Filtros : "Molecular Catalysis" Limpar

Filtros



Limitar por data


  • Fonte: Molecular Catalysis. Unidades: IQSC, EESC

    Assuntos: CATALISADORES, BACTÉRIAS, NANOPARTÍCULAS, OURO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIANA, Juliana Galan et al. Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction. Molecular Catalysis, v. 585, p. art. 115303 ( 1-11), 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2025.115303. Acesso em: 24 nov. 2025.
    • APA

      Viana, J. G., Moraes, D. A. de, Calixto, L. A., Jimenez, D. E. Q., Porto, A. L. M., & Varanda, L. C. (2025). Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction. Molecular Catalysis, 585, art. 115303 ( 1-11). doi:10.1016/j.mcat.2025.115303
    • NLM

      Viana JG, Moraes DA de, Calixto LA, Jimenez DEQ, Porto ALM, Varanda LC. Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction [Internet]. Molecular Catalysis. 2025 ; 585 art. 115303 ( 1-11).[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2025.115303
    • Vancouver

      Viana JG, Moraes DA de, Calixto LA, Jimenez DEQ, Porto ALM, Varanda LC. Biological synthesis of gold nanoparticles by endophytic bacterium Priestia megaterium (CBMAI 2841) and their application as a catalyst in Knoevenagel reaction [Internet]. Molecular Catalysis. 2025 ; 585 art. 115303 ( 1-11).[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2025.115303
  • Fonte: Molecular Catalysis. Unidade: IQSC

    Assuntos: CATÁLISE, METANO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Pedro Ivo R. e PERAÇA, Carina S.T. e SILVA, Juarez Lopes Ferreira da. Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation. Molecular Catalysis, v. 564, p. 114318, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2024.114318. Acesso em: 24 nov. 2025.
    • APA

      Moraes, P. I. R., Peraça, C. S. T., & Silva, J. L. F. da. (2024). Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation. Molecular Catalysis, 564, 114318. doi:10.1016/j.mcat.2024.114318
    • NLM

      Moraes PIR, Peraça CST, Silva JLF da. Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation [Internet]. Molecular Catalysis. 2024 ;564 114318.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2024.114318
    • Vancouver

      Moraes PIR, Peraça CST, Silva JLF da. Single-atom catalysts on ceria substrates: Exploring cluster and surface effects on methane activation [Internet]. Molecular Catalysis. 2024 ;564 114318.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2024.114318
  • Fonte: Molecular Catalysis. Unidades: IFSC, IQ, IQSC

    Assuntos: LIGANTES, RUTÊNIO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAETANO, Renan Bernard Gléria et al. Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP?. Molecular Catalysis, v. 569, p. 114551-1114551-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2024.114551. Acesso em: 24 nov. 2025.
    • APA

      Caetano, R. B. G., Santiago, P. H. de O., Ellena, J., Oliveira, D. A. S., Braga, A. A. C., & Lima Neto, B. dos S. (2024). Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP? Molecular Catalysis, 569, 114551-1114551-12. doi:10.1016/j.mcat.2024.114551
    • NLM

      Caetano RBG, Santiago PH de O, Ellena J, Oliveira DAS, Braga AAC, Lima Neto B dos S. Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP? [Internet]. Molecular Catalysis. 2024 ; 569 114551-1114551-12.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2024.114551
    • Vancouver

      Caetano RBG, Santiago PH de O, Ellena J, Oliveira DAS, Braga AAC, Lima Neto B dos S. Intriguing combinations of p-cymene, chloride ion, phosphines, and amines in ruthenium metal centers: which ligand decoordinates for ROMP? [Internet]. Molecular Catalysis. 2024 ; 569 114551-1114551-12.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2024.114551
  • Fonte: Molecular Catalysis. Unidade: IQSC

    Assuntos: CATÁLISE, HIDROGENAÇÃO, GÁS CARBÔNICO, METANOL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTANA, Cássia Sidney et al. Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, v. 528, p. 112512, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2022.112512. Acesso em: 24 nov. 2025.
    • APA

      Santana, C. S., Rasteiro , L. F., Marcos, F. C. F., Assaf, E. M., Gomes, J. F., & Assaf, J. M. (2022). Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, 528, 112512. doi:10.1016/j.mcat.2022.112512
    • NLM

      Santana CS, Rasteiro LF, Marcos FCF, Assaf EM, Gomes JF, Assaf JM. Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol [Internet]. Molecular Catalysis. 2022 ; 528 112512.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2022.112512
    • Vancouver

