Filtros : "Atmospheric Measurement Techniques" Limpar

Filtros



Refine with date range


  • Source: Atmospheric Measurement Techniques. Unidades: IAG, IF

    Subjects: VAPOR ATMOSFÉRICO, RADIAÇÃO ATMOSFÉRICA, SENSORIAMENTO REMOTO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HACK, Elion Daniel et al. Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America. Atmospheric Measurement Techniques, v. 16, n. 5, p. 1263–1278, 2023Tradução . . Disponível em: https://doi.org/10.5194/amt-16-1263-2023. Acesso em: 27 nov. 2025.
    • APA

      Hack, E. D., Pauliquevis, T., Barbosa, H. de M. J., Yamasoe, M. A., Klebe, D., & Correia, A. L. (2023). Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America. Atmospheric Measurement Techniques, 16( 5), 1263–1278. doi:10.5194/amt-16-1263-2023
    • NLM

      Hack ED, Pauliquevis T, Barbosa H de MJ, Yamasoe MA, Klebe D, Correia AL. Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America [Internet]. Atmospheric Measurement Techniques. 2023 ; 16( 5): 1263–1278.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-16-1263-2023
    • Vancouver

      Hack ED, Pauliquevis T, Barbosa H de MJ, Yamasoe MA, Klebe D, Correia AL. Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America [Internet]. Atmospheric Measurement Techniques. 2023 ; 16( 5): 1263–1278.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-16-1263-2023
  • Source: Atmospheric Measurement Techniques. Unidade: ICMC

    Subjects: AEROSSOL, FLUXO TURBULENTO DOS FLUÍDOS, MÉTODOS NUMÉRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARK, Hyungwon John et al. In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles. Atmospheric Measurement Techniques, v. 15, p. 7172-7194, 2022Tradução . . Disponível em: https://doi.org/10.5194/amt-15-7171-2022. Acesso em: 27 nov. 2025.
    • APA

      Park, H. J., Reid, J. S., Freire, L. S., Jackson, C., & Richter, D. H. (2022). In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles. Atmospheric Measurement Techniques, 15, 7172-7194. doi:10.5194/amt-15-7171-2022
    • NLM

      Park HJ, Reid JS, Freire LS, Jackson C, Richter DH. In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles [Internet]. Atmospheric Measurement Techniques. 2022 ; 15 7172-7194.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-15-7171-2022
    • Vancouver

      Park HJ, Reid JS, Freire LS, Jackson C, Richter DH. In situ particle sampling relationships to surface and turbulent fluxes using large eddy simulations with Lagrangian particles [Internet]. Atmospheric Measurement Techniques. 2022 ; 15 7172-7194.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-15-7171-2022
  • Source: Atmospheric Measurement Techniques. Unidade: ESALQ

    Subjects: ALGORITMOS, CHUVA, MONITORAMENTO AMBIENTAL, PROCESSOS ESTOCÁSTICOS, REDE DE COMUNICAÇÃO, TECNOLOGIA DE MICRO-ONDAS, TELEFONIA CELULAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WOLFF, Wagner et al. Rainfall retrieval algorithm for commercial microwave links: stochastic calibration. Atmospheric Measurement Techniques, v. 15, p. 485–502, 2022Tradução . . Disponível em: https://doi.org/10.5194/amt-15-485-2022. Acesso em: 27 nov. 2025.
    • APA

      Wolff, W., Overeem, A., Leijnse, H., & Uijlenhoet, R. (2022). Rainfall retrieval algorithm for commercial microwave links: stochastic calibration. Atmospheric Measurement Techniques, 15, 485–502. doi:10.5194/amt-15-485-2022
    • NLM

      Wolff W, Overeem A, Leijnse H, Uijlenhoet R. Rainfall retrieval algorithm for commercial microwave links: stochastic calibration [Internet]. Atmospheric Measurement Techniques. 2022 ; 15 485–502.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-15-485-2022
    • Vancouver

      Wolff W, Overeem A, Leijnse H, Uijlenhoet R. Rainfall retrieval algorithm for commercial microwave links: stochastic calibration [Internet]. Atmospheric Measurement Techniques. 2022 ; 15 485–502.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-15-485-2022
  • Source: Atmospheric Measurement Techniques. Unidade: IF

    Assunto: POLARIZAÇÃO

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MCBRIDE, Brent A et al. Spatial distribution of cloud droplet size properties from AirborneHyper-Angular Rainbow Polarimeter (AirHARP) measurements. Atmospheric Measurement Techniques, v. 13, p. 1777–1796, 2020Tradução . . Disponível em: https://doi.org/10.5194/amt-13-1777-2020. Acesso em: 27 nov. 2025.
    • APA

