Filtros : "Logachov, Artem" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. Moderate, large and super large deviations principles for Poisson process with uniform catastrophes. Communications in Mathematics, v. 33, n. paper 8, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.46298/cm.14900. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2025). Moderate, large and super large deviations principles for Poisson process with uniform catastrophes. Communications in Mathematics, 33( paper 8), 1-20. doi:10.46298/cm.14900
    • NLM

      Logachov A, Logachova O, Yambartsev A. Moderate, large and super large deviations principles for Poisson process with uniform catastrophes [Internet]. Communications in Mathematics. 2025 ; 33( paper 8): 1-20.[citado 2025 dez. 04 ] Available from: https://doi.org/10.46298/cm.14900
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. Moderate, large and super large deviations principles for Poisson process with uniform catastrophes [Internet]. Communications in Mathematics. 2025 ; 33( paper 8): 1-20.[citado 2025 dez. 04 ] Available from: https://doi.org/10.46298/cm.14900
  • Source: Statistics & Probability Letters. Unidade: IME

    Subjects: MEDIDA DE WIENER, ESPAÇOS MÉTRICOS, LOGARITMOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e YAMBARTSEV, Anatoli. The law of the iterated logarithm for functionals of the Wiener process. Statistics & Probability Letters, v. 219, n. artigo 110341, p. 1-4, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.spl.2024.110341. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., & Yambartsev, A. (2025). The law of the iterated logarithm for functionals of the Wiener process. Statistics & Probability Letters, 219( artigo 110341), 1-4. doi:10.1016/j.spl.2024.110341
    • NLM

      Logachov A, Yambartsev A. The law of the iterated logarithm for functionals of the Wiener process [Internet]. Statistics & Probability Letters. 2025 ; 219( artigo 110341): 1-4.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.spl.2024.110341
    • Vancouver

      Logachov A, Yambartsev A. The law of the iterated logarithm for functionals of the Wiener process [Internet]. Statistics & Probability Letters. 2025 ; 219( artigo 110341): 1-4.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.spl.2024.110341
  • Source: Markov Processes And Related Fields. Unidade: IME

    Subjects: PROCESSOS DE NASCIMENTO E MORTE, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, PROCESSOS DE DIFUSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, v. 29, n. 4, p. 605-618, 2024Tradução . . Disponível em: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., Logachova, O., Pechersky, E., Presman, E., & Iambartsev, A. (2024). Diffusion approximation for symmetric birth-and-death processes with polynomial rates. Markov Processes And Related Fields, 29( 4), 605-618. doi:10.61102/1024-2953-mprf.2023.29.4.007
    • NLM

      Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2025 dez. 04 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007
    • Vancouver

      Logachov A, Logachova O, Pechersky E, Presman E, Iambartsev A. Diffusion approximation for symmetric birth-and-death processes with polynomial rates [Internet]. Markov Processes And Related Fields. 2024 ; 29( 4): 605-618.[citado 2025 dez. 04 ] Available from: https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007
  • Source: Journal of Applied Probability. Unidade: IME

    Subjects: GRANDES DESVIOS, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. A large-deviation principle for birth–death processes with a linear rate of downward jumps. Journal of Applied Probability, v. 61, n. 3, p. 781-801, 2024Tradução . . Disponível em: https://doi.org/10.1017/jpr.2023.75. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., Suhov, Y., Vvedenskaya, N., & Iambartsev, A. (2024). A large-deviation principle for birth–death processes with a linear rate of downward jumps. Journal of Applied Probability, 61( 3), 781-801. doi:10.1017/jpr.2023.75
    • NLM

      Logachov A, Suhov Y, Vvedenskaya N, Iambartsev A. A large-deviation principle for birth–death processes with a linear rate of downward jumps [Internet]. Journal of Applied Probability. 2024 ; 61( 3): 781-801.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/jpr.2023.75
    • Vancouver