      Santana CS, Rasteiro LF, Marcos FCF, Assaf EM, Gomes JF, Assaf JM. Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol [Internet]. Molecular Catalysis. 2022 ; 528 112512.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2022.112512
  • Fonte: Molecular Catalysis. Unidade: IQSC

    Assuntos: ESTERIFICAÇÃO, AMIDAS, SÍNTESE ORGÂNICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Rafaely Nascimento e ANJOS, Charlene Souza dos e PORTO, Andre Luiz Meleiro. Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B. Molecular Catalysis, v. 530, p. 112635, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2022.112635. Acesso em: 24 nov. 2025.
    • APA

      Lima, R. N., Anjos, C. S. dos, & Porto, A. L. M. (2022). Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B. Molecular Catalysis, 530, 112635. doi:10.1016/j.mcat.2022.112635
    • NLM

      Lima RN, Anjos CS dos, Porto ALM. Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B [Internet]. Molecular Catalysis. 2022 ;530 112635.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2022.112635
    • Vancouver

      Lima RN, Anjos CS dos, Porto ALM. Biocatalytic synthesis of lipophilic amides by the lipase of Candida antarctica type B [Internet]. Molecular Catalysis. 2022 ;530 112635.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2022.112635
  • Fonte: Molecular Catalysis. Unidade: IQ

    Assuntos: OXIDAÇÃO, PALÁDIO, PERÓXIDO DE HIDROGÊNIO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Camila Grossi et al. Palladium-catalyzed sabinene oxidation with hydrogen peroxide: Smart fragrance production and DFT insights. Molecular Catalysis, v. 517, p. 1-8, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2021.112033. Acesso em: 24 nov. 2025.
    • APA

      Vieira, C. G., Angnes, R. A., Braga, A. A. C., Gusevskaya, E. V., & Rossi, L. M. (2022). Palladium-catalyzed sabinene oxidation with hydrogen peroxide: Smart fragrance production and DFT insights. Molecular Catalysis, 517, 1-8. doi:10.1016/j.mcat.2021.112033
    • NLM

      Vieira CG, Angnes RA, Braga AAC, Gusevskaya EV, Rossi LM. Palladium-catalyzed sabinene oxidation with hydrogen peroxide: Smart fragrance production and DFT insights [Internet]. Molecular Catalysis. 2022 ; 517 1-8.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2021.112033
    • Vancouver

      Vieira CG, Angnes RA, Braga AAC, Gusevskaya EV, Rossi LM. Palladium-catalyzed sabinene oxidation with hydrogen peroxide: Smart fragrance production and DFT insights [Internet]. Molecular Catalysis. 2022 ; 517 1-8.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2021.112033
  • Fonte: Molecular Catalysis. Unidade: FFCLRP

    Assuntos: NANOPARTÍCULAS, PALÁDIO, NANOTUBOS, CARBONO, CARVÃO VEGETAL, HIDROGENAÇÃO, ÁGUA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Wesley Romário da et al. Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, v. 504, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2021.111496. Acesso em: 24 nov. 2025.
    • APA

      Silva, W. R. da, Matsubara, E. Y., Rosolen, J. M., Donate, P. M., & Gunnella, R. (2021). Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, 504. doi:10.1016/j.mcat.2021.111496
    • NLM

      Silva WR da, Matsubara EY, Rosolen JM, Donate PM, Gunnella R. Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water [Internet]. Molecular Catalysis. 2021 ; 504[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2021.111496
    • Vancouver

      Silva WR da, Matsubara EY, Rosolen JM, Donate PM, Gunnella R. Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water [Internet]. Molecular Catalysis. 2021 ; 504[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2021.111496
  • Fonte: Molecular Catalysis. Unidade: IQSC

    Assuntos: FLAVONOIDES, FUNGOS, BIOTRANSFORMAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATOS, Iara Lisboa de et al. Stereoselective reduction of flavanones by marine-derived fungi. Molecular Catalysis, v. 513, p. 111734, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.biochi.2021.08.002. Acesso em: 24 nov. 2025.
    • APA

      Matos, I. L. de, Birolli, W. G., Santos, D. de A., Nitschke, M., & Porto, A. L. M. (2021). Stereoselective reduction of flavanones by marine-derived fungi. Molecular Catalysis, 513, 111734. doi:10.1016/j.biochi.2021.08.002
    • NLM