      McBride, B. A., Martins, J. V., Barbosa, H. de M. J., Birmingham, W., & Lorraine A. Remer, L. A. (2020). Spatial distribution of cloud droplet size properties from AirborneHyper-Angular Rainbow Polarimeter (AirHARP) measurements. Atmospheric Measurement Techniques, 13, 1777–1796. doi:10.5194/amt-13-1777-2020
    • NLM

      McBride BA, Martins JV, Barbosa H de MJ, Birmingham W, Lorraine A. Remer LA. Spatial distribution of cloud droplet size properties from AirborneHyper-Angular Rainbow Polarimeter (AirHARP) measurements [Internet]. Atmospheric Measurement Techniques. 2020 ; 13 1777–1796.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-1777-2020
    • Vancouver

      McBride BA, Martins JV, Barbosa H de MJ, Birmingham W, Lorraine A. Remer LA. Spatial distribution of cloud droplet size properties from AirborneHyper-Angular Rainbow Polarimeter (AirHARP) measurements [Internet]. Atmospheric Measurement Techniques. 2020 ; 13 1777–1796.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-1777-2020
  • Source: Atmospheric Measurement Techniques. Unidade: IF

    Subjects: FÍSICA ATMOSFÉRICA, AEROSSOL, FÍSICA ÓPTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PUTHUKKUDY, Anin et al. Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017. Atmospheric Measurement Techniques, v. 13, n. 10, p. 5207-5236, 2020Tradução . . Disponível em: https://doi.org/10.5194/amt-13-5207-2020. Acesso em: 27 nov. 2025.
    • APA

      Puthukkudy, A., Martins, J. V., Remer, L. A., Xiaoguang Xu,, Dubovik, O., Litvinov, P., et al. (2020). Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017. Atmospheric Measurement Techniques, 13( 10), 5207-5236. doi:10.5194/amt-13-5207-2020
    • NLM

      Puthukkudy A, Martins JV, Remer LA, Xiaoguang Xu, Dubovik O, Litvinov P, McBride B, Burton S, Barbosa H de MJ. Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017 [Internet]. Atmospheric Measurement Techniques. 2020 ; 13( 10): 5207-5236.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-5207-2020
    • Vancouver

      Puthukkudy A, Martins JV, Remer LA, Xiaoguang Xu, Dubovik O, Litvinov P, McBride B, Burton S, Barbosa H de MJ. Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during ACEPOL 2017 [Internet]. Atmospheric Measurement Techniques. 2020 ; 13( 10): 5207-5236.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-5207-2020
  • Source: Atmospheric Measurement Techniques. Unidade: IF

    Assunto: AEROSSOL

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÖBS, Nina e ARTAXO NETTO, Paulo Eduardo. Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon. Atmospheric Measurement Techniques, v. 13, p. 153–164, 2020Tradução . . Disponível em: https://doi.org/10.5194/amt-13-153-2020. Acesso em: 27 nov. 2025.
    • APA

      Löbs, N., & Artaxo Netto, P. E. (2020). Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon. Atmospheric Measurement Techniques, 13, 153–164. doi:10.5194/amt-13-153-2020
    • NLM

      Löbs N, Artaxo Netto PE. Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon [Internet]. Atmospheric Measurement Techniques. 2020 ;13 153–164.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-153-2020
    • Vancouver

      Löbs N, Artaxo Netto PE. Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon [Internet]. Atmospheric Measurement Techniques. 2020 ;13 153–164.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-153-2020
  • Source: Atmospheric Measurement Techniques. Unidade: IF

    Assunto: AEROSSOL

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEI, Fan e ARTAXO NETTO, Paulo Eduardo. Comparison of aircraft measurements during GoAmazon2014/5and ACRIDICON-CHUVA. Atmospheric Measurement Techniques, v. 13, p. 661–684, 2020Tradução . . Disponível em: https://doi.org/10.5194/amt-13-661-2020. Acesso em: 27 nov. 2025.
    • APA

      Mei, F., & Artaxo Netto, P. E. (2020). Comparison of aircraft measurements during GoAmazon2014/5and ACRIDICON-CHUVA. Atmospheric Measurement Techniques, 13, 661–684. doi:10.5194/amt-13-661-2020
    • NLM

      Mei F, Artaxo Netto PE. Comparison of aircraft measurements during GoAmazon2014/5and ACRIDICON-CHUVA [Internet]. Atmospheric Measurement Techniques. 2020 ; 13 661–684.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-661-2020
    • Vancouver

      Mei F, Artaxo Netto PE. Comparison of aircraft measurements during GoAmazon2014/5and ACRIDICON-CHUVA [Internet]. Atmospheric Measurement Techniques. 2020 ; 13 661–684.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-13-661-2020
  • Source: Atmospheric Measurement Techniques. Unidade: IAG

