Filtros : "Financiamento FAPESP" "SOLUÇÕES PERIÓDICAS" Limpar

Filtros



Limitar por data


  • Fonte: Physica D : Nonlinear Phenomena. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, TEORIA DA BIFURCAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e CRUZ, Leonardo Pereira Costa da e TORREGROSA, Joan. Local and global analysis of the displacement map for some near integrable systems. Physica D : Nonlinear Phenomena, v. 483, p. 1-11, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.physd.2025.134932. Acesso em: 08 out. 2025.
    • APA

      Braun, F., Cruz, L. P. C. da, & Torregrosa, J. (2025). Local and global analysis of the displacement map for some near integrable systems. Physica D : Nonlinear Phenomena, 483, 1-11. doi:10.1016/j.physd.2025.134932
    • NLM

      Braun F, Cruz LPC da, Torregrosa J. Local and global analysis of the displacement map for some near integrable systems [Internet]. Physica D : Nonlinear Phenomena. 2025 ; 483 1-11.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.physd.2025.134932
    • Vancouver

      Braun F, Cruz LPC da, Torregrosa J. Local and global analysis of the displacement map for some near integrable systems [Internet]. Physica D : Nonlinear Phenomena. 2025 ; 483 1-11.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.physd.2025.134932
  • Fonte: Nonlinear Analysis : Hybrid Systems. Unidade: ICMC

    Assuntos: EQUAÇÕES INTEGRAIS DE VOLTERRA-STIELTJES, EQUAÇÕES INTEGRAIS NÃO LINEARES, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marielle Aparecida et al. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations. Nonlinear Analysis : Hybrid Systems, v. 56, p. 1-17, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2024.101573. Acesso em: 08 out. 2025.
    • APA

      Silva, M. A., Bonotto, E. de M., Collegari, R., Federson, M., & Gadotti, M. C. (2025). On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations. Nonlinear Analysis : Hybrid Systems, 56, 1-17. doi:10.1016/j.nahs.2024.101573
    • NLM

      Silva MA, Bonotto E de M, Collegari R, Federson M, Gadotti MC. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations [Internet]. Nonlinear Analysis : Hybrid Systems. 2025 ; 56 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nahs.2024.101573
    • Vancouver

      Silva MA, Bonotto E de M, Collegari R, Federson M, Gadotti MC. On (Θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra-Stieltjes-type integral equations [Internet]. Nonlinear Analysis : Hybrid Systems. 2025 ; 56 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nahs.2024.101573
  • Fonte: Nonlinear analysis : real world applications. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e CRUZ, Leonardo Pereira Costa da e TORREGROSA, Joan. On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, v. 79, p. 1-15, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2024.104124. Acesso em: 08 out. 2025.
    • APA

      Braun, F., Cruz, L. P. C. da, & Torregrosa, J. (2024). On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, 79, 1-15. doi:10.1016/j.nonrwa.2024.104124
    • NLM

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
    • Vancouver

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Suzete Maria Silva e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of neutral functional differential equations. Journal of Differential Equations, v. 350, p. 89-123, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.12.014. Acesso em: 08 out. 2025.
    • APA

      Afonso, S. M. S., Bonotto, E. de M., & Silva, M. R. da. (2023). Periodic solutions of neutral functional differential equations. Journal of Differential Equations, 350, 89-123. doi:10.1016/j.jde.2022.12.014
    • NLM

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
    • Vancouver

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
  • Fonte: Journal of Geometric Analysis. Unidade: ICMC

    Assuntos: PROBLEMAS DE CONTORNO, SOLUÇÕES PERIÓDICAS, EQUAÇÕES INTEGRAIS DE VOLTERRA-STIELTJES, ANÁLISE REAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e MACENA, Maria Carolina Stefani Mesquita. Boundary value problems for generalized ODEs. Journal of Geometric Analysis, v. 33, n. Ja 2023, p. 1-37, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12220-022-01090-z. Acesso em: 08 out. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Macena, M. C. S. M. (2023). Boundary value problems for generalized ODEs. Journal of Geometric Analysis, 33( Ja 2023), 1-37. doi:10.1007/s12220-022-01090-z
    • NLM

      Bonotto E de M, Federson M, Macena MCSM. Boundary value problems for generalized ODEs [Internet]. Journal of Geometric Analysis. 2023 ; 33( Ja 2023): 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12220-022-01090-z
    • Vancouver

      Bonotto E de M, Federson M, Macena MCSM. Boundary value problems for generalized ODEs [Internet]. Journal of Geometric Analysis. 2023 ; 33( Ja 2023): 1-37.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12220-022-01090-z
  • Fonte: Qualitative Theory of Dynamical Systems. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SÁNCHEZ-SÁNCHEZ, Iván e TORREGROSA, Joan. Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, v. 21, n. 1, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12346-021-00546-x. Acesso em: 08 out. 2025.
    • APA

      Oliveira, R. D. dos S., Sánchez-Sánchez, I., & Torregrosa, J. (2022). Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, 21( 1), 1-35. doi:10.1007/s12346-021-00546-x
    • NLM

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12346-021-00546-x
    • Vancouver

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12346-021-00546-x
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 08 out. 2025.
    • APA

      Federson, M., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson M, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2025 out. 08 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Fonte: Matemática Contemporânea. Nome do evento: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES, SOLUÇÕES PERIÓDICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERNIAUSKAS, Wanderley Aparecido e DATTORI DA SILVA, Paulo Leandro e KIRILOV, Alexandre. Semiglobal solvability for a class of first order operators. Matemática Contemporânea. Rio de Janeiro: SBM. Disponível em: https://doi.org/10.21711/231766362022/rmc524. Acesso em: 08 out. 2025. , 2022
    • APA