      Logachov A, Suhov Y, Vvedenskaya N, Iambartsev A. A large-deviation principle for birth–death processes with a linear rate of downward jumps [Internet]. Journal of Applied Probability. 2024 ; 61( 3): 781-801.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1017/jpr.2023.75
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, GRANDES DESVIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. Processes with catastrophes: large deviation point of view. Stochastic Processes and their Applications, v. 176, n. artigo 104447, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2024.104447. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2024). Processes with catastrophes: large deviation point of view. Stochastic Processes and their Applications, 176( artigo 104447), 1-19. doi:10.1016/j.spa.2024.104447
    • NLM

      Logachov A, Logachova O, Yambartsev A. Processes with catastrophes: large deviation point of view [Internet]. Stochastic Processes and their Applications. 2024 ; 176( artigo 104447): 1-19.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.spa.2024.104447
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. Processes with catastrophes: large deviation point of view [Internet]. Stochastic Processes and their Applications. 2024 ; 176( artigo 104447): 1-19.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.spa.2024.104447
  • Source: Mathematics. Unidade: IME

    Subjects: INFERÊNCIA PARAMÉTRICA, TEORIA ASSINTÓTICA, ESTIMAÇÃO PARAMÉTRICA, DISTRIBUIÇÃO DISCRETA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GLINSKIY, Vladimir et al. Asymptotic properties of a statistical estimator of the Jeffreys divergence: the case of discrete distributions. Mathematics, v. 12, n. artigo 3319, p. 1-16, 2024Tradução . . Disponível em: https://doi.org/10.3390/math12213319. Acesso em: 04 dez. 2025.
    • APA

      Glinskiy, V., Logachov, A., Logachova, O., Rojas, H., Serga, L., & Yambartsev, A. (2024). Asymptotic properties of a statistical estimator of the Jeffreys divergence: the case of discrete distributions. Mathematics, 12( artigo 3319), 1-16. doi:10.3390/math12213319
    • NLM

      Glinskiy V, Logachov A, Logachova O, Rojas H, Serga L, Yambartsev A. Asymptotic properties of a statistical estimator of the Jeffreys divergence: the case of discrete distributions [Internet]. Mathematics. 2024 ; 12( artigo 3319): 1-16.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3390/math12213319
    • Vancouver

      Glinskiy V, Logachov A, Logachova O, Rojas H, Serga L, Yambartsev A. Asymptotic properties of a statistical estimator of the Jeffreys divergence: the case of discrete distributions [Internet]. Mathematics. 2024 ; 12( artigo 3319): 1-16.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3390/math12213319
  • Source: Mathematics. Unidade: IME

    Subjects: TEOREMAS LIMITES, INFERÊNCIA PARAMÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GLINSKIY, Vladimir et al. Modifications to the Jarque–Bera test. Mathematics, v. 12, n. artigo 2523, p. 1-16, 2024Tradução . . Disponível em: https://doi.org/10.3390/math12162523. Acesso em: 04 dez. 2025.
    • APA

      Glinskiy, V., Ismayilova, Y., Khrushchev, S., Logachov, A., Logachova, O., Serga, L., et al. (2024). Modifications to the Jarque–Bera test. Mathematics, 12( artigo 2523), 1-16. doi:10.3390/math12162523
    • NLM

      Glinskiy V, Ismayilova Y, Khrushchev S, Logachov A, Logachova O, Serga L, Yambartsev A, Zaykov K. Modifications to the Jarque–Bera test [Internet]. Mathematics. 2024 ; 12( artigo 2523): 1-16.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3390/math12162523
    • Vancouver

      Glinskiy V, Ismayilova Y, Khrushchev S, Logachov A, Logachova O, Serga L, Yambartsev A, Zaykov K. Modifications to the Jarque–Bera test [Internet]. Mathematics. 2024 ; 12( artigo 2523): 1-16.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3390/math12162523
  • Source: Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. Unidade: IME

    Subjects: GRAFOS ALEATÓRIOS, TEORIA DOS GRAFOS, PROCESSOS EM MEIOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e MOGULSKII, Anatolii e YAMBARTSEV, Anatoli. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya, v. 1, n. 2, p. 914-926, 2024Tradução . . Disponível em: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., Mogulskii, A., & Yambartsev, A. (2024). Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya, 1( 2), 914-926. doi:10.33048/semi.2024.21.060
    • NLM