    Subjects: AEROSSOL, RADIÔMETROS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSÁRIO, Nilton E et al. Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site. Atmospheric Measurement Techniques, v. 12, n. 2, p. 921-934, 2019Tradução . . Disponível em: https://doi.org/10.5194/amt-12-921-2019. Acesso em: 27 nov. 2025.
    • APA

      Rosário, N. E., Sauini, T., Pauliquevis, T., Barbosa, H. de M. J., Yamasoe, M. A., & Barja, B. (2019). Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site. Atmospheric Measurement Techniques, 12( 2), 921-934. doi:10.5194/amt-12-921-2019
    • NLM

      Rosário NE, Sauini T, Pauliquevis T, Barbosa H de MJ, Yamasoe MA, Barja B. Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site [Internet]. Atmospheric Measurement Techniques. 2019 ; 12( 2): 921-934.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-12-921-2019
    • Vancouver

      Rosário NE, Sauini T, Pauliquevis T, Barbosa H de MJ, Yamasoe MA, Barja B. Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site [Internet]. Atmospheric Measurement Techniques. 2019 ; 12( 2): 921-934.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-12-921-2019
  • Source: Atmospheric Measurement Techniques. Unidade: FFCLRP

    Subjects: RADIAÇÃO ULTRAVIOLETA, QUALIDADE DO PRODUTO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EGLI, Luca et al. Quality assessment of solar UV irradiance measured with array spectroradiometers. Atmospheric Measurement Techniques, v. 9, n. 4, p. 1553-1567, 2016Tradução . . Disponível em: https://doi.org/10.5194/amt-9-1553-2016. Acesso em: 27 nov. 2025.
    • APA

      Egli, L., Gröbner, J., Hülsen, G., Bachmann, L., Blumthaler, M., Dubard, J., et al. (2016). Quality assessment of solar UV irradiance measured with array spectroradiometers. Atmospheric Measurement Techniques, 9( 4), 1553-1567. doi:10.5194/amt-9-1553-2016
    • NLM

      Egli L, Gröbner J, Hülsen G, Bachmann L, Blumthaler M, Dubard J, Khazova M, Kift R, Hoogendijk K, Serrano A, Smedley A, Vilaplana J-M. Quality assessment of solar UV irradiance measured with array spectroradiometers [Internet]. Atmospheric Measurement Techniques. 2016 ; 9( 4): 1553-1567.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-9-1553-2016
    • Vancouver

      Egli L, Gröbner J, Hülsen G, Bachmann L, Blumthaler M, Dubard J, Khazova M, Kift R, Hoogendijk K, Serrano A, Smedley A, Vilaplana J-M. Quality assessment of solar UV irradiance measured with array spectroradiometers [Internet]. Atmospheric Measurement Techniques. 2016 ; 9( 4): 1553-1567.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-9-1553-2016
  • Source: Atmospheric Measurement Techniques. Unidade: IAG

    Subjects: CHUVA, METEOROLOGIA COM RADAR, REGIÃO TROPICAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCHNEEBELI, M et al. Polarimetric X-band weather radar measurements in the tropics: radome and rain attenuation correction: radome and rain attenuation correction. Atmospheric Measurement Techniques, v. 5, p. 2183-2199, 2012Tradução . . Disponível em: https://doi.org/10.5194/amt-5-2183-2012. Acesso em: 27 nov. 2025.
    • APA

      Schneebeli, M., Sakuragi, J., Biscaro, T., Angelis, C. F., Costa, I. C. da, Rodríguez, C. A. M., et al. (2012). Polarimetric X-band weather radar measurements in the tropics: radome and rain attenuation correction: radome and rain attenuation correction. Atmospheric Measurement Techniques, 5, 2183-2199. doi:10.5194/amt-5-2183-2012
    • NLM

      Schneebeli M, Sakuragi J, Biscaro T, Angelis CF, Costa IC da, Rodríguez CAM, Baldini L, Machado LAT. Polarimetric X-band weather radar measurements in the tropics: radome and rain attenuation correction: radome and rain attenuation correction [Internet]. Atmospheric Measurement Techniques. 2012 ; 5 2183-2199.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-5-2183-2012
    • Vancouver

      Schneebeli M, Sakuragi J, Biscaro T, Angelis CF, Costa IC da, Rodríguez CAM, Baldini L, Machado LAT. Polarimetric X-band weather radar measurements in the tropics: radome and rain attenuation correction: radome and rain attenuation correction [Internet]. Atmospheric Measurement Techniques. 2012 ; 5 2183-2199.[citado 2025 nov. 27 ] Available from: https://doi.org/10.5194/amt-5-2183-2012

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025