      Cerniauskas, W. A., Dattori da Silva, P. L., & Kirilov, A. (2022). Semiglobal solvability for a class of first order operators. Matemática Contemporânea. Rio de Janeiro: SBM. doi:10.21711/231766362022/rmc524
    • NLM

      Cerniauskas WA, Dattori da Silva PL, Kirilov A. Semiglobal solvability for a class of first order operators [Internet]. Matemática Contemporânea. 2022 ; 52 54-70.[citado 2025 out. 08 ] Available from: https://doi.org/10.21711/231766362022/rmc524
    • Vancouver

      Cerniauskas WA, Dattori da Silva PL, Kirilov A. Semiglobal solvability for a class of first order operators [Internet]. Matemática Contemporânea. 2022 ; 52 54-70.[citado 2025 out. 08 ] Available from: https://doi.org/10.21711/231766362022/rmc524
  • Fonte: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, v. 45, n. Ja 2022, p. 579-584, 2022Tradução . . Disponível em: https://doi.org/10.1002/mma.7798. Acesso em: 08 out. 2025.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2022). On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, 45( Ja 2022), 579-584. doi:10.1002/mma.7798
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.7798
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.7798
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, Rogelio e MACENA, Maria Carolina Stefani Mesquita. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 725-760, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.027. Acesso em: 08 out. 2025.
    • APA

      Federson, M., Grau, R., & Macena, M. C. S. M. (2022). Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, 60( 2), 725-760. doi:10.12775/TMNA.2022.027
    • NLM

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2022.027
    • Vancouver

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2022.027
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: SOLUÇÕES PERIÓDICAS, EQUAÇÕES INTEGRAIS, INTEGRAL DE DENJOY

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S M e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of measure functional differential equations. Journal of Differential Equations, v. 309, p. 196-230, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.031. Acesso em: 08 out. 2025.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Silva, M. R. da. (2022). Periodic solutions of measure functional differential equations. Journal of Differential Equations, 309, 196-230. doi:10.1016/j.jde.2021.11.031
    • NLM

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
    • Vancouver

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
  • Fonte: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e CAVALCANTI, Marcelo Moreira e GONZALEZ, Rafael Borro. Existence and regularity of periodic solutions for a class of partial differential operators. Journal of Fourier Analysis and Applications, v. 27, n. 3, p. 1-41, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00041-021-09855-w. Acesso em: 08 out. 2025.
    • APA

      Bergamasco, A. P., Cavalcanti, M. M., & Gonzalez, R. B. (2021). Existence and regularity of periodic solutions for a class of partial differential operators. Journal of Fourier Analysis and Applications, 27( 3), 1-41. doi:10.1007/s00041-021-09855-w
    • NLM

      Bergamasco AP, Cavalcanti MM, Gonzalez RB. Existence and regularity of periodic solutions for a class of partial differential operators [Internet]. Journal of Fourier Analysis and Applications. 2021 ; 27( 3): 1-41.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00041-021-09855-w
    • Vancouver

      Bergamasco AP, Cavalcanti MM, Gonzalez RB. Existence and regularity of periodic solutions for a class of partial differential operators [Internet]. Journal of Fourier Analysis and Applications. 2021 ; 27( 3): 1-41.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00041-021-09855-w
  • Fonte: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Assuntos: ANÁLISE REAL, TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e MAWHIN, Jean e MESQUITA, Jaqueline Godoy. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, v. 169, p. 1-31, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2021.102991. Acesso em: 08 out. 2025.
    • APA

      Federson, M., Mawhin, J., & Mesquita, J. G. (2021). Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, 169, 1-31. doi:10.1016/j.bulsci.2021.102991
    • NLM

      Federson M, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.bulsci.2021.102991
    • Vancouver

      Federson M, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.bulsci.2021.102991
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, SOLUÇÕES PERIÓDICAS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Marcelo Fernandes de e DATTORI DA SILVA, Paulo Leandro. Solvability of a class of first order differential operators on the torus. Results in Mathematics, v. 76, n. 2, p. 1-17, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00025-021-01413-6. Acesso em: 08 out. 2025.
    • APA

      Almeida, M. F. de, & Dattori da Silva, P. L. (2021). Solvability of a class of first order differential operators on the torus. Results in Mathematics, 76( 2), 1-17. doi:10.1007/s00025-021-01413-6
    • NLM

      Almeida MF de, Dattori da Silva PL. Solvability of a class of first order differential operators on the torus [Internet]. Results in Mathematics. 2021 ; 76( 2): 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-021-01413-6
    • Vancouver

      Almeida MF de, Dattori da Silva PL. Solvability of a class of first order differential operators on the torus [Internet]. Results in Mathematics. 2021 ; 76( 2): 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00025-021-01413-6
  • Fonte: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assuntos: TOPOLOGIA DINÂMICA, ATRATORES, SOLUÇÕES PERIÓDICAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CZAJA, Radoslaw e OLIVA, Waldyr Muniz e ROCHA, Carlos. On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, v. 37, n. 7, p. 3601-3623, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcds.2017155. Acesso em: 08 out. 2025.
    • APA

      Czaja, R., Oliva, W. M., & Rocha, C. (2017). On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, 37( 7), 3601-3623. doi:10.3934/dcds.2017155
    • NLM

      Czaja R, Oliva WM, Rocha C. On a definition of Morse-Smale evolution processes [Internet]. Discrete and Continuous Dynamical Systems. 2017 ; 37( 7): 3601-3623.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/dcds.2017155
    • Vancouver

      Czaja R, Oliva WM, Rocha C. On a definition of Morse-Smale evolution processes [Internet]. Discrete and Continuous Dynamical Systems. 2017 ; 37( 7): 3601-3623.[citado 2025 out. 08 ] Available from: https://doi.org/10.3934/dcds.2017155

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025