      Matos IL de, Birolli WG, Santos D de A, Nitschke M, Porto ALM. Stereoselective reduction of flavanones by marine-derived fungi [Internet]. Molecular Catalysis. 2021 ;513 111734.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.biochi.2021.08.002
    • Vancouver

      Matos IL de, Birolli WG, Santos D de A, Nitschke M, Porto ALM. Stereoselective reduction of flavanones by marine-derived fungi [Internet]. Molecular Catalysis. 2021 ;513 111734.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.biochi.2021.08.002
  • Fonte: Molecular Catalysis. Unidade: EP

    Assuntos: CATALISADORES, ALUMINA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Rubens William dos Santos et al. Surface Analyses of adsorbed and deposited species on the Ni-Mo catalysts surfaces after Guaiacol HDO. Influence of the alumina and SBA-15 supports. Molecular Catalysis, v. 511, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2021.111724. Acesso em: 24 nov. 2025.
    • APA

      Lima, R. W. dos S., Hewer, T. L. R., Alves, R. M. de B., & Schmal, M. (2021). Surface Analyses of adsorbed and deposited species on the Ni-Mo catalysts surfaces after Guaiacol HDO. Influence of the alumina and SBA-15 supports. Molecular Catalysis, 511, 1-10. doi:10.1016/j.mcat.2021.111724
    • NLM

      Lima RW dos S, Hewer TLR, Alves RM de B, Schmal M. Surface Analyses of adsorbed and deposited species on the Ni-Mo catalysts surfaces after Guaiacol HDO. Influence of the alumina and SBA-15 supports [Internet]. Molecular Catalysis. 2021 ;511 1-10.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2021.111724
    • Vancouver

      Lima RW dos S, Hewer TLR, Alves RM de B, Schmal M. Surface Analyses of adsorbed and deposited species on the Ni-Mo catalysts surfaces after Guaiacol HDO. Influence of the alumina and SBA-15 supports [Internet]. Molecular Catalysis. 2021 ;511 1-10.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2021.111724
  • Fonte: Molecular Catalysis. Unidade: IQSC

    Assunto: NANOTUBOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OTON, Lais F. et al. Structural transformation of vanadate nanotubes into vanadate oxides nanostructures during the dry reforming of methane. Molecular Catalysis, v. 480, p. 110641, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2019.110641. Acesso em: 24 nov. 2025.
    • APA

      Oton, L. F., Coelho, D. C., Oliveira, A. C., Araujo, J. C. S. de, Lang, R., Rodriguez-Castellon, E., et al. (2020). Structural transformation of vanadate nanotubes into vanadate oxides nanostructures during the dry reforming of methane. Molecular Catalysis, 480, 110641. doi:10.1016/j.mcat.2019.110641
    • NLM

      Oton LF, Coelho DC, Oliveira AC, Araujo JCS de, Lang R, Rodriguez-Castellon E, Rodríguez-Aguado E, Lucrédio AF, Assaf EM, Reyna-Alvarado J, López-Galán OA, Manuel Ramos. Structural transformation of vanadate nanotubes into vanadate oxides nanostructures during the dry reforming of methane [Internet]. Molecular Catalysis. 2020 ; 480 110641.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2019.110641
    • Vancouver

      Oton LF, Coelho DC, Oliveira AC, Araujo JCS de, Lang R, Rodriguez-Castellon E, Rodríguez-Aguado E, Lucrédio AF, Assaf EM, Reyna-Alvarado J, López-Galán OA, Manuel Ramos. Structural transformation of vanadate nanotubes into vanadate oxides nanostructures during the dry reforming of methane [Internet]. Molecular Catalysis. 2020 ; 480 110641.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2019.110641
  • Fonte: Molecular Catalysis. Unidade: ESALQ

    Assuntos: BIOCARVÃO, CATÁLISE, MANGANÊS, OXIDAÇÃO, PERÓXIDO DE HIDROGÊNIO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIERRI, Leticia de et al. Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2. Molecular Catalysis, v. 489, p. 1-11, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2020.110946. Acesso em: 24 nov. 2025.
    • APA

      Pierri, L. de, Gemenetzi, A., Mavrogiorgou, A., Regitano, J. B., Deligiannakis, Y., & Louloudi, M. (2020). Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2. Molecular Catalysis, 489, 1-11. doi:10.1016/j.mcat.2020.110946
    • NLM

