Filtros : "NABARRO, ANA CLAUDIA" Limpar

Filtros



Refine with date range


  • Source: Research in the Mathematical Sciences. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SUBVARIEDADES, GEOMETRIA SIMPLÉTICA

    Disponível em 2025-06-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e ROMERO FUSTER, Maria Del Carmen e ZANARDO, Maria Carolina. Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴. Research in the Mathematical Sciences, v. 11, p. 1-18, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40687-024-00450-1. Acesso em: 31 out. 2024.
    • APA

      Nabarro, A. C., Romero Fuster, M. D. C., & Zanardo, M. C. (2024). Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴. Research in the Mathematical Sciences, 11, 1-18. doi:10.1007/s40687-024-00450-1
    • NLM

      Nabarro AC, Romero Fuster MDC, Zanardo MC. Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴ [Internet]. Research in the Mathematical Sciences. 2024 ; 11 1-18.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s40687-024-00450-1
    • Vancouver

      Nabarro AC, Romero Fuster MDC, Zanardo MC. Geometry of the parabolic subset of a generically immersed 3-manifolds in R⁴ [Internet]. Research in the Mathematical Sciences. 2024 ; 11 1-18.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s40687-024-00450-1
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e FUSTER, Maria Del Carmen Romero e ZANARDO, Maria Carolina. Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, v. 79, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101816. Acesso em: 31 out. 2024.
    • APA

      Nabarro, A. C., Fuster, M. D. C. R., & Zanardo, M. C. (2021). Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, 79, 1-19. doi:10.1016/j.difgeo.2021.101816
    • NLM

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
    • Vancouver

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Curves in a spacelike hypersurface in Minkowski space-time. Osaka Journal of Mathematics, v. 58, n. 4, p. 947-966, 2021Tradução . . Disponível em: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4. Acesso em: 31 out. 2024.
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2021). Curves in a spacelike hypersurface in Minkowski space-time. Osaka Journal of Mathematics, 58( 4), 947-966. Recuperado de https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Curves in a spacelike hypersurface in Minkowski space-time [Internet]. Osaka Journal of Mathematics. 2021 ; 58( 4): 947-966.[citado 2024 out. 31 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Curves in a spacelike hypersurface in Minkowski space-time [Internet]. Osaka Journal of Mathematics. 2021 ; 58( 4): 947-966.[citado 2024 out. 31 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA, TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASEDOU, Masaki e NABARRO, Ana Claudia e RUAS, Maria Aparecida Soares. Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space. Bulletin of the Brazilian Mathematical Society : New Series, v. 51, n. 1, p. 293-315, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00574-019-00153-0. Acesso em: 31 out. 2024.
    • APA

      Kasedou, M., Nabarro, A. C., & Ruas, M. A. S. (2020). Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space. Bulletin of the Brazilian Mathematical Society : New Series, 51( 1), 293-315. doi:10.1007/s00574-019-00153-0
    • NLM

      Kasedou M, Nabarro AC, Ruas MAS. Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 1): 293-315.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-019-00153-0
    • Vancouver

      Kasedou M, Nabarro AC, Ruas MAS. Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 1): 293-315.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-019-00153-0
  • Source: Caderno de resumos. Conference titles: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Subjects: CURVAS (GEOMETRIA), SINGULARIDADES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FALQUETO, Amanda Dias. Entendendo a geometria local da evoluta de uma curva a partir da função distância ao quadrado. 2019, Anais.. São Carlos: ICMC-USP, 2019. Disponível em: http://sim.icmc.usp.br/sim2019/caderno-resumos.html. Acesso em: 31 out. 2024.
    • APA

      Falqueto, A. D. (2019). Entendendo a geometria local da evoluta de uma curva a partir da função distância ao quadrado. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de http://sim.icmc.usp.br/sim2019/caderno-resumos.html
    • NLM

      Falqueto AD. Entendendo a geometria local da evoluta de uma curva a partir da função distância ao quadrado [Internet]. Caderno de resumos. 2019 ;[citado 2024 out. 31 ] Available from: http://sim.icmc.usp.br/sim2019/caderno-resumos.html
    • Vancouver

