Filtros : "Universität Rostock" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TEORIA DO ÍNDICE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Partial functional differential equations and Conley index. Journal of Differential Equations, v. 366, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.015. Acesso em: 02 dez. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2023). Partial functional differential equations and Conley index. Journal of Differential Equations, 366, Se 2023. doi:10.1016/j.jde.2023.04.015
    • NLM

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2025 dez. 02 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
  • Fonte: Fundamenta Mathematicae. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, TEORIA DO ÍNDICE, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, v. 250, p. 41-62, 2020Tradução . . Disponível em: https://doi.org/10.4064/fm700-8-2019. Acesso em: 02 dez. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2020). Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, 250, 41-62. doi:10.4064/fm700-8-2019
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.[citado 2025 dez. 02 ] Available from: https://doi.org/10.4064/fm700-8-2019
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.[citado 2025 dez. 02 ] Available from: https://doi.org/10.4064/fm700-8-2019
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, v. 54, n. 1, p. Se 2019, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2019.023. Acesso em: 02 dez. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2025 dez. 02 ] Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.[citado 2025 dez. 02 ] Available from: https://doi.org/10.12775/TMNA.2019.023
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA ESPECTRAL, TEORIA DO ÍNDICE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, v. 52, n. 2, p. 631-664, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.025. Acesso em: 02 dez. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2025 dez. 02 ] Available from: https://doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.[citado 2025 dez. 02 ] Available from: https://doi.org/10.12775/TMNA.2018.025
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS), SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, v. 32, n. 2, p. 199-225, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.tmna/1463151164. Acesso em: 02 dez. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2008). On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis, 32( 2), 199-225. Recuperado de https://projecteuclid.org/euclid.tmna/1463151164
    • NLM

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2025 dez. 02 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On the suspension isomorphism for index braids in a singular perturbation problem [Internet]. Topological Methods in Nonlinear Analysis. 2008 ; 32( 2): 199-225.[citado 2025 dez. 02 ] Available from: https://projecteuclid.org/euclid.tmna/1463151164

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025