Filtros : "Journal of Dynamics and Differential Equations" "IME" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPANNA, Monia et al. Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, v. 36, n. 2, p. 1247-1283, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10248-4. Acesso em: 09 nov. 2025.
    • APA

      Capanna, M., Nakasato, J. C., Pereira, M. C., & Rossi, J. D. (2024). Homogenization for nonlocal evolution problems with three different smooth kernels. Journal of Dynamics and Differential Equations, 36( 2), 1247-1283. doi:10.1007/s10884-023-10248-4
    • NLM

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
    • Vancouver

      Capanna M, Nakasato JC, Pereira MC, Rossi JD. Homogenization for nonlocal evolution problems with three different smooth kernels [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 2): 1247-1283.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10248-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, v. 36, p. 3711-3742, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10339-2. Acesso em: 09 nov. 2025.
    • APA

      Moreira, E. M., & Valero, J. (2024). The existence of isolating blocks for multivalued semiflows. Journal of Dynamics and Differential Equations, 36, 3711-3742. doi:10.1007/s10884-023-10339-2
    • NLM

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
    • Vancouver

      Moreira EM, Valero J. The existence of isolating blocks for multivalued semiflows [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 3711-3742.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-023-10339-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, v. 34, n. 1, p. 555–581, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09921-9. Acesso em: 09 nov. 2025.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold e OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, v. 28, n. 3/4, p. 1357–1391, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9456-8. Acesso em: 09 nov. 2025.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Gleiciane da Silva e PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, v. 26, n. 4, p. 871-888, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10884-014-9412-z. Acesso em: 09 nov. 2025.
    • APA

      Aragão, G. da S., Pereira, A. L., & Pereira, M. C. (2014). Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, 26( 4), 871-888. doi:10.1007/s10884-014-9412-z
    • NLM

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
    • Vancouver

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-014-9412-z
  • Source: Journal of Dynamics and Differential Equations. Unidades: IME, IF

    Assunto: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e MALTA, Coraci Pereira e PAKDAMAN, K. Metastable periodic patterns in singularly perturbed delayed equations. Journal of Dynamics and Differential Equations, v. 22, n. 2, p. 203-252, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9158-1. Acesso em: 09 nov. 2025.
    • APA

      Ragazzo, C. G., Malta, C. P., & Pakdaman, K. (2010). Metastable periodic patterns in singularly perturbed delayed equations. Journal of Dynamics and Differential Equations, 22( 2), 203-252. doi:10.1007/s10884-010-9158-1
    • NLM

      Ragazzo CG, Malta CP, Pakdaman K. Metastable periodic patterns in singularly perturbed delayed equations [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 203-252.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9158-1
    • Vancouver

      Ragazzo CG, Malta CP, Pakdaman K. Metastable periodic patterns in singularly perturbed delayed equations [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 203-252.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9158-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e TERRA, Gláucio. Birkhoffian systems in infinite dimensional manifolds. Journal of Dynamics and Differential Equations, v. 22, n. 2, p. 193-201, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-009-9137-6. Acesso em: 09 nov. 2025.
    • APA

      Oliva, W. M., & Terra, G. (2010). Birkhoffian systems in infinite dimensional manifolds. Journal of Dynamics and Differential Equations, 22( 2), 193-201. doi:10.1007/s10884-009-9137-6
    • NLM

      Oliva WM, Terra G. Birkhoffian systems in infinite dimensional manifolds [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 193-201.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-009-9137-6
    • Vancouver

      Oliva WM, Terra G. Birkhoffian systems in infinite dimensional manifolds [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 2): 193-201.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-009-9137-6
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: TEORIA DA BIFURCAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e ROCHA, Carlos. Reducible Volterra and Levin–Nohel retarded equations with infinite delay. Journal of Dynamics and Differential Equations, v. 22, n. 3, p. 509-532, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10884-010-9177-y. Acesso em: 09 nov. 2025.
    • APA

      Oliva, W. M., & Rocha, C. (2010). Reducible Volterra and Levin–Nohel retarded equations with infinite delay. Journal of Dynamics and Differential Equations, 22( 3), 509-532. doi:10.1007/s10884-010-9177-y
    • NLM

      Oliva WM, Rocha C. Reducible Volterra and Levin–Nohel retarded equations with infinite delay [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 509-532.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9177-y
    • Vancouver

      Oliva WM, Rocha C. Reducible Volterra and Levin–Nohel retarded equations with infinite delay [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 509-532.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-010-9177-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: TEORIA DA BIFURCAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUTIERREZ, Carlos e SOTOMAYOR, Jorge e GARCIA, Ronaldo. Bifurcations of umbilic points and related principal cycles. Journal of Dynamics and Differential Equations, v. 16, n. 2, p. 321-346, 2004Tradução . . Disponível em: https://doi.org/10.1007/s10884-004-2783-9. Acesso em: 09 nov. 2025.
    • APA