      Falqueto AD. Entendendo a geometria local da evoluta de uma curva a partir da função distância ao quadrado [Internet]. Caderno de resumos. 2019 ;[citado 2024 out. 31 ] Available from: http://sim.icmc.usp.br/sim2019/caderno-resumos.html
  • Source: Journal of Singularities. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. Journal of Singularities, v. 16, p. 180-193, 2017Tradução . . Disponível em: https://doi.org/10.5427/jsing.2017.16h. Acesso em: 31 out. 2024.
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2017). Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. Journal of Singularities, 16, 180-193. doi:10.5427/jsing.2017.16h
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. Journal of Singularities. 2017 ; 16 180-193.[citado 2024 out. 31 ] Available from: https://doi.org/10.5427/jsing.2017.16h
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. Journal of Singularities. 2017 ; 16 180-193.[citado 2024 out. 31 ] Available from: https://doi.org/10.5427/jsing.2017.16h
  • Source: Journal of Dynamical and Control Systems. Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e SALOOM, Amani. On the singularities of families of curve congruences on Lorentzian surfaces. Journal of Dynamical and Control Systems, v. 22, n. 3, p. 507-530, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10883-015-9300-9. Acesso em: 31 out. 2024.
    • APA

      Nabarro, A. C., & Saloom, A. (2016). On the singularities of families of curve congruences on Lorentzian surfaces. Journal of Dynamical and Control Systems, 22( 3), 507-530. doi:10.1007/s10883-015-9300-9
    • NLM

      Nabarro AC, Saloom A. On the singularities of families of curve congruences on Lorentzian surfaces [Internet]. Journal of Dynamical and Control Systems. 2016 ; 22( 3): 507-530.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10883-015-9300-9
    • Vancouver

      Nabarro AC, Saloom A. On the singularities of families of curve congruences on Lorentzian surfaces [Internet]. Journal of Dynamical and Control Systems. 2016 ; 22( 3): 507-530.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10883-015-9300-9
  • Source: Publicationes Mathematicae. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Focal set of curves in the Minkowski space near lightlike points. Publicationes Mathematicae, v. 88, n. 3-4, p. 487-510, 2016Tradução . . Disponível em: https://doi.org/10.5486/PMD.2016.7451. Acesso em: 31 out. 2024.
    • APA

      Nabarro, A. C., & Sacramento, A. de J. (2016). Focal set of curves in the Minkowski space near lightlike points. Publicationes Mathematicae, 88( 3-4), 487-510. doi:10.5486/PMD.2016.7451
    • NLM

      Nabarro AC, Sacramento A de J. Focal set of curves in the Minkowski space near lightlike points [Internet]. Publicationes Mathematicae. 2016 ; 88( 3-4): 487-510.[citado 2024 out. 31 ] Available from: https://doi.org/10.5486/PMD.2016.7451
    • Vancouver

      Nabarro AC, Sacramento A de J. Focal set of curves in the Minkowski space near lightlike points [Internet]. Publicationes Mathematicae. 2016 ; 88( 3-4): 487-510.[citado 2024 out. 31 ] Available from: https://doi.org/10.5486/PMD.2016.7451
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf. Acesso em: 31 out. 2024. , 2016
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2016). Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. 2016 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. 2016 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf
  • Conference titles: International Workshop on Real and Complex Singularities. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUAS, Maria Aparecida Soares. This volume contains the proceedings.. [Prefácio]. . Providence: AMS. Disponível em: https://doi.org/10.1090/conm/675. Acesso em: 31 out. 2024. , 2016
    • APA

      Ruas, M. A. S. (2016). This volume contains the proceedings.. [Prefácio]. Providence: AMS. doi:10.1090/conm/675
    • NLM

      Ruas MAS. This volume contains the proceedings.. [Prefácio] [Internet]. 2016 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/conm/675
    • Vancouver

      Ruas MAS. This volume contains the proceedings.. [Prefácio] [Internet]. 2016 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/conm/675
  • Conference titles: International Workshop on Real and Complex Singularities. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUAS, Maria Aparecida Soares. Real and complex singularities. . Providence: AMS. Disponível em: https://doi.org/10.1090/conm/675. Acesso em: 31 out. 2024. , 2016
    • APA

      Ruas, M. A. S. (2016). Real and complex singularities. Providence: AMS. doi:10.1090/conm/675
    • NLM

      Ruas MAS. Real and complex singularities [Internet]. 2016 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/conm/675
    • Vancouver

      Ruas MAS. Real and complex singularities [Internet]. 2016 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/conm/675
  • Source: Publicacions Matemàtiques. Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASEDOU, Masaki e NABARRO, Ana Claudia e RUAS, Maria Aparecida Soares. Second order geometry of spacelike surfaces in de Sitter 5-space. Publicacions Matemàtiques, v. 59, n. 2, p. 449-477, 2015Tradução . . Disponível em: https://doi.org/10.5565/PUBLMAT_59215_07. Acesso em: 31 out. 2024.
    • APA

