Filtros : "Journal of Dynamics and Differential Equations" "Indexado no Scopus" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, v. 37, p. 241–2265, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2025). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 37, 241–2265. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DIMENSÃO INFINITA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, v. 36, p. S65-S75, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09962-8. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2024). A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, 36, S65-S75. doi:10.1007/s10884-021-09962-8
    • NLM

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
    • Vancouver

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ROBUSTEZ, DIMENSÃO INFINITA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e CARABALLO, Tomás e NAKASSIMA, Guilherme Kenji. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, v. 34, p. 2841-2865, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09854-3. Acesso em: 09 nov. 2025.
    • APA

      Rodrigues, H. M., Caraballo, T., & Nakassima, G. K. (2022). Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, 34, 2841-2865. doi:10.1007/s10884-020-09854-3
    • NLM

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
    • Vancouver

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, v. 33, p. 463-487, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09815-5. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE SISTEMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e SANTOS, Fabio L. Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, v. 32, p. 2021-2060, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09801-x. Acesso em: 09 nov. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Santos, F. L. (2020). Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, 32, 2021-2060. doi:10.1007/s10884-019-09801-x
    • NLM

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
    • Vancouver

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENG, B et al. Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1489-1507, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9604-4. Acesso em: 09 nov. 2025.
    • APA

      Feng, B., Ma, T. F., Monteiro, R. N., & Raposo, C. A. (2018). Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, 30( 4), 1489-1507. doi:10.1007/s10884-017-9604-4
    • NLM

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
    • Vancouver

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-017-9604-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold e OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, v. 28, n. 3/4, p. 1357–1391, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10884-015-9456-8. Acesso em: 09 nov. 2025.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1007/s10884-015-9456-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025