Filtros : "Differential Equations and Dynamical Systems" Limpar

Filtros



Refine with date range


  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PACÍFICO, Tiago A. Sections and parallelizable semigroups. Differential Equations and Dynamical Systems, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12591-025-00734-0. Acesso em: 01 dez. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pacífico, T. A. (2025). Sections and parallelizable semigroups. Differential Equations and Dynamical Systems. doi:10.1007/s12591-025-00734-0
    • NLM

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
    • Vancouver

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, v. 32, n. 3, p. 933-941, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 01 dez. 2025.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2024). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 32( 3), 933-941. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Differential Equations and Dynamical Systems. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALCEDO, Gladys E e MORETTIN, Pedro Alberto e TOLOI, Clelia Maria de Castro. A test for comparing two discrete stochastic dynamical systems under heteroskedasticity. Differential Equations and Dynamical Systems, v. 19, n. 3, p. 211-236, 2011Tradução . . Disponível em: https://doi.org/10.1007/s12591-011-0085-3. Acesso em: 01 dez. 2025.
    • APA

      Salcedo, G. E., Morettin, P. A., & Toloi, C. M. de C. (2011). A test for comparing two discrete stochastic dynamical systems under heteroskedasticity. Differential Equations and Dynamical Systems, 19( 3), 211-236. doi:10.1007/s12591-011-0085-3
    • NLM

      Salcedo GE, Morettin PA, Toloi CM de C. A test for comparing two discrete stochastic dynamical systems under heteroskedasticity [Internet]. Differential Equations and Dynamical Systems. 2011 ; 19( 3): 211-236.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-011-0085-3
    • Vancouver

      Salcedo GE, Morettin PA, Toloi CM de C. A test for comparing two discrete stochastic dynamical systems under heteroskedasticity [Internet]. Differential Equations and Dynamical Systems. 2011 ; 19( 3): 211-236.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-011-0085-3
  • Source: Differential Equations and Dynamical Systems. Unidade: IME

    Assunto: TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Jocirei Dias e OLIVEIRA, Luiz Augusto Fernandes de. Zip bifurcation in a competitive system with diffusion. Differential Equations and Dynamical Systems, v. 17, p. 37-53, 2009Tradução . . Disponível em: https://doi.org/10.1007/s12591-009-0003-0. Acesso em: 01 dez. 2025.
    • APA

      Ferreira, J. D., & Oliveira, L. A. F. de. (2009). Zip bifurcation in a competitive system with diffusion. Differential Equations and Dynamical Systems, 17, 37-53. doi:10.1007/s12591-009-0003-0
    • NLM

      Ferreira JD, Oliveira LAF de. Zip bifurcation in a competitive system with diffusion [Internet]. Differential Equations and Dynamical Systems. 2009 ; 17 37-53.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-009-0003-0
    • Vancouver

      Ferreira JD, Oliveira LAF de. Zip bifurcation in a competitive system with diffusion [Internet]. Differential Equations and Dynamical Systems. 2009 ; 17 37-53.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1007/s12591-009-0003-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025