      Pierri L de, Gemenetzi A, Mavrogiorgou A, Regitano JB, Deligiannakis Y, Louloudi M. Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2 [Internet]. Molecular Catalysis. 2020 ; 489 1-11.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2020.110946
    • Vancouver

      Pierri L de, Gemenetzi A, Mavrogiorgou A, Regitano JB, Deligiannakis Y, Louloudi M. Biochar as supporting material for heterogeneous Mn(II) catalysts: Efficient olefins epoxidation with H2O2 [Internet]. Molecular Catalysis. 2020 ; 489 1-11.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2020.110946
  • Fonte: Molecular Catalysis. Unidade: IQSC

    Assuntos: QUÍMICA VERDE, LIPASE

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Rafaely Nascimento et al. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. Molecular Catalysis, v. 466, n. Ja2019, p. 75-105, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2019.01.007. Acesso em: 24 nov. 2025.
    • APA

      Lima, R. N., Anjos, C. S. dos, Orozco, E. V. M., & Porto, A. L. M. (2019). Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. Molecular Catalysis, 466( Ja2019), 75-105. doi:10.1016/j.mcat.2019.01.007
    • NLM

      Lima RN, Anjos CS dos, Orozco EVM, Porto ALM. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes [Internet]. Molecular Catalysis. 2019 ; 466( Ja2019): 75-105.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2019.01.007
    • Vancouver

      Lima RN, Anjos CS dos, Orozco EVM, Porto ALM. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes [Internet]. Molecular Catalysis. 2019 ; 466( Ja2019): 75-105.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2019.01.007
  • Fonte: Molecular Catalysis. Unidades: IQSC, EP

    Assuntos: CATÁLISE, CATALISADORES

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Francielle Candian Firmino e ASSAF, Jose Mansur e ASSAF, Elisabete Moreira. CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Molecular Catalysis, v. 458, p. 297-306, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2017.12.025. Acesso em: 24 nov. 2025.
    • APA

      Marcos, F. C. F., Assaf, J. M., & Assaf, E. M. (2018). CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Molecular Catalysis, 458, 297-306. doi:10.1016/j.mcat.2017.12.025
    • NLM

      Marcos FCF, Assaf JM, Assaf EM. CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step [Internet]. Molecular Catalysis. 2018 ; 458 297-306.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2017.12.025
    • Vancouver

      Marcos FCF, Assaf JM, Assaf EM. CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step [Internet]. Molecular Catalysis. 2018 ; 458 297-306.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2017.12.025
  • Fonte: Molecular Catalysis. Unidade: IQSC

    Assunto: RUTÊNIO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IDEHARA, André H. S. et al. Accessible ring opening metathesis and atom transfer radical polymerization catalysts based on dimethyl sulfoxide ruthenium(II) complexes bearing Nheterocyclic carbene ligands. Molecular Catalysis, v. 448, p. 135-143, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.mcat.2018.01.032. Acesso em: 24 nov. 2025.
    • APA

      Idehara, A. H. S., Gois, P. D. S., Fernandez, H., Goi, B. E., Machado, A. E. da H., Lima Neto, B. dos S., & Carvalho Junior, V. P. de. (2018). Accessible ring opening metathesis and atom transfer radical polymerization catalysts based on dimethyl sulfoxide ruthenium(II) complexes bearing Nheterocyclic carbene ligands. Molecular Catalysis, 448, 135-143. doi:10.1016/j.mcat.2018.01.032
    • NLM

      Idehara AHS, Gois PDS, Fernandez H, Goi BE, Machado AE da H, Lima Neto B dos S, Carvalho Junior VP de. Accessible ring opening metathesis and atom transfer radical polymerization catalysts based on dimethyl sulfoxide ruthenium(II) complexes bearing Nheterocyclic carbene ligands [Internet]. Molecular Catalysis. 2018 ; 448 135-143.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2018.01.032
    • Vancouver

      Idehara AHS, Gois PDS, Fernandez H, Goi BE, Machado AE da H, Lima Neto B dos S, Carvalho Junior VP de. Accessible ring opening metathesis and atom transfer radical polymerization catalysts based on dimethyl sulfoxide ruthenium(II) complexes bearing Nheterocyclic carbene ligands [Internet]. Molecular Catalysis. 2018 ; 448 135-143.[citado 2025 nov. 24 ] Available from: https://doi.org/10.1016/j.mcat.2018.01.032

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025