duality and shock dynamics in the n-species priority ASEP. Stochastic Processes and their Applications, 128( 4), 1165-1207. doi:10.1016/j.spa.2017.07.003
    • NLM

      Belitsky V, Schutz GM. Self-duality and shock dynamics in the n-species priority ASEP [Internet]. Stochastic Processes and their Applications. 2018 ; 128( 4): 1165-1207.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2017.07.003
    • Vancouver

      Belitsky V, Schutz GM. Self-duality and shock dynamics in the n-species priority ASEP [Internet]. Stochastic Processes and their Applications. 2018 ; 128( 4): 1165-1207.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2017.07.003
  • Fonte: Stochastic Processes and their Applications. Unidade: IME

    Assuntos: MECÂNICA ESTATÍSTICA, RETICULADOS, MODELO DE ISING, MUDANÇA DE FASE

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e ENDO, Eric Ossami e VAN ENTER, Aernout C.D. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields. Stochastic Processes and their Applications, v. 127, p. 4126-4138, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2017.03.023. Acesso em: 09 nov. 2025.
    • APA

      Bissacot, R., Endo, E. O., & van Enter, A. C. D. (2017). Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields. Stochastic Processes and their Applications, 127, 4126-4138. doi:10.1016/j.spa.2017.03.023
    • NLM

      Bissacot R, Endo EO, van Enter ACD. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields [Internet]. Stochastic Processes and their Applications. 2017 ; 127 4126-4138.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2017.03.023
    • Vancouver

      Bissacot R, Endo EO, van Enter ACD. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields [Internet]. Stochastic Processes and their Applications. 2017 ; 127 4126-4138.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2017.03.023

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025