Generalized local duality, canonical modules, and prescribed bound on projective dimension (2023)
Fonte: Journal of Pure and Applied Algebra. Unidade: ICMC
Assuntos: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA
ABNT
FREITAS, Thiago Henrique de et al. Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, v. 227, n. 2, p. 1-17, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2022.107188. Acesso em: 31 out. 2024.APA
Freitas, T. H. de, Jorge Pérez, V. H., Miranda-Neto, C. B., & Schenzel, P. (2023). Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, 227( 2), 1-17. doi:10.1016/j.jpaa.2022.107188NLM
Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188Vancouver
Freitas TH de, Jorge Pérez VH, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188