Filtros : "Brazilian Journal of Probability and Statistics" "2024" Limpar

Filtros



Refine with date range


  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Subjects: INFERÊNCIA NÃO PARAMÉTRICA, ANÁLISE DE SÉRIES TEMPORAIS, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRIVOL, Gustavo et al. Flexible conditional density estimation for time series. Brazilian Journal of Probability and Statistics, v. 38, n. 2, p. 215-231, 2024Tradução . . Disponível em: https://doi.org/10.1214/24-BJPS601. Acesso em: 10 nov. 2025.
    • APA

      Grivol, G., Izbicki, R., Okuno, A. A., & Stern, R. B. (2024). Flexible conditional density estimation for time series. Brazilian Journal of Probability and Statistics, 38( 2), 215-231. doi:10.1214/24-BJPS601
    • NLM

      Grivol G, Izbicki R, Okuno AA, Stern RB. Flexible conditional density estimation for time series [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 2): 215-231.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/24-BJPS601
    • Vancouver

      Grivol G, Izbicki R, Okuno AA, Stern RB. Flexible conditional density estimation for time series [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 2): 215-231.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/24-BJPS601
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Subjects: INFERÊNCIA BAYESIANA, ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PATIÑO, Elizabeth González e TUNES, Gisela e TANAKA, Nelson Ithiro. Bayesian mixed model for survival data with semicompeting risks based on the Clayton copula. Brazilian Journal of Probability and Statistics, v. 38, n. 2, p. 302-320, 2024Tradução . . Disponível em: https://doi.org/10.1214/24-bjps606. Acesso em: 10 nov. 2025.
    • APA

      Patiño, E. G., Tunes, G., & Tanaka, N. I. (2024). Bayesian mixed model for survival data with semicompeting risks based on the Clayton copula. Brazilian Journal of Probability and Statistics, 38( 2), 302-320. doi:10.1214/24-bjps606
    • NLM

      Patiño EG, Tunes G, Tanaka NI. Bayesian mixed model for survival data with semicompeting risks based on the Clayton copula [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 2): 302-320.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/24-bjps606
    • Vancouver

      Patiño EG, Tunes G, Tanaka NI. Bayesian mixed model for survival data with semicompeting risks based on the Clayton copula [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 2): 302-320.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/24-bjps606
  • Source: Brazilian Journal of Probability and Statistics. Unidade: ICMC

    Subjects: INFERÊNCIA BAYESIANA, DEPRESSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Renato da Silva e BAZÁN GUZMÁN, Jorge Luis e CURI, Mariana. A Bayesian approach for the G-DINA model. Brazilian Journal of Probability and Statistics, v. 38, n. 4, p. 503-530, 2024Tradução . . Disponível em: https://doi.org/10.1214/24-BJPS616. Acesso em: 10 nov. 2025.
    • APA

      Fernandes, R. da S., Bazán Guzmán, J. L., & Curi, M. (2024). A Bayesian approach for the G-DINA model. Brazilian Journal of Probability and Statistics, 38( 4), 503-530. doi:10.1214/24-BJPS616
    • NLM

      Fernandes R da S, Bazán Guzmán JL, Curi M. A Bayesian approach for the G-DINA model [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 4): 503-530.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/24-BJPS616
    • Vancouver

      Fernandes R da S, Bazán Guzmán JL, Curi M. A Bayesian approach for the G-DINA model [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 4): 503-530.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/24-BJPS616
  • Source: Brazilian Journal of Probability and Statistics. Unidades: ICMC, Interinstitucional de Pós-Graduação em Estatística

    Subjects: INFERÊNCIA BAYESIANA, ENTROPIA, DISTRIBUIÇÕES (ANÁLISE FUNCIONAL)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAMOS, Eduardo et al. Objective bayesian analysis for the differential entropy of the gamma distribution. Brazilian Journal of Probability and Statistics, v. 38, n. 1, p. 53-73, 2024Tradução . . Disponível em: https://doi.org/10.1214/23-BJPS591. Acesso em: 10 nov. 2025.
    • APA

      Ramos, E., Egbon, O. A., Ramos, P. L., Rodrigues, F. A., & Louzada, F. (2024). Objective bayesian analysis for the differential entropy of the gamma distribution. Brazilian Journal of Probability and Statistics, 38( 1), 53-73. doi:10.1214/23-BJPS591
    • NLM

      Ramos E, Egbon OA, Ramos PL, Rodrigues FA, Louzada F. Objective bayesian analysis for the differential entropy of the gamma distribution [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 1): 53-73.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/23-BJPS591
    • Vancouver

      Ramos E, Egbon OA, Ramos PL, Rodrigues FA, Louzada F. Objective bayesian analysis for the differential entropy of the gamma distribution [Internet]. Brazilian Journal of Probability and Statistics. 2024 ; 38( 1): 53-73.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/23-BJPS591

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025