Filtros : "Financiamento NSERC" "Paulovich, Fernando Vieira" Limpar

Filtros



Limitar por data


  • Fonte: Sensors and Actuators Reports. Unidades: ICMC, IFSC

    Assuntos: APRENDIZADO COMPUTACIONAL, ESPECTROSCOPIA, MASTITE ANIMAL, PECUÁRIA LEITEIRA, STAPHYLOCOCCUS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Juliana Coatrini et al. Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space. Sensors and Actuators Reports, v. No 2022, p. 100083-1-100083-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.snr.2022.100083. Acesso em: 08 out. 2025.
    • APA

      Soares, J. C., Soares, A. C., Popolin Neto, M., Paulovich, F. V., Oliveira Junior, O. N. de, & Mattoso, L. H. C. (2022). Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space. Sensors and Actuators Reports, No 2022, 100083-1-100083-10. doi:10.1016/j.snr.2022.100083
    • NLM

      Soares JC, Soares AC, Popolin Neto M, Paulovich FV, Oliveira Junior ON de, Mattoso LHC. Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space [Internet]. Sensors and Actuators Reports. 2022 ; No 2022 100083-1-100083-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.snr.2022.100083
    • Vancouver

      Soares JC, Soares AC, Popolin Neto M, Paulovich FV, Oliveira Junior ON de, Mattoso LHC. Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space [Internet]. Sensors and Actuators Reports. 2022 ; No 2022 100083-1-100083-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.snr.2022.100083
  • Fonte: Journal of Visualization. Unidade: ICMC

    Assuntos: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, VISUALIZAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Martha Dais et al. Neural network training fingerprint: visual analytics of the training process in classification neural networks. Journal of Visualization, v. 25, n. 3, p. 593-612, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12650-021-00809-4. Acesso em: 08 out. 2025.
    • APA

      Ferreira, M. D., Cantareira, G. D., Mello, R. F. de, & Paulovich, F. V. (2022). Neural network training fingerprint: visual analytics of the training process in classification neural networks. Journal of Visualization, 25( 3), 593-612. doi:10.1007/s12650-021-00809-4
    • NLM

      Ferreira MD, Cantareira GD, Mello RF de, Paulovich FV. Neural network training fingerprint: visual analytics of the training process in classification neural networks [Internet]. Journal of Visualization. 2022 ; 25( 3): 593-612.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12650-021-00809-4
    • Vancouver

      Ferreira MD, Cantareira GD, Mello RF de, Paulovich FV. Neural network training fingerprint: visual analytics of the training process in classification neural networks [Internet]. Journal of Visualization. 2022 ; 25( 3): 593-612.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12650-021-00809-4
  • Fonte: IEEE Transactions on Visualization and Computer Graphics. Unidade: ICMC

    Assuntos: VISUALIZAÇÃO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POPOLIN NETO, Mário e PAULOVICH, Fernando Vieira. Explainable matrix: visualization for global and local interpretability of random forest classification ensembles. IEEE Transactions on Visualization and Computer Graphics, v. 27, n. 2, p. 1427-1437, 2021Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2020.3030354. Acesso em: 08 out. 2025.
    • APA

      Popolin Neto, M., & Paulovich, F. V. (2021). Explainable matrix: visualization for global and local interpretability of random forest classification ensembles. IEEE Transactions on Visualization and Computer Graphics, 27( 2), 1427-1437. doi:10.1109/TVCG.2020.3030354
    • NLM

      Popolin Neto M, Paulovich FV. Explainable matrix: visualization for global and local interpretability of random forest classification ensembles [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2021 ; 27( 2): 1427-1437.[citado 2025 out. 08 ] Available from: https://doi.org/10.1109/TVCG.2020.3030354
    • Vancouver

      Popolin Neto M, Paulovich FV. Explainable matrix: visualization for global and local interpretability of random forest classification ensembles [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2021 ; 27( 2): 1427-1437.[citado 2025 out. 08 ] Available from: https://doi.org/10.1109/TVCG.2020.3030354
  • Fonte: Electronics. Unidade: ICMC

    Assuntos: VISUALIZAÇÃO, APRENDIZADO COMPUTACIONAL

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAZUMDAR, Dipankar e POPOLIN NETO, Mário e PAULOVICH, Fernando Vieira. Random forest similarity maps: a scalable visual representation for global and local interpretation. Electronics, v. 10, p. 1-20, 2021Tradução . . Disponível em: https://doi.org/10.3390/electronics10222862. Acesso em: 08 out. 2025.
    • APA

      Mazumdar, D., Popolin Neto, M., & Paulovich, F. V. (2021). Random forest similarity maps: a scalable visual representation for global and local interpretation. Electronics, 10, 1-20. doi:10.3390/electronics10222862
    • NLM

      Mazumdar D, Popolin Neto M, Paulovich FV. Random forest similarity maps: a scalable visual representation for global and local interpretation [Internet]. Electronics. 2021 ; 10 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.3390/electronics10222862
    • Vancouver

      Mazumdar D, Popolin Neto M, Paulovich FV. Random forest similarity maps: a scalable visual representation for global and local interpretation [Internet]. Electronics. 2021 ; 10 1-20.[citado 2025 out. 08 ] Available from: https://doi.org/10.3390/electronics10222862
  • Fonte: Bulletin of the Chemical Society of Japan. Unidades: IFSC, ICMC

    Assuntos: BIOTECNOLOGIA, APRENDIZADO COMPUTACIONAL, SENSOR, FILMES FINOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POPOLIN NETO, Mário et al. Machine learning used to create a multidimensional calibration space for sensing and biosensing data. Bulletin of the Chemical Society of Japan, v. 94, n. 5, p. 1553-1562, 2021Tradução . . Disponível em: https://doi.org/10.1246/bcsj.20200359. Acesso em: 08 out. 2025.
    • APA

      Popolin Neto, M., Soares, A. C., Oliveira Junior, O. N. de, & Paulovich, F. V. (2021). Machine learning used to create a multidimensional calibration space for sensing and biosensing data. Bulletin of the Chemical Society of Japan, 94( 5), 1553-1562. doi:10.1246/bcsj.20200359
    • NLM

      Popolin Neto M, Soares AC, Oliveira Junior ON de, Paulovich FV. Machine learning used to create a multidimensional calibration space for sensing and biosensing data [Internet]. Bulletin of the Chemical Society of Japan. 2021 ; 94( 5): 1553-1562.[citado 2025 out. 08 ] Available from: https://doi.org/10.1246/bcsj.20200359
    • Vancouver

      Popolin Neto M, Soares AC, Oliveira Junior ON de, Paulovich FV. Machine learning used to create a multidimensional calibration space for sensing and biosensing data [Internet]. Bulletin of the Chemical Society of Japan. 2021 ; 94( 5): 1553-1562.[citado 2025 out. 08 ] Available from: https://doi.org/10.1246/bcsj.20200359

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025