      Gutierrez, C., Sotomayor, J., & Garcia, R. (2004). Bifurcations of umbilic points and related principal cycles. Journal of Dynamics and Differential Equations, 16( 2), 321-346. doi:10.1007/s10884-004-2783-9
    • NLM

      Gutierrez C, Sotomayor J, Garcia R. Bifurcations of umbilic points and related principal cycles [Internet]. Journal of Dynamics and Differential Equations. 2004 ; 16( 2): 321-346.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-004-2783-9
    • Vancouver

      Gutierrez C, Sotomayor J, Garcia R. Bifurcations of umbilic points and related principal cycles [Internet]. Journal of Dynamics and Differential Equations. 2004 ; 16( 2): 321-346.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-004-2783-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Sérgio Muniz. Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, v. 11, n. 2, p. 279-296, 1999Tradução . . Disponível em: https://doi.org/10.1023%2FA%3A1021929413376. Acesso em: 09 nov. 2025.
    • APA

      Oliva, S. M. (1999). Reaction-diffusion equations with nonlinear boundary delay. Journal of Dynamics and Differential Equations, 11( 2), 279-296. doi:10.1023%2FA%3A1021929413376
    • NLM

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376
    • Vancouver

      Oliva SM. Reaction-diffusion equations with nonlinear boundary delay [Internet]. Journal of Dynamics and Differential Equations. 1999 ; 11( 2): 279-296.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1023%2FA%3A1021929413376
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. Chaos and integrability in a nonlinear wave equation. Journal of Dynamics and Differential Equations, v. 6, n. 1, p. 227-244, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02219194. Acesso em: 09 nov. 2025.
    • APA

      Ragazzo, C. G. (1994). Chaos and integrability in a nonlinear wave equation. Journal of Dynamics and Differential Equations, 6( 1), 227-244. doi:10.1007/bf02219194
    • NLM

      Ragazzo CG. Chaos and integrability in a nonlinear wave equation [Internet]. Journal of Dynamics and Differential Equations. 1994 ; 6( 1): 227-244.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219194
    • Vancouver

      Ragazzo CG. Chaos and integrability in a nonlinear wave equation [Internet]. Journal of Dynamics and Differential Equations. 1994 ; 6( 1): 227-244.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf02219194
  • Source: Journal of Dynamics and Differential Equations. Unidades: IME, IF

    Subjects: FÍSICA MATEMÁTICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, ANÁLISE GLOBAL, TEORIA DA BIFURCAÇÃO, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e MALTA, Coraci Pereira. Singularity structure of the hopf bifurcation surface of a differential equation with two delays. Journal of Dynamics and Differential Equations, v. 4 , n. 4 , p. 617-650, 1992Tradução . . Disponível em: https://doi.org/10.1007%2FBF0104826. Acesso em: 09 nov. 2025.
    • APA

      Ragazzo, C. G., & Malta, C. P. (1992). Singularity structure of the hopf bifurcation surface of a differential equation with two delays. Journal of Dynamics and Differential Equations, 4 ( 4 ), 617-650. doi:10.1007%2FBF0104826
    • NLM

      Ragazzo CG, Malta CP. Singularity structure of the hopf bifurcation surface of a differential equation with two delays [Internet]. Journal of Dynamics and Differential Equations. 1992 ; 4 ( 4 ): 617-650.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007%2FBF0104826
    • Vancouver

      Ragazzo CG, Malta CP. Singularity structure of the hopf bifurcation surface of a differential equation with two delays [Internet]. Journal of Dynamics and Differential Equations. 1992 ; 4 ( 4 ): 617-650.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007%2FBF0104826
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUSCO, Giorgio e OLIVA, Waldyr Muniz. Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems. Journal of Dynamics and Differential Equations, v. 2 , n. 1 , p. 1-17, 1990Tradução . . Disponível em: https://doi.org/10.1007/bf01047768. Acesso em: 09 nov. 2025.
    • APA

      Fusco, G., & Oliva, W. M. (1990). Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems. Journal of Dynamics and Differential Equations, 2 ( 1 ), 1-17. doi:10.1007/bf01047768
    • NLM

      Fusco G, Oliva WM. Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 1990 ; 2 ( 1 ): 1-17.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01047768
    • Vancouver

      Fusco G, Oliva WM. Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 1990 ; 2 ( 1 ): 1-17.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/bf01047768

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025