Filtros : "Financiamento FAPESP" "INTEGRAL DE PERRON" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Suzete Maria Silva e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of neutral functional differential equations. Journal of Differential Equations, v. 350, p. 89-123, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.12.014. Acesso em: 08 out. 2025.
    • APA

      Afonso, S. M. S., Bonotto, E. de M., & Silva, M. R. da. (2023). Periodic solutions of neutral functional differential equations. Journal of Differential Equations, 350, 89-123. doi:10.1016/j.jde.2022.12.014
    • NLM

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
    • Vancouver

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, v. 307, n. Ja 2022, p. 160-210, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.10.044. Acesso em: 08 out. 2025.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
  • Fonte: Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, TEORIA DA OSCILAÇÃO, INTEGRAL DE PERRON

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marielle Aparecida e FEDERSON, Marcia e GADOTTI, Marta Cilene. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis, v. 29, n. 2, p. 125-137, 2022Tradução . . Disponível em: https://online.watsci.org/contents2022/v29n2a.html. Acesso em: 08 out. 2025.
    • APA

      Silva, M. A., Federson, M., & Gadotti, M. C. (2022). Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis, 29( 2), 125-137. Recuperado de https://online.watsci.org/contents2022/v29n2a.html
    • NLM

      Silva MA, Federson M, Gadotti MC. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients [Internet]. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2022 ; 29( 2): 125-137.[citado 2025 out. 08 ] Available from: https://online.watsci.org/contents2022/v29n2a.html
    • Vancouver

      Silva MA, Federson M, Gadotti MC. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients [Internet]. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2022 ; 29( 2): 125-137.[citado 2025 out. 08 ] Available from: https://online.watsci.org/contents2022/v29n2a.html
  • Fonte: Bulletin of Mathematical Sciences. Unidade: ICMC

    Assuntos: EQUAÇÕES INTEGRAIS DE VOLTERRA-STIELTJES, INTEGRAL DE PERRON, SISTEMAS DINÂMICOS, CONTROLABILIDADE

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals. Bulletin of Mathematical Sciences, v. 12, n. 3, p. 2150011-1-2150011-47, 2022Tradução . . Disponível em: https://doi.org/10.1142/S1664360721500119. Acesso em: 08 out. 2025.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals. Bulletin of Mathematical Sciences, 12( 3), 2150011-1-2150011-47. doi:10.1142/S1664360721500119
    • NLM

      Silva FA da, Federson M, Toon E. Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals [Internet]. Bulletin of Mathematical Sciences. 2022 ; 12( 3): 2150011-1-2150011-47.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S1664360721500119
    • Vancouver

      Silva FA da, Federson M, Toon E. Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals [Internet]. Bulletin of Mathematical Sciences. 2022 ; 12( 3): 2150011-1-2150011-47.[citado 2025 out. 08 ] Available from: https://doi.org/10.1142/S1664360721500119
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEOREMA DO PONTO FIXO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e GRAU, Rogelio e MACENA, Maria Carolina Stefani Mesquita. Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 725-760, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.027. Acesso em: 08 out. 2025.
    • APA

      Federson, M., Grau, R., & Macena, M. C. S. M. (2022). Affine-periodic solutions for generalized ODEs and other equations. Topological Methods in Nonlinear Analysis, 60( 2), 725-760. doi:10.12775/TMNA.2022.027
    • NLM

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2022.027
    • Vancouver

      Federson M, Grau R, Macena MCSM. Affine-periodic solutions for generalized ODEs and other equations [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 725-760.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2022.027

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025