Filtros : "Brazilian Journal of Probability and Statistics" "2010" Limpar

Filtros



Refine with date range


  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: DISTRIBUIÇÃO BINOMIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DINIZ, Carlos Alberto Ribeiro e TUTIA, Marcelo Hiroshi e LEITE, Jose Galvao. Bayesian analysis of a correlated binomial model. Brazilian Journal of Probability and Statistics, v. 24, n. 1, p. 68-77, 2010Tradução . . Disponível em: https://doi.org/10.1214/08-BJPS014. Acesso em: 10 nov. 2025.
    • APA

      Diniz, C. A. R., Tutia, M. H., & Leite, J. G. (2010). Bayesian analysis of a correlated binomial model. Brazilian Journal of Probability and Statistics, 24( 1), 68-77. doi:10.1214/08-BJPS014
    • NLM

      Diniz CAR, Tutia MH, Leite JG. Bayesian analysis of a correlated binomial model [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 1): 68-77.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/08-BJPS014
    • Vancouver

      Diniz CAR, Tutia MH, Leite JG. Bayesian analysis of a correlated binomial model [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 1): 68-77.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/08-BJPS014
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: ANÁLISE DE SÉRIES TEMPORAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAGOS, Bernardo M. e MORETTIN, Pedro Alberto e BARROSO, Lucia Pereira. Some corrections of the score test statistic for Gaussian ARMA models. Brazilian Journal of Probability and Statistics, v. 24, n. 3, p. 434-456, 2010Tradução . . Disponível em: https://doi.org/10.1214/09-BJPS023. Acesso em: 10 nov. 2025.
    • APA

      lagos, B. M., Morettin, P. A., & Barroso, L. P. (2010). Some corrections of the score test statistic for Gaussian ARMA models. Brazilian Journal of Probability and Statistics, 24( 3), 434-456. doi:10.1214/09-BJPS023
    • NLM

      lagos BM, Morettin PA, Barroso LP. Some corrections of the score test statistic for Gaussian ARMA models [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 3): 434-456.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-BJPS023
    • Vancouver

      lagos BM, Morettin PA, Barroso LP. Some corrections of the score test statistic for Gaussian ARMA models [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 3): 434-456.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-BJPS023
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEONARDI, Florencia Graciela. Some upper bounds for the rate of convergence of penalized likelihood context tree estimators. Brazilian Journal of Probability and Statistics, v. 24, n. 2, p. 321-336, 2010Tradução . . Disponível em: https://doi.org/10.1214/09-BJPS033. Acesso em: 10 nov. 2025.
    • APA

      Leonardi, F. G. (2010). Some upper bounds for the rate of convergence of penalized likelihood context tree estimators. Brazilian Journal of Probability and Statistics, 24( 2), 321-336. doi:10.1214/09-BJPS033
    • NLM

      Leonardi FG. Some upper bounds for the rate of convergence of penalized likelihood context tree estimators [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 2): 321-336.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-BJPS033
    • Vancouver

      Leonardi FG. Some upper bounds for the rate of convergence of penalized likelihood context tree estimators [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 2): 321-336.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-BJPS033
  • Source: Brazilian Journal of Probability and Statistics. Unidade: ICMC

    Subjects: ESTATÍSTICA APLICADA, REGRESSÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Mário de e TOMAZELLA, Vera Lucia Damasceno. Does reference prior alleviate the incidental parameter problem?. Brazilian Journal of Probability and Statistics, v. 24, n. 3, p. 509-512, 2010Tradução . . Disponível em: https://doi.org/10.1214/09-bjps108. Acesso em: 10 nov. 2025.
    • APA

      Castro, M. de, & Tomazella, V. L. D. (2010). Does reference prior alleviate the incidental parameter problem? Brazilian Journal of Probability and Statistics, 24( 3), 509-512. doi:10.1214/09-bjps108
    • NLM

      Castro M de, Tomazella VLD. Does reference prior alleviate the incidental parameter problem? [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 3): 509-512.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-bjps108
    • Vancouver

      Castro M de, Tomazella VLD. Does reference prior alleviate the incidental parameter problem? [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 3): 509-512.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-bjps108
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: MODELOS PARA PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALASAR, Luis Ernesto Bueno e LEITE, Jose Galvão e LOUZADA, Francisco. A generalized negative binomial distribution based on an extended Poisson process. Brazilian Journal of Probability and Statistics, v. 24, n. 1, p. 91-90, 2010Tradução . . Disponível em: https://doi.org/10.1214/09-BJPS103. Acesso em: 10 nov. 2025.
    • APA

      Salasar, L. E. B., Leite, J. G., & Louzada, F. (2010). A generalized negative binomial distribution based on an extended Poisson process. Brazilian Journal of Probability and Statistics, 24( 1), 91-90. doi:10.1214/09-BJPS103
    • NLM

      Salasar LEB, Leite JG, Louzada F. A generalized negative binomial distribution based on an extended Poisson process [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 1): 91-90.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-BJPS103
    • Vancouver

      Salasar LEB, Leite JG, Louzada F. A generalized negative binomial distribution based on an extended Poisson process [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 1): 91-90.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/09-BJPS103
  • Source: Brazilian Journal of Probability and Statistics. Unidade: ICMC

    Subjects: ESTATíSTICA APLICADA, MODELOS COM ERROS DE MEDIçãO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Mário de e CANCHO, Vicente Garibay e RODRIGUES, Josemar. A note on a unified approach for cure rate models. Brazilian Journal of Probability and Statistics, v. 24, n. 1, p. 100-103, 2010Tradução . . Disponível em: https://doi.org/10.1214/08-bjps015. Acesso em: 10 nov. 2025.
    • APA

      Castro, M. de, Cancho, V. G., & Rodrigues, J. (2010). A note on a unified approach for cure rate models. Brazilian Journal of Probability and Statistics, 24( 1), 100-103. doi:10.1214/08-bjps015
    • NLM

      Castro M de, Cancho VG, Rodrigues J. A note on a unified approach for cure rate models [Internet]. Brazilian Journal of Probability and Statistics. 2010 ;24( 1):100-103.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/08-bjps015
    • Vancouver

      Castro M de, Cancho VG, Rodrigues J. A note on a unified approach for cure rate models [Internet]. Brazilian Journal of Probability and Statistics. 2010 ;24( 1):100-103.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1214/08-bjps015

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025