Filtros : "PROCESSOS ESTOCÁSTICOS ESPECIAIS" "Probability Theory and Related Fields" Limpar

Filtros



Refine with date range


  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna e FERRARI, Pablo Augusto e PRESUTTI, Errico. Symmetric simple exclusion process with free boundaries. Probability Theory and Related Fields, v. 161, n. 1-2, p. 155-193, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00440-014-0546-z. Acesso em: 09 nov. 2025.
    • APA

      De Masi, A., Ferrari, P. A., & Presutti, E. (2015). Symmetric simple exclusion process with free boundaries. Probability Theory and Related Fields, 161( 1-2), 155-193. doi:10.1007/s00440-014-0546-z
    • NLM

      De Masi A, Ferrari PA, Presutti E. Symmetric simple exclusion process with free boundaries [Internet]. Probability Theory and Related Fields. 2015 ; 161( 1-2): 155-193.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00440-014-0546-z
    • Vancouver

      De Masi A, Ferrari PA, Presutti E. Symmetric simple exclusion process with free boundaries [Internet]. Probability Theory and Related Fields. 2015 ; 161( 1-2): 155-193.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s00440-014-0546-z
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENSHIKOV, Mikhail Vasil'evich e POPOV, Serguei Yu e VACHKOVSKAIA, Marina. On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, v. 119, n. 2, p. 176-186, 2001Tradução . . Disponível em: https://doi.org/10.1007/pl00008757. Acesso em: 09 nov. 2025.
    • APA

      Menshikov, M. V. 'evich, Popov, S. Y., & Vachkovskaia, M. (2001). On the connectivity properties of the complementary set in fractal percolation models. Probability Theory and Related Fields, 119( 2), 176-186. doi:10.1007/pl00008757
    • NLM

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/pl00008757
    • Vancouver

      Menshikov MV'evich, Popov SY, Vachkovskaia M. On the connectivity properties of the complementary set in fractal percolation models [Internet]. Probability Theory and Related Fields. 2001 ; 119( 2): 176-186.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/pl00008757
  • Source: Probability Theory and Related Fields. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e FONTES, Luiz Renato. Shock fluctuations in the asymmetric simple exclusion process. Probability Theory and Related Fields, v. 99, n. 2 , p. 305-19, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf01199027. Acesso em: 09 nov. 2025.
    • APA

      Ferrari, P. A., & Fontes, L. R. (1994). Shock fluctuations in the asymmetric simple exclusion process. Probability Theory and Related Fields, 99( 2 ), 305-19. doi:10.1007/bf01199027
    • NLM

      Ferrari PA, Fontes LR. Shock fluctuations in the asymmetric simple exclusion process [Internet]. Probability Theory and Related Fields. 1994 ;99( 2 ): 305-19.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01199027
    • Vancouver

      Ferrari PA, Fontes LR. Shock fluctuations in the asymmetric simple exclusion process [Internet]. Probability Theory and Related Fields. 1994 ;99( 2 ): 305-19.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01199027
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, PERCOLAÇÃO, TEOREMAS LIMITES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEBOWITZ, J L e SCHONMANN, Roberto Henrique. Pseudo-free energies and large deviations for non-Gibbsian FKG measures. Probability Theory and Related Fields, v. 77, n. 1 , p. 49-64, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf01848130. Acesso em: 09 nov. 2025.
    • APA

      Lebowitz, J. L., & Schonmann, R. H. (1988). Pseudo-free energies and large deviations for non-Gibbsian FKG measures. Probability Theory and Related Fields, 77( 1 ), 49-64. doi:10.1007/bf01848130
    • NLM

      Lebowitz JL, Schonmann RH. Pseudo-free energies and large deviations for non-Gibbsian FKG measures [Internet]. Probability Theory and Related Fields. 1988 ;77( 1 ): 49-64.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01848130
    • Vancouver

      Lebowitz JL, Schonmann RH. Pseudo-free energies and large deviations for non-Gibbsian FKG measures [Internet]. Probability Theory and Related Fields. 1988 ;77( 1 ): 49-64.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01848130
  • Source: Probability Theory and Related Fields. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, TEOREMAS LIMITES, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DURRETT, Richard e SCHONMANN, Roberto Henrique. Large deviations for the contact process and two dimensional percolation. Probability Theory and Related Fields, v. 77, n. 4 , p. 583-603, 1988Tradução . . Disponível em: https://doi.org/10.1007/bf00959619. Acesso em: 09 nov. 2025.
    • APA

      Durrett, R., & Schonmann, R. H. (1988). Large deviations for the contact process and two dimensional percolation. Probability Theory and Related Fields, 77( 4 ), 583-603. doi:10.1007/bf00959619
    • NLM

      Durrett R, Schonmann RH. Large deviations for the contact process and two dimensional percolation [Internet]. Probability Theory and Related Fields. 1988 ;77( 4 ): 583-603.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf00959619
    • Vancouver

      Durrett R, Schonmann RH. Large deviations for the contact process and two dimensional percolation [Internet]. Probability Theory and Related Fields. 1988 ;77( 4 ): 583-603.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf00959619

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025