      Kasedou, M., Nabarro, A. C., & Ruas, M. A. S. (2015). Second order geometry of spacelike surfaces in de Sitter 5-space. Publicacions Matemàtiques, 59( 2), 449-477. doi:10.5565/PUBLMAT_59215_07
    • NLM

      Kasedou M, Nabarro AC, Ruas MAS. Second order geometry of spacelike surfaces in de Sitter 5-space [Internet]. Publicacions Matemàtiques. 2015 ; 59( 2): 449-477.[citado 2024 out. 31 ] Available from: https://doi.org/10.5565/PUBLMAT_59215_07
    • Vancouver

      Kasedou M, Nabarro AC, Ruas MAS. Second order geometry of spacelike surfaces in de Sitter 5-space [Internet]. Publicacions Matemàtiques. 2015 ; 59( 2): 449-477.[citado 2024 out. 31 ] Available from: https://doi.org/10.5565/PUBLMAT_59215_07
  • Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, S e NABARRO, Ana Claudia e SACRAMENTO, A. J. Pseudo-spherical evolutes of curves on a timelike surface in three dimensional Lorentz-Minkowski space. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/1b02b896-d950-4d4a-9a2c-fcb64529094c/NOTAS_ICMC_SERIE_MAT_408_2015.pdf. Acesso em: 31 out. 2024. , 2015
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. J. (2015). Pseudo-spherical evolutes of curves on a timelike surface in three dimensional Lorentz-Minkowski space. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/1b02b896-d950-4d4a-9a2c-fcb64529094c/NOTAS_ICMC_SERIE_MAT_408_2015.pdf
    • NLM

      Izumiya S, Nabarro AC, Sacramento AJ. Pseudo-spherical evolutes of curves on a timelike surface in three dimensional Lorentz-Minkowski space [Internet]. 2015 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/1b02b896-d950-4d4a-9a2c-fcb64529094c/NOTAS_ICMC_SERIE_MAT_408_2015.pdf
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento AJ. Pseudo-spherical evolutes of curves on a timelike surface in three dimensional Lorentz-Minkowski space [Internet]. 2015 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/1b02b896-d950-4d4a-9a2c-fcb64529094c/NOTAS_ICMC_SERIE_MAT_408_2015.pdf
  • Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e SACRAMENTO, A. J. Focal set of curves in the Minkowski space. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/ab36650b-77da-43a2-b7a8-bf03bc1974af/NOTAS_ICMC_SERIE_MAT_407_2015.pdf. Acesso em: 31 out. 2024. , 2015
    • APA

      Nabarro, A. C., & Sacramento, A. J. (2015). Focal set of curves in the Minkowski space. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/ab36650b-77da-43a2-b7a8-bf03bc1974af/NOTAS_ICMC_SERIE_MAT_407_2015.pdf
    • NLM

      Nabarro AC, Sacramento AJ. Focal set of curves in the Minkowski space [Internet]. 2015 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/ab36650b-77da-43a2-b7a8-bf03bc1974af/NOTAS_ICMC_SERIE_MAT_407_2015.pdf
    • Vancouver

      Nabarro AC, Sacramento AJ. Focal set of curves in the Minkowski space [Internet]. 2015 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/ab36650b-77da-43a2-b7a8-bf03bc1974af/NOTAS_ICMC_SERIE_MAT_407_2015.pdf
  • Unidade: ICMC

    Subjects: GEOMETRIA INTRÍNSECA DE SUPERFÍCIES, TEORIA DAS SINGULARIDADES, EQUAÇÕES DIFERENCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia. Geometria de curvas e superfícies no espaço de Minkowski. 2015. Tese (Livre Docência) – Universidade de São Paulo, São Carlos, 2015. . Acesso em: 31 out. 2024.
    • APA

      Nabarro, A. C. (2015). Geometria de curvas e superfícies no espaço de Minkowski (Tese (Livre Docência). Universidade de São Paulo, São Carlos.
    • NLM

      Nabarro AC. Geometria de curvas e superfícies no espaço de Minkowski. 2015 ;[citado 2024 out. 31 ]
    • Vancouver

