Filtros : "Stochastic Processes and their Applications" "PROCESSOS ESTOCÁSTICOS" Limpar

Filtros



Refine with date range


  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: ANÁLISE MULTIVARIADA, CAMPOS ALEATÓRIOS MARKOVIANOS, PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEONARDI, Florencia Graciela e SEVERINO, Magno Tairone de Freitas. Model selection for Markov random fields on graphs under a mixing condition. Stochastic Processes and their Applications, v. 180, n. artigo 104523, p. 1-12, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104523. Acesso em: 09 nov. 2025.
    • APA

      Leonardi, F. G., & Severino, M. T. de F. (2025). Model selection for Markov random fields on graphs under a mixing condition. Stochastic Processes and their Applications, 180( artigo 104523), 1-12. doi:10.1016/j.spa.2024.104523
    • NLM

      Leonardi FG, Severino MT de F. Model selection for Markov random fields on graphs under a mixing condition [Internet]. Stochastic Processes and their Applications. 2025 ; 180( artigo 104523): 1-12.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2024.104523
    • Vancouver

      Leonardi FG, Severino MT de F. Model selection for Markov random fields on graphs under a mixing condition [Internet]. Stochastic Processes and their Applications. 2025 ; 180( artigo 104523): 1-12.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2024.104523
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, TEORIA DA RENOVAÇÃO, PERCOLAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato Gonçalves et al. Renewal contact processes: phase transition and survival. Stochastic Processes and their Applications, v. 161, p. 102-136-, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2023.03.005. Acesso em: 09 nov. 2025.
    • APA

      Fontes, L. R. G., Mountford, T. S., Ungaretti, D., & Vares, M. E. (2023). Renewal contact processes: phase transition and survival. Stochastic Processes and their Applications, 161, 102-136-. doi:10.1016/j.spa.2023.03.005
    • NLM

      Fontes LRG, Mountford TS, Ungaretti D, Vares ME. Renewal contact processes: phase transition and survival [Internet]. Stochastic Processes and their Applications. 2023 ; 161 102-136-.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2023.03.005
    • Vancouver

      Fontes LRG, Mountford TS, Ungaretti D, Vares ME. Renewal contact processes: phase transition and survival [Internet]. Stochastic Processes and their Applications. 2023 ; 161 102-136-.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2023.03.005
  • Source: Stochastic Processes and their Applications. Unidade: FFCLRP

    Subjects: PROCESSOS ESTOCÁSTICOS, PASSEIOS ALEATÓRIOS, GRAFOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MITROWSKY, Rafael Andres Rosales e PRADO, Fernando Pigeard de Almeida e PIRES, Benito Frazão. Vertex reinforced random walks with exponential interaction on complete graphs. Stochastic Processes and their Applications, v. 148, p. 353-379, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2022.03.007. Acesso em: 09 nov. 2025.
    • APA

      Mitrowsky, R. A. R., Prado, F. P. de A., & Pires, B. F. (2022). Vertex reinforced random walks with exponential interaction on complete graphs. Stochastic Processes and their Applications, 148, 353-379. doi:10.1016/j.spa.2022.03.007
    • NLM

      Mitrowsky RAR, Prado FP de A, Pires BF. Vertex reinforced random walks with exponential interaction on complete graphs [Internet]. Stochastic Processes and their Applications. 2022 ; 148 353-379.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2022.03.007
    • Vancouver

      Mitrowsky RAR, Prado FP de A, Pires BF. Vertex reinforced random walks with exponential interaction on complete graphs [Internet]. Stochastic Processes and their Applications. 2022 ; 148 353-379.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2022.03.007
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PERCOLAÇÃO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MOUNTFORD, Thomas S e VARES, Maria Eulalia. Contact process under renewals II. Stochastic Processes and their Applications, v. 130, n. 2, p. 1103-1118, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2019.04.008. Acesso em: 09 nov. 2025.
    • APA

      Fontes, L. R., Mountford, T. S., & Vares, M. E. (2020). Contact process under renewals II. Stochastic Processes and their Applications, 130( 2), 1103-1118. doi:10.1016/j.spa.2019.04.008
    • NLM

      Fontes LR, Mountford TS, Vares ME. Contact process under renewals II [Internet]. Stochastic Processes and their Applications. 2020 ; 130( 2): 1103-1118.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2019.04.008
    • Vancouver

      Fontes LR, Mountford TS, Vares ME. Contact process under renewals II [Internet]. Stochastic Processes and their Applications. 2020 ; 130( 2): 1103-1118.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2019.04.008
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEVALLIER, J et al. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, v. 129, n. 1, p. 1-27, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2018.02.007. Acesso em: 09 nov. 2025.
    • APA

      Chevallier, J., Duarte, A., Löcherbach, E., & Ost, G. (2019). Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, 129( 1), 1-27. doi:10.1016/j.spa.2018.02.007
    • NLM

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
    • Vancouver

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: ESTATÍSTICA E PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHUTZ, G. M. Self-duality and shock dynamics in the n-species priority ASEP. Stochastic Processes and their Applications, v. 128, n. 4, p. 1165-1207, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2017.07.003. Acesso em: 09 nov. 2025.
    • APA

      Belitsky, V., & Schutz, G. M. (2018). Self-duality and shock dynamics in the n-species priority ASEP. Stochastic Processes and their Applications, 128( 4), 1165-1207. doi:10.1016/j.spa.2017.07.003
    • NLM

