Filtros : "EQUAÇÕES INTEGRAIS" "Financiamento CAPES" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 02 dez. 2025.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 02 dez. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: SOLUÇÕES PERIÓDICAS, EQUAÇÕES INTEGRAIS, INTEGRAL DE DENJOY

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S M e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of measure functional differential equations. Journal of Differential Equations, v. 309, p. 196-230, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.031. Acesso em: 02 dez. 2025.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Silva, M. R. da. (2022). Periodic solutions of measure functional differential equations. Journal of Differential Equations, 309, 196-230. doi:10.1016/j.jde.2021.11.031
    • NLM

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
    • Vancouver

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025