      Nabarro AC. Geometria de curvas e superfícies no espaço de Minkowski. 2015 ;[citado 2024 out. 31 ]
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space. Journal of Geometry and Physics, v. No 2015, p. 105-118, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2015.07.014. Acesso em: 31 out. 2024.
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2015). Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space. Journal of Geometry and Physics, No 2015, 105-118. doi:10.1016/j.geomphys.2015.07.014
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space [Internet]. Journal of Geometry and Physics. 2015 ; No 2015 105-118.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2015.07.014
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Pseudo-spherical normal Darboux images of curves on a timelike surface in three dimensional Lorentz–Minkowski space [Internet]. Journal of Geometry and Physics. 2015 ; No 2015 105-118.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.geomphys.2015.07.014
  • Source: Glasgow Mathematical Journal. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Luciana F e NABARRO, Ana Claudia. Projections of hypersurfaces in 'R POT.4' with boundary to planes. Glasgow Mathematical Journal, v. 56, n. ja 2014, p. 149-167, 2014Tradução . . Disponível em: https://doi.org/10.1017/S001708951300013X. Acesso em: 31 out. 2024.
    • APA

      Martins, L. F., & Nabarro, A. C. (2014). Projections of hypersurfaces in 'R POT.4' with boundary to planes. Glasgow Mathematical Journal, 56( ja 2014), 149-167. doi:10.1017/S001708951300013X
    • NLM

      Martins LF, Nabarro AC. Projections of hypersurfaces in 'R POT.4' with boundary to planes [Internet]. Glasgow Mathematical Journal. 2014 ; 56( ja 2014): 149-167.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S001708951300013X
    • Vancouver

      Martins LF, Nabarro AC. Projections of hypersurfaces in 'R POT.4' with boundary to planes [Internet]. Glasgow Mathematical Journal. 2014 ; 56( ja 2014): 149-167.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S001708951300013X
  • Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASEDOU, Masaki e NABARRO, Ana Claudia e RUAS, Maria Aparecida Soares. Second order geometry of spacelike surfaces in de Sitter 5-space. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/e0d73e4c-8ace-4542-9feb-f4decf020196/NOTAS_ICMC_SERIE_MAT_397_2014.pdf. Acesso em: 31 out. 2024. , 2014
    • APA

      Kasedou, M., Nabarro, A. C., & Ruas, M. A. S. (2014). Second order geometry of spacelike surfaces in de Sitter 5-space. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/e0d73e4c-8ace-4542-9feb-f4decf020196/NOTAS_ICMC_SERIE_MAT_397_2014.pdf
    • NLM

      Kasedou M, Nabarro AC, Ruas MAS. Second order geometry of spacelike surfaces in de Sitter 5-space [Internet]. 2014 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/e0d73e4c-8ace-4542-9feb-f4decf020196/NOTAS_ICMC_SERIE_MAT_397_2014.pdf
    • Vancouver

      Kasedou M, Nabarro AC, Ruas MAS. Second order geometry of spacelike surfaces in de Sitter 5-space [Internet]. 2014 ;[citado 2024 out. 31 ] Available from: https://repositorio.usp.br/directbitstream/e0d73e4c-8ace-4542-9feb-f4decf020196/NOTAS_ICMC_SERIE_MAT_397_2014.pdf
  • Source: Resumos. Conference titles: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Subjects: GEOMETRIA, GEOMETRIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARINHA, Nathan Cavalcanti Pereira. Geometria. 2014, Anais.. São Carlos: ICMC-USP, 2014. . Acesso em: 31 out. 2024.
    • APA

      Farinha, N. C. P. (2014). Geometria. In Resumos. São Carlos: ICMC-USP.
    • NLM

      Farinha NCP. Geometria. Resumos. 2014 ;[citado 2024 out. 31 ]
    • Vancouver

      Farinha NCP. Geometria. Resumos. 2014 ;[citado 2024 out. 31 ]
  • Source: Projetos 2012-2013 : Aprender com Cultura e Extensão. Unidade: ICMC

    Subjects: EDUCAÇÃO MATEMÁTICA, DIDÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      A matemática e a didática. Projetos 2012-2013 : Aprender com Cultura e Extensão. São Paulo: Pró-Reitoria de Cultura e Extensão Universitária/USP. . Acesso em: 31 out. 2024. , 2013
    • APA

      A matemática e a didática. (2013). A matemática e a didática. Projetos 2012-2013 : Aprender com Cultura e Extensão. São Paulo: Pró-Reitoria de Cultura e Extensão Universitária/USP.
    • NLM

      A matemática e a didática. Projetos 2012-2013 : Aprender com Cultura e Extensão. 2013 ;[citado 2024 out. 31 ]
    • Vancouver

      A matemática e a didática. Projetos 2012-2013 : Aprender com Cultura e Extensão. 2013 ;[citado 2024 out. 31 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024