      Logachov A, Mogulskii A, Yambartsev A. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph [Internet]. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. 2024 ; 1( 2): 914-926.[citado 2025 dez. 04 ] Available from: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002
    • Vancouver

      Logachov A, Mogulskii A, Yambartsev A. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph [Internet]. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. 2024 ; 1( 2): 914-926.[citado 2025 dez. 04 ] Available from: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002
  • Source: RAIRO - Operations Research. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERDA-HERNÁNDEZ, Jose Javier e LOGACHOV, Artem e YAMBARTSEV, Anatoli. Bid-ask spread dynamics: large upward jump with geometric catastrophes. RAIRO - Operations Research, v. 58, n. 2, p. 1375-1399, 2024Tradução . . Disponível em: https://doi.org/10.1051/ro/2024039. Acesso em: 04 dez. 2025.
    • APA

      Cerda-Hernández, J. J., Logachov, A., & Yambartsev, A. (2024). Bid-ask spread dynamics: large upward jump with geometric catastrophes. RAIRO - Operations Research, 58( 2), 1375-1399. doi:10.1051/ro/2024039
    • NLM

      Cerda-Hernández JJ, Logachov A, Yambartsev A. Bid-ask spread dynamics: large upward jump with geometric catastrophes [Internet]. RAIRO - Operations Research. 2024 ; 58( 2): 1375-1399.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1051/ro/2024039
    • Vancouver

      Cerda-Hernández JJ, Logachov A, Yambartsev A. Bid-ask spread dynamics: large upward jump with geometric catastrophes [Internet]. RAIRO - Operations Research. 2024 ; 58( 2): 1375-1399.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1051/ro/2024039
  • Source: Mathematics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROJAS, Helder e LOGACHOV, Artem e IAMBARTSEV, Anatoli. Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime. Mathematics, v. 11, n. artigo 4235, p. 1-24, 2023Tradução . . Disponível em: https://doi.org/10.3390/math11204235. Acesso em: 04 dez. 2025.
    • APA

      Rojas, H., Logachov, A., & Iambartsev, A. (2023). Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime. Mathematics, 11( artigo 4235), 1-24. doi:10.3390/math11204235
    • NLM

      Rojas H, Logachov A, Iambartsev A. Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime [Internet]. Mathematics. 2023 ; 11( artigo 4235): 1-24.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3390/math11204235
    • Vancouver

      Rojas H, Logachov A, Iambartsev A. Order book dynamics with liquidity fluctuations: asymptotic analysis of highly competitive regime [Internet]. Mathematics. 2023 ; 11( artigo 4235): 1-24.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3390/math11204235
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: GRANDES DESVIOS, TEOREMAS LIMITES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem et al. Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, v. 137, p. 149-166, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2021.03.011. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., Mogulskii, A., Prokopenko, E. I., & Yambartsev, A. (2021). Local theorems for (multidimensional) additive functionals of semi-Markov chains. Stochastic Processes and their Applications, 137, 149-166. doi:10.1016/j.spa.2021.03.011
    • NLM

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
    • Vancouver

      Logachov A, Mogulskii A, Prokopenko EI, Yambartsev A. Local theorems for (multidimensional) additive functionals of semi-Markov chains [Internet]. Stochastic Processes and their Applications. 2021 ; 137 149-166.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.spa.2021.03.011
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, GRANDES DESVIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. The local principle of large deviations for compound Poisson process with catastrophes. Brazilian Journal of Probability and Statistics, v. 35, n. 2, p. 205-223, 2021Tradução . . Disponível em: https://doi.org/10.1214/20-BJPS472. Acesso em: 04 dez. 2025.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2021). The local principle of large deviations for compound Poisson process with catastrophes. Brazilian Journal of Probability and Statistics, 35( 2), 205-223. doi:10.1214/20-BJPS472
    • NLM

      Logachov A, Logachova O, Yambartsev A. The local principle of large deviations for compound Poisson process with catastrophes [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 2): 205-223.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1214/20-BJPS472
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. The local principle of large deviations for compound Poisson process with catastrophes [Internet]. Brazilian Journal of Probability and Statistics. 2021 ; 35( 2): 205-223.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1214/20-BJPS472

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025