      Belitsky V, Schutz GM. Self-duality and shock dynamics in the n-species priority ASEP [Internet]. Stochastic Processes and their Applications. 2018 ; 128( 4): 1165-1207.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2017.07.003
    • Vancouver

      Belitsky V, Schutz GM. Self-duality and shock dynamics in the n-species priority ASEP [Internet]. Stochastic Processes and their Applications. 2018 ; 128( 4): 1165-1207.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2017.07.003
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMENDÁRIZ, Inés e FERRARI, Pablo Augusto e SOPRANO LOTO, Nahuel. Phase transition for the dilute clock model. Stochastic Processes and their Applications, v. 125, n. 10, p. 3879-3892, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2015.05.010. Acesso em: 09 nov. 2025.
    • APA

      Armendáriz, I., Ferrari, P. A., & Soprano Loto, N. (2015). Phase transition for the dilute clock model. Stochastic Processes and their Applications, 125( 10), 3879-3892. doi:10.1016/j.spa.2015.05.010
    • NLM

      Armendáriz I, Ferrari PA, Soprano Loto N. Phase transition for the dilute clock model [Internet]. Stochastic Processes and their Applications. 2015 ; 125( 10): 3879-3892.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2015.05.010
    • Vancouver

      Armendáriz I, Ferrari PA, Soprano Loto N. Phase transition for the dilute clock model [Internet]. Stochastic Processes and their Applications. 2015 ; 125( 10): 3879-3892.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2015.05.010
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e SAUSSOL, Benoit. Hitting and returning to rare events for all alpha-mixing processes. Stochastic Processes and their Applications, v. 121, n. 2, p. 314-323, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2010.11.001. Acesso em: 09 nov. 2025.
    • APA

      Abadi, M. N., & Saussol, B. (2011). Hitting and returning to rare events for all alpha-mixing processes. Stochastic Processes and their Applications, 121( 2), 314-323. doi:10.1016/j.spa.2010.11.001
    • NLM

      Abadi MN, Saussol B. Hitting and returning to rare events for all alpha-mixing processes [Internet]. Stochastic Processes and their Applications. 2011 ; 121( 2): 314-323.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2010.11.001
    • Vancouver

      Abadi MN, Saussol B. Hitting and returning to rare events for all alpha-mixing processes [Internet]. Stochastic Processes and their Applications. 2011 ; 121( 2): 314-323.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2010.11.001
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto et al. The serial harness interacting with a wall. Stochastic Processes and their Applications, v. 114, n. 1, p. 175-190, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2004.05.003. Acesso em: 09 nov. 2025.
    • APA

      Ferrari, P. A., Fontes, L. R., Niederhauser, B. M., & Vachkovskaia, M. (2004). The serial harness interacting with a wall. Stochastic Processes and their Applications, 114( 1), 175-190. doi:10.1016/j.spa.2004.05.003
    • NLM

      Ferrari PA, Fontes LR, Niederhauser BM, Vachkovskaia M. The serial harness interacting with a wall [Internet]. Stochastic Processes and their Applications. 2004 ; 114( 1): 175-190.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2004.05.003
    • Vancouver

      Ferrari PA, Fontes LR, Niederhauser BM, Vachkovskaia M. The serial harness interacting with a wall [Internet]. Stochastic Processes and their Applications. 2004 ; 114( 1): 175-190.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/j.spa.2004.05.003
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e MEDEIROS, Deborah Pereira de e VACHKOVSKAIA, Marina. Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, v. 103, n. 2, p. 257-276, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(02)00210-7. Acesso em: 09 nov. 2025.
    • APA

      Fontes, L. R., Medeiros, D. P. de, & Vachkovskaia, M. (2003). Time fluctuations of the random average process with parabolic initial conditions. Stochastic Processes and their Applications, 103( 2), 257-276. doi:10.1016/s0304-4149(02)00210-7
    • NLM

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
    • Vancouver

      Fontes LR, Medeiros DP de, Vachkovskaia M. Time fluctuations of the random average process with parabolic initial conditions [Internet]. Stochastic Processes and their Applications. 2003 ; 103( 2): 257-276.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(02)00210-7
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDJEL, Enrique Daniel et al. Convergence to the maximal invariant measure for a zero-range process with random rates. Stochastic Processes and their Applications, v. 90, n. 1, p. 67-81, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0304-4149(00)00037-5. Acesso em: 09 nov. 2025.
    • APA

      Andjel, E. D., Ferrari, P. A., Guiol, H., & Landim, C. da C. (2000). Convergence to the maximal invariant measure for a zero-range process with random rates. Stochastic Processes and their Applications, 90( 1), 67-81. doi:10.1016/s0304-4149(00)00037-5
    • NLM

      Andjel ED, Ferrari PA, Guiol H, Landim C da C. Convergence to the maximal invariant measure for a zero-range process with random rates [Internet]. Stochastic Processes and their Applications. 2000 ; 90( 1): 67-81.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00037-5
    • Vancouver

      Andjel ED, Ferrari PA, Guiol H, Landim C da C. Convergence to the maximal invariant measure for a zero-range process with random rates [Internet]. Stochastic Processes and their Applications. 2000 ; 90( 1): 67-81.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1016/s0304-4149